1. Institute for Advanced Materials and Technology (IAMT), State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China 2. Shunde Graduate School, University of Science and Technology Beijing, Foshan 528399, China 3. School of Computer and Communication Engineering, University of Science and Technology Beijing, Beijing 100083, China 4. Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China 5. School of Engineering, University of Leicester, Leicester LE1 7RH, UK 6. School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, China
Chemical vapor deposited (CVD) diamond as a burgeoning multi-functional material with tailored quality and characteristics can be artificially synthesized and controlled for various applications. Correspondingly, the application-related “grade” concept associated with materials choice and design was gradually formulated, of which the availability and the performance are optimally suited. In this review, the explicit diversity of CVD diamond and the clarification of typical grades for applications, i.e., from resplendent gem-grade to promising quantum-grade, were systematically summarized and discussed, according to the crystal quality and main consideration of ubiquitous nitrogen impurity content as well as major applications. Realizations of those, from quantum-grade with near-ideal crystal to electronic-grade having extremely low imperfections and then to optical, thermal as well as mechanical-grade needing controlled flaws and allowable impurities, would competently fulfill the multi-field application prospects with appropriate choice in terms of cost and quality. Exceptionally, wide range defects and impurities in the gem-grade diamond (only indicating single crystal), which are detrimental for technology applications, endows CVD crystals with fancy colors to challenge their natural counterparts.
H3 absorption (2NV0) + 550 nm; band (unknown); 480 nm band (unknown); isolated nitrogen “C centers” (N)
Tab.2
Fig.4
Fig.5
Fig.6
Diamond color
Nitrogen concentration/ppm
Hardness/GPa
Abrasion resistance
Yellow
70
95
0.84
20
106
1.31
Pale green
~2
–
1.72
~0.1
131
3.11
Colorless
~0.3
110
3.05
Tab.3
Fig.7
Fig.8
Fig.9
Materials grade
Nitrogen concentration/ppm
Dislocation density/cm–2
Grain size/μm
C-vacancy concentration/ppm
1800 W·m–1·K–1 (600 μm)
2.0–5.0
108
100–140
20–30
1800 W·m–1·K–1 (250 μm)
2.0–5.0
108
30–70
20–30
1500 W·m–1·K–1 (250 μm)
12–17
108
30–70
20
1000 W·m–1·K–1 (250 μm)
0.1–0.3
1011
20–30
22–24
Optical
0.1–0.4
108
120–160
9–13
Tab.4
Fig.10
Fig.11
Fig.12
Element
Ea/eV a)
Conduction type
Comment
Refs.
B
0.36–0.37
p
Insulative to metallic to superconductive
[188–190]
H on surface
0.05
Unstable
[191–192]
O
0.32
n
Need cold-implantation-rapid-annealing
[193]
P
0.57–0.6
Deep donor, limited to the (1?1?1)-oriented diamond lattice structure
[194–195]
N
1.7
Deep donor
[189,196]
S (S-complex)
0.38 (0.1)
S++ c) state cannot act as a donor due to no extra level introduced in the band gap; quite low doping efficiency and solubility (activation energy unstable)
[197–198]
Deuterated B
0.23
–
[199]
Li
0.1 and 0.4 (~0.2) b)
Insoluble, unstable, and likely to form complexes with impurities and vacancies
[200–201]
Na
0.3 (0.13–0.42) b)
[200,202]
Sn, Te, As, Sb
~0.4–0.5
Unstable, and likely to be compensated by other defects or atom size is large
[203]
Tab.5
Fig.13
Fig.14
Fig.15
Fig.16
Fig.17
Fig.18
1
J Ogden. Diamonds: An Early History of the King of Gems. New Haven, USA: Yale University Press, 2018
2
C M Breeding. Colored diamonds: the rarity and beauty of imperfection. Gems & Gemology, 2018, 54: 275
3
J E Butler, R L Woodin. Thin film diamond growth mechanisms. Philosophical Transactions of the Royal Society of London Series A: Mathematical Physical and Engineering Sciences, 1993, 342(1664): 209–224 https://doi.org/10.1098/rsta.1993.0015
4
N Renfro, J I Koivula, W Y Wang, et al.. Synthetic gem materials in the 2000s: a decade in review. Gems & Gemology, 2010, 46(4): 260–273 https://doi.org/10.5741/GEMS.46.4.260
T Liu, D Raabe, W M Mao. A review of crystallographic textures in chemical vapor-deposited diamond films. Frontiers of Materials Science, 2010, 4(1): 1–16 https://doi.org/10.1007/s11706-010-0011-6
7
A Cumont, A R Pitt, P A Lambert, et al.. Properties, mechanism and applications of diamond as an antibacterial material. Functional Diamond, 2021, 1(1): 1–28 https://doi.org/10.1080/26941112.2020.1869434
8
Y T Zheng, J J Wei, J L Liu, et al.. Carbon materials: the burgeoning promise in electronics. International Journal of Minerals, Metallurgy and Materials, 2022, doi:10.1007/s12613-021-2358-3 (in press) https://doi.org/10.1007/s12613-021-2358-3
9
H C Yang, Y D Ma, Y Dai. Progress of structural and electronic properties of diamond: a mini review. Functional Diamond, 2021, 1(1): 150–159 https://doi.org/10.1080/26941112.2021.1956287
10
R P Mildren, J R Rabeau, eds. Optical Engineering of Diamond. 1st ed. Weinheim, Germany: Wiley-VCH, 2013
11
K Liu, S Zhang, V Ralchenko, et al.. Tailoring of typical color centers in diamond for photonics. Advanced Materials, 2021, 33(6): 2000891 https://doi.org/10.1002/adma.202000891
12
S Bland. Diamond circuits are forever: carbon. Materials Today, 2011, 14(10): 460
13
J E Graebner, M E Reiss, L Seibles, et al.. Phonon scattering in chemical-vapor-deposited diamond. Physical Review B, 1994, 50(6): 3702–3713 https://doi.org/10.1103/PhysRevB.50.3702
14
E Worner, C Wild, W Muller-Sebert, et al.. Thermal conductivity of CVD diamond films: high-precision, temperature-resolved measurements. Diamond and Related Materials, 1996, 5(6–8): 688–692 https://doi.org/10.1016/0925-9635(95)00390-8
15
W H Wang, B Dai, Y Wang, et al.. Recent progress of diamond optical window-related components. Materials Science and Technology, 2020, 28: 42–57
16
A Kasugai, K Sakamoto, K Takahashi, et al.. Chemical vapor deposition diamond window for high-power and long pulse millimeter wave transmission. Review of Scientific Instruments, 1998, 69(5): 2160–2165 https://doi.org/10.1063/1.1148916
17
S E Coe, R S Sussmann. Optical, thermal and mechanical properties of CVD diamond. Diamond and Related Materials, 2000, 9(9–10): 1726–1729 https://doi.org/10.1016/S0925-9635(00)00298-3
18
R Heidinger, G Dammertz, A Meier, et al.. CVD diamond windows studied with low-and high-power millimeter waves. IEEE Transactions on Plasma Science, 2002, 30(3): 800–807 https://doi.org/10.1109/TPS.2002.1158309
19
R P Mildren. Intrinsic optical properties of diamond. In: Mildren R P, Rabeau J R, eds. Optical Engineering of Diamond. 1st ed. Weinheim, Germany: Wiley-VCH, 2013, 1–34
20
M Marinelli, E Milani, A Paoletti, et al.. Growth of detector grade CVD diamond films and microscopic interpretation of their efficiency and charge collection distance in the normal and pumped states. Diamond and Related Materials, 2001, 10(9–10): 1783–1787 https://doi.org/10.1016/S0925-9635(01)00449-6
21
P Bergonzo, R Barrett, O Hainaut, et al.. Imaging of the sensitivity in detector grade polycrystalline diamonds using micro-focused X-ray beams. Diamond and Related Materials, 2002, 11(3–6): 418–422 https://doi.org/10.1016/S0925-9635(01)00662-8
22
H Okushi, H Watanabe, S Ri, et al.. Device-grade homoepitaxial diamond film growth. Journal of Crystal Growth, 2002, 237–239: 1269–1276 https://doi.org/10.1016/S0022-0248(01)02144-3
23
D Takeuchi, H Watanabe, S Yamanaka, et al.. Defects in device grade homoepitaxial diamond thin films grown with ultra-low CH4/H2 conditions by microwave-plasma chemical vapor deposition. Physica Status Solidi A: Applied Research, 1999, 174(1): 101–115 https://doi.org/10.1002/(SICI)1521-396X(199907)174:1<101::AID-PSSA101>3.0.CO;2-O
J Isberg, J Hammersberg, E Johansson, et al.. High carrier mobility in single-crystal plasma-deposited diamond. Science, 2002, 297(5587): 1670–1672 https://doi.org/10.1126/science.1074374
S Garifo, D Stanicki, G Ayata, et al.. Nanodiamonds as nanomaterial for biomedical field. Frontiers of Materials Science, 2021, 15(3): 334–351 https://doi.org/10.1007/s11706-021-0567-3
J Ke, T J Lu, Y Lan, et al.. Recent developments in detection and gemology in China, particularly for Chinese synthetic diamonds. Gems & Gemology, 2018, 54(3): 268
W Y Wang, T Moses, R C Linares, et al.. Gem-quality synthetic diamonds grown by a chemical vapor deposition (CVD) method. Gems & Gemology, 2003, 39(4): 268–283 https://doi.org/10.5741/GEMS.39.4.268
R S Balmer, J R Brandon, S L Clewes, et al.. Chemical vapour deposition synthetic diamond: materials, technology and applications. Journal of Physics: Condensed Matter, 2009, 21(36): 364221 https://doi.org/10.1088/0953-8984/21/36/364221
38
B D Thoms, J N Russell, P E Pehrsson, et al.. Adsorption and abstraction of hydrogen on polycrystalline diamond. The Journal of Chemical Physics, 1994, 100(11): 8425–8431 https://doi.org/10.1063/1.466740
39
P L Diggle, U F S Haenens-Johansson, W Y Wang, et al.. Diamond at the diffraction limit: optical characterization of synthetic diamond. Gems & Gemology, 2018, 54: 265
40
J E Shigley, C M Breeding. Optical defects in diamond: a quick reference chart. Gems & Gemology, 2013, 49(2): 107–111 https://doi.org/10.5741/GEMS.49.2.107
41
B A Fairchild, S Rubanov, D W M Lau, et al.. Mechanism for the amorphisation of diamond. Advanced Materials, 2012, 24(15): 2024–2029 https://doi.org/10.1002/adma.201104511
42
B A Fairchild, P Olivero, S Rubanov, et al.. Fabrication of ultrathin single-crystal diamond membranes. Advanced Materials, 2008, 20(24): 4793–4798 https://doi.org/10.1002/adma.200801460
43
C M Breeding, A H Shen, S Eaton-Magaña, et al.. Developments in gemstone analysis techniques and instrumentation during the 2000s. Gems & Gemology, 2010, 46(3): 241–257 https://doi.org/10.5741/GEMS.46.3.241
44
I Y Koenka, Y Kauffmann, A Hoffman. Direct visualization and characterization of chemical bonding and phase composition of grain boundaries in polycrystalline diamond films by transmission electron microscopy and high-resolution electron energy loss spectroscopy. Applied Physics Letters, 2011, 99(20): 201907 https://doi.org/10.1063/1.3660582
45
S Ohmagari, H Yamada, N Tsubouchi, et al.. Toward high-performance diamond electronics: control and annihilation of dislocation propagation by metal-assisted termination. Physica Status Solidi A: Applications and Materials Science, 2019, 216(21): 1900498 https://doi.org/10.1002/pssa.201900498
46
T Teraji, T Yamamoto, K Watanabe, et al.. Homoepitaxial diamond film growth: high purity, high crystalline quality, isotopic enrichment, and single-color center formation. Physica Status Solidi A: Applications and Materials Science, 2015, 212(11): 2365–2384 https://doi.org/10.1002/pssa.201532449
47
S Shikata, K Yamaguchi, A Fujiwara, et al.. X-ray absorption fine structure study of heavily P doped (111) and (001) diamond. Applied Physics Letters, 2017, 110(7): 072106 https://doi.org/10.1063/1.4975062
48
C M Breeding, J E Shigley. The “type” classification system of diamonds and its importance in gemology. Gems & Gemology, 2009, 45(2): 96–111 https://doi.org/10.5741/GEMS.45.2.96
L Groat. Scientific study of colored gem deposits and modern fingerprinting methods. Gems & Gemology, 2018, 54(3): 277–278
53
L S Pan, D R Kania, P Pianetta, et al.. Temperature dependent mobility in single-crystal and chemical vapor-deposited diamond. Journal of Applied Physics, 1993, 73(6): 2888–2894 https://doi.org/10.1063/1.353018
54
A Hartl, J A Garrido, S Nowy, et al.. The ion sensitivity of surface conductive single crystalline diamond. Journal of the American Chemical Society, 2007, 129(5): 1287–1292 https://doi.org/10.1021/ja066543b
55
E Onstad, D Clarke. How man-made diamonds have grown to threaten natural gems. Reuters Business News, 2018
56
H Kitawaki. Undisclosed samples of large CVD synthetic diamond. Gems & Gemology, 2013, 49(1): 60–61
57
N D Renfro, J I Koivula, J Muyal, et al.. Inclusion in natural, synthetic, and treated diamond. Gems & Gemology, 2018, 54(4): 428–429
58
H Cohen, S Ruthstein. Evaluating the color and nature of diamonds via EPR spectroscopy. Gems & Gemology, 2018, 54(3): 276
59
S E Magaña, T Ardon, K V Smit, et al.. Natural-color pink, purple, red, and brown diamonds: band of many colors. Gems & Gemology, 2018, 54(4): 352–377
60
S E Eaton-Magana, T Ardon, A M Zaitsev. LPHT annealing of brown-to-yellow type Ia diamonds. Diamond and Related Materials, 2017, 77: 159–170 https://doi.org/10.1016/j.diamond.2017.06.008
A T Collins. The detection of colour-enhanced and synthetic gem diamonds by optical spectroscopy. Diamond and Related Materials, 2003, 12(10–11): 1976–1983 https://doi.org/10.1016/S0925-9635(03)00262-0
63
E Fritsch, J E Shigley, T Moses, et al.. A green diamond a study of chameleonism. In: Content D J, ed. Leeds, UK: Maney and Sons Ltd., 1995
64
J P Goss, C P Ewels, P R Briddon, et al.. Bistable N2–H complexes: the first proposed structure of a H-related colour-causing defect in diamond. Diamond and Related Materials, 2011, 20(7): 896–901 https://doi.org/10.1016/j.diamond.2011.05.004
65
N Fujita, R Jones, S Öberg, et al.. Large spherical vacancy clusters in diamond — origin of the brown colouration? Diamond and Related Materials, 2009, 18(5–8): 843–845 https://doi.org/10.1016/j.diamond.2008.10.061
66
S Eaton-Magana, G McElhenny, C M Breeding, et al.. Comparison of gemological and spectroscopic features in type IIa and Ia natural pink diamonds. Diamond and Related Materials, 2020, 105: 107784 https://doi.org/10.1016/j.diamond.2020.107784
67
T Hainschwang, F Notari, E Fritsch, et al.. Natural, untreated diamonds showing the A, B and C infrared absorptions (“ABC diamonds”), and the H2 absorption. Diamond and Related Materials, 2006, 15(10): 1555–1564 https://doi.org/10.1016/j.diamond.2005.12.029
68
A M Zaitsev, N M Kazuchits, V N Kazuchits, et al.. Nitrogen-doped CVD diamond: nitrogen concentration, color and internal stress. Diamond and Related Materials, 2020, 105: 107794 https://doi.org/10.1016/j.diamond.2020.107794
R Jones. Dislocations, vacancies and the brown colour of CVD and natural diamond. Diamond and Related Materials, 2009, 18(5–8): 820–826 https://doi.org/10.1016/j.diamond.2008.11.027
71
W Y Wang, K S Moe. CVD Synthetic diamond with fancy vivid orange color. Gems & Gemology, 2014, 50(4): 299
72
W Y Wang, T Moses. Large pinkish orange CVD synthetic diamond. Gems & Gemology, 2018, 54(2): 216–217
73
K S Moe, W Y Wang, U D’Haenens-Johansson. Yellow CVD synthetic diamond. Gems & Gemology, 2014, 50(2): 154–155
74
B P L Law, W Y Wang. CVD synthetic diamond over 5 carats identified. Gems & Gemology, 2016, 52(4): 414–416
75
T Poon, C Lo, B Law. Ring with a CVD synthetic melee. Gems & Gemology, 2016, 52(1): 75–76
76
S Magaña. CVD synthetic diamond with unusual DiamondView image. Gems & Gemology, 2014, 50(1): 67–68
77
S Tang, J Su, T Lu, et al.. A melee-size CVD synthetic diamond in pearl and diamond jewelry. Gems & Gemology, 2017, 53(3): 382–383
78
B Willems, A Tallaire, J Achard. Optical study of defects in thick undoped CVD synthetic diamond layers. Diamond and Related Materials, 2014, 41: 25–33 https://doi.org/10.1016/j.diamond.2013.09.010
79
S Eaton-Magaña, J E Shigley. Observations on CVD-grown synthetic diamonds: a review. Gems & Gemology, 2016, 52(3): 222–245 https://doi.org/10.5741/GEMS.52.3.222
80
J E Butler. Chemical vapor deposited diamond: maturity and diversity. Electrochemical Society Interface, 2003, 12(1): 22–26 https://doi.org/10.1149/2.F07031IF
81
E Fritsch, A W Phelps. Type IIb diamond thin films deposited onto near-colorless natural gem diamonds. Diamond and Related Materials, 1993, 2(2–4): 70–74 https://doi.org/10.1016/0925-9635(93)90033-X
82
T Ardon, G McElhenny. Synthetic diamond CVD layer grown on natural diamond. Gems & Gemology, 2019, 55(1): 97–99
83
W Y Wang, U F S D’Haenens-Johansson, P Johnson, et al.. CVD synthetic diamonds from gemesis corp. Gems & Gemology, 2012, 48(2): 80–97 https://doi.org/10.5741/GEMS.48.2.80
84
A M Zaitsev, K S Moe, W Y Wang. Defect transformations in nitrogen-doped CVD diamond during irradiation and annealing. Diamond and Related Materials, 2018, 88: 237–255 https://doi.org/10.1016/j.diamond.2018.07.017
85
V G Vins, A P Yelisseyev, D V Smovzh, et al.. Optical properties of CVD single crystal diamonds before and after different post-growth treatments. Diamond and Related Materials, 2018, 86: 79–86 https://doi.org/10.1016/j.diamond.2018.04.022
86
H Lim, S Park, H Cheong, et al.. Discrimination between natural and HPHT-treated type IIa diamonds using photoluminescence spectroscopy. Diamond and Related Materials, 2010, 19(10): 1254–1258 https://doi.org/10.1016/j.diamond.2010.06.007
87
S N Polyakov, V N Denisov, N V Kuzmin, et al.. Characterization of top-quality type IIa synthetic diamonds for new X-ray optics. Diamond and Related Materials, 2011, 20(5–6): 726–728 https://doi.org/10.1016/j.diamond.2011.03.012
88
Q G Han, M Z Li, X P Jia, et al.. Modeling of effective design of high pressure anvils used for large scale commercial production of gem quality large single crystal diamond. Diamond and Related Materials, 2011, 20(7): 969–973 https://doi.org/10.1016/j.diamond.2011.05.017
89
Z K Wang, H A Ma, S Fang, et al.. Synthesis and characterization of gem diamond single crystals in Fe–C system under high temperature and high pressure. Journal of Crystal Growth, 2020, 531: 125371 https://doi.org/10.1016/j.jcrysgro.2019.125371
90
S Stoupin. Novel diamond X-ray crystal optics for synchrotrons and X-ray free-electron lasers. Diamond and Related Materials, 2014, 49: 39–47 https://doi.org/10.1016/j.diamond.2014.08.002
91
A De Sio, A Bocci, E Pace, et al.. Diamond solid state ionization chambers for x-ray absorption spectroscopy applications. Applied Physics Letters, 2008, 93(8): 083503 https://doi.org/10.1063/1.2976125
92
Y Song, B D Peng, G Z Song, et al.. Investigating non-equilibrium carrier lifetimes in nitrogen-doped and boron-doped single crystal HPHT diamonds with an optical method. Applied Physics Letters, 2018, 112(2): 022103 https://doi.org/10.1063/1.5019587
93
A Tallaire, V Mille, O Brinza, et al.. Thick CVD diamond films grown on high-quality type IIa HPHT diamond substrates from new diamond technology. Diamond and Related Materials, 2017, 77: 146–152 https://doi.org/10.1016/j.diamond.2017.07.002
94
J Achard, F Silva, O Brinza, et al.. Identification of etch-pit crystallographic faces induced on diamond surface by H2/O2 etching plasma treatment. Physica Status Solidi A: Applications and Materials Science, 2009, 206(9): 1949–1954 https://doi.org/10.1002/pssa.200982210
95
F Silva, J Achard, O Brinza, et al.. High quality, large surface area, homo epitaxial MPACVD diamond growth. Diamond and Related Materials, 2009, 18(5–8): 683–697 https://doi.org/10.1016/j.diamond.2009.01.038
96
A Tallaire, J Achard, O Brinza, et al.. Growth strategy for controlling dislocation densities and crystal morphologies of single crystal diamond by using pyramidal-shape substrates. Diamond and Related Materials, 2013, 33: 71–77 https://doi.org/10.1016/j.diamond.2013.01.006
97
A L Vikharev, M A Lobaev, A M Gorbachev, et al.. Investigation of homoepitaxial growth by microwave plasma CVD providing high growth rate and high quality of diamond simultaneously. Materials Today: Communications, 2020, 22: 100816 https://doi.org/10.1016/j.mtcomm.2019.100816
98
Lab-grown and Mined Sectors. “Call a truce”. International Diamond Exchange (IDEX), 2020
V Blank, M Popov, G Pivovarov, et al.. Ultrahard and superhard phases of fullerite C60: comparison with diamond on hardness and wear. Diamond and Related Materials, 1998, 7(2–5): 427–431 https://doi.org/10.1016/S0925-9635(97)00232-X
Q Liang, C S Yan, Y F Meng, et al.. Recent advances in high-growth rate single-crystal CVD diamond. Diamond and Related Materials, 2009, 18(5–8): 698–703 https://doi.org/10.1016/j.diamond.2008.12.002
103
D E Scott. The history of and impact of synthetic diamond cutters and diamond enhanced inserts on the oil and gas industry. Industrial Diamond Review, 2006, 66(1): 48–55
104
Y F Ge, J H Xu, H Yang. Diamond tools wear and their applicability when ultra-precision turning of SiCp/2009Al matrix composite. Wear, 2010, 269(11–12): 699–708 https://doi.org/10.1016/j.wear.2009.09.002
105
X Ding, A E W Jarfors, G C Lim, et al.. A study of the cutting performance of poly-crystalline oxygen free copper with single crystalline diamond micro-tools. Precision Engineering, 2012, 36(1): 141–152 https://doi.org/10.1016/j.precisioneng.2011.09.001
106
N Kawasegi, T Kawashima, N Morita, et al.. Effect of texture shape on machining performance of textured diamond cutting tool. Precision Engineering, 2019, 60: 21–27 https://doi.org/10.1016/j.precisioneng.2019.07.007
107
R M Chrenko, H M Strong. Physical Properties of Diamond Report No. 75CRDO89. Schenectady, NY: General Electric, 1975
108
H Y Niu, S W Niu, A R Oganov. Simple and accurate model of fracture toughness of solids. Journal of Applied Physics, 2019, 125(6): 065105 https://doi.org/10.1063/1.5066311
109
P Hess. The mechanical properties of various chemical vapor deposition diamond structures compared to the ideal single crystal. Journal of Applied Physics, 2012, 111(5): 051101 https://doi.org/10.1063/1.3683544
110
C S Yan, H K Mao, W Li, et al.. Ultrahard diamond single crystals from chemical vapor deposition. Physica Status Solidi A: Applied Research, 2004, 201(4): R25–R27 https://doi.org/10.1002/pssa.200409033
111
W J Zong, T Sun, D Li, et al.. Design criterion for crystal orientation of diamond cutting tool. Diamond and Related Materials, 2009, 18(4): 642–650 https://doi.org/10.1016/j.diamond.2008.11.003
112
H Sumiya. Superhard diamond indenter prepared from high-purity synthetic diamond crystal. Review of Scientific Instruments, 2005, 76(2): 026112 https://doi.org/10.1063/1.1850654
113
T Irifune, A Kurio, S Sakamoto, et al.. Ultrahard polycrystalline diamond from graphite. Nature, 2003, 421(6923): 599–600 https://doi.org/10.1038/421599b
114
M E G’Hern, C J McHargue, R E Clausing, et al.. Extended Abstracts No. 19, Technology Update on Diamond Films. Pittsburg, USA: Materials Research Society, 1989
Y F Liang, Y T Zheng, J J Wei, et al.. Effect of grain boundary on polycrystalline diamond polishing by high-speed dynamic friction. Diamond and Related Materials, 2021, 117: 108461 https://doi.org/10.1016/j.diamond.2021.108461
117
Y T Zheng, H T Ye, R Thornton, et al.. Subsurface cleavage of diamond after high-speed three-dimensional dynamic friction polishing. Diamond and Related Materials, 2020, 101: 107600 https://doi.org/10.1016/j.diamond.2019.107600
118
G L Zhao, Z Y Li, M S Hu, et al.. Fabrication and performance of CVD diamond cutting tool in micro milling of oxygen-free copper. Diamond and Related Materials, 2019, 100: 107589 https://doi.org/10.1016/j.diamond.2019.107589
CVD Diamond Handbook. Element Six, De Beers Group, 2020
121
K An, L X Chen, X B Yan, et al.. Fracture behavior of diamond films deposited by DC arc plasma jet CVD. Ceramics International, 2018, 44(11): 13402–13408 https://doi.org/10.1016/j.ceramint.2018.04.178
122
J T Paci, T Belytschko, G C Schatz. Mechanical properties of ultrananocrystalline diamond prepared in a nitrogen-rich plasma: a theoretical study. Physical Review B, 2006, 74(18): 184112 https://doi.org/10.1103/PhysRevB.74.184112
123
J X Yang, H D Zhang, C M Li, et al.. Effects of nitrogen addition on morphology and mechanical property of DC arc plasma jet CVD diamond films. Diamond and Related Materials, 2004, 13(1): 139–144 https://doi.org/10.1016/j.diamond.2003.10.028
124
B Denkena, T Grove, T Gartzke. Wear mechanisms of CVD diamond tools for patterning vitrified corundum grinding wheels. Wear, 2019, 436-437: 203007 https://doi.org/10.1016/j.wear.2019.203007
125
J Qian, C E McMurray, D K Mukhopadhyay, et al.. Polycrystalline diamond cutters sintered with magnesium carbonate in cubic anvil press. International Journal of Refractory Metals & Hard Materials, 2012, 31: 71–75 https://doi.org/10.1016/j.ijrmhm.2011.09.008
126
G X Li, M Z Rahim, W C Pan, et al.. The manufacturing and the application of polycrystalline diamond tools — a comprehensive review. Journal of Manufacturing Processes, 2020, 56: 400–416 https://doi.org/10.1016/j.jmapro.2020.05.010
127
M Hu, W W Ming, Q L An, et al.. Experimental study on milling performance of 2D C/SiC composites using polycrystalline diamond tools. Ceramics International, 2019, 45(8): 10581–10588 https://doi.org/10.1016/j.ceramint.2019.02.124
128
R M Erasmus, J D Comins, V Mofokeng, et al.. Application of Raman spectroscopy to determine stress in polycrystalline diamond tools as a function of tool geometry and temperature. Diamond and Related Materials, 2011, 20(7): 907–911 https://doi.org/10.1016/j.diamond.2011.03.018
129
M Belmonte, P Ferro, A J S Fernandes, et al.. Wear resistant CVD diamond tools for turning of sintered hardmetals. Diamond and Related Materials, 2003, 12(3–7): 738–743 https://doi.org/10.1016/S0925-9635(02)00302-3
130
F A Almeida, A J S Fernandes, F J Oliveira, et al.. Semi-orthogonal turning of hard metal with CVD diamond and PCD inserts at different cutting angles. Vacuum, 2009, 83(10): 1218–1223 https://doi.org/10.1016/j.vacuum.2009.03.029
131
B Guo, M Wu, Q Zhao, et al.. Improvement of precision grinding performance of CVD diamond wheels by micro-structured surfaces. Ceramics International, 2018, 44(14): 17333–17339 https://doi.org/10.1016/j.ceramint.2018.06.197
132
H Sumiya, Y Ishida. Real hardness of high-purity ultra-fine nano-polycrystalline diamond synthesized by direct conversion sintering under HPHT. Diamond and Related Materials, 2019, 100: 107560 https://doi.org/10.1016/j.diamond.2019.107560
133
Q Huang, D L Yu, B Xu, et al.. Nanotwinned diamond with unprecedented hardness and stability. Nature, 2014, 510(7504): 250–253 https://doi.org/10.1038/nature13381
134
B Regan, A Aghajamali, J Froech, et al.. Plastic deformation of single-crystal diamond nanopillars. Advanced Materials, 2020, 32(9): 1906458 https://doi.org/10.1002/adma.201906458
135
A M Nie, Y Q Bu, J Q Huang, et al.. Direct observation of room-temperature dislocation plasticity in diamond. Matter, 2020, 2(5): 1222–1232 https://doi.org/10.1016/j.matt.2020.02.011
N Sepulveda, J Lu, D M Aslam, et al.. High-performance polycrystalline diamond micro- and nanoresonators. Journal of Microelectromechanical Systems, 2008, 17(2): 473–482 https://doi.org/10.1109/JMEMS.2008.918409
138
S Castelletto, L Rosa, J Blackledge, et al.. Advances in diamond nanofabrication for ultrasensitive devices. Microsystems & Nanoengineering, 2017, 3(1): 17061 https://doi.org/10.1038/micronano.2017.61
139
Y Tao, J M Boss, B A Moores, et al.. Single-crystal diamond nanomechanical resonators with quality factors exceeding one million. Nature Communications, 2014, 5(1): 3638 https://doi.org/10.1038/ncomms4638
140
J W Palko, H Lee, C Zhang, et al.. Extreme two-phase cooling from laser-etched diamond and conformal, template-fabricated microporous copper. Advanced Functional Materials, 2017, 27(45): 1703265 https://doi.org/10.1002/adfm.201703265
141
J Y Tsao, S Chowdhury, M A Hollis, et al.. Ultrawide-bandgap semiconductors: research opportunities and challenges. Advanced Electronic Materials, 2018, 4(1): 1600501 https://doi.org/10.1002/aelm.201600501
142
M Kasu, K Ueda, H Ye, et al.. High RF output power for H-terminated diamond FETs. Diamond and Related Materials, 2006, 15(4–8): 783–786 https://doi.org/10.1016/j.diamond.2005.12.025
143
J Pomeroya, M Bernardonia, A Saruaa, et al.. Achieving the best thermal performance for GaN-on-diamond. IEEE Compound Semiconductor Integrated Circuit Symposium, 2013
144
Z N Qi, Y T Zheng, J J Wei, et al.. Surface treatment of an applied novel all-diamond microchannel heat sink for heat transfer performance enhancement. Applied Thermal Engineering, 2020, 177: 115489 https://doi.org/10.1016/j.applthermaleng.2020.115489
145
D T Morelli, C P Beetz, T A Perry. Thermal conductivity of synthetic diamond films. Journal of Applied Physics, 1988, 64(6): 3063–3066 https://doi.org/10.1063/1.341571
146
J Wilks, E Wilks. Properties and Applications of Diamond. Oxford, UK: Butterworth-Heinemann, 1991
147
A Sood, J Cho, K D Hobart, et al.. Anisotropic and inhomogeneous thermal conduction in suspended thin-film polycrystalline diamond. Journal of Applied Physics, 2016, 119(17): 175103 https://doi.org/10.1063/1.4948335
148
J Anaya, T Bai, Y Wang, et al.. Simultaneous determination of the lattice thermal conductivity and grain/grain thermal resistance in polycrystalline diamond. Acta Materialia, 2017, 139: 215–225 https://doi.org/10.1016/j.actamat.2017.08.007
149
F Faili, W Huang, J Calvo, et al.. Disturbed and scattered: the path of thermal conduction through diamond lattice. IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, 2016, 7: 7517675
150
G A Slack. Thermal conductivity of pure and impure silicon, silicon carbide, and diamond. Journal of Applied Physics, 1964, 35(12): 3460–3466 https://doi.org/10.1063/1.1713251
151
D H Yue, Y Gao, L Zhao, et al.. In situ thermal conductivity measurement in diamond anvil cell. Japanese Journal of Applied Physics, 2019, 58(4): 040906 https://doi.org/10.7567/1347-4065/ab01f1
152
N A Katcho, J Carrete, W Li, et al.. Effect of nitrogen and vacancy defects on the thermal conductivity of diamond: an ab initio Green’s function approach. Physical Review B, 2014, 90(9): 094117 https://doi.org/10.1103/PhysRevB.90.094117
153
A V Inyushkin, A N Taldenkov, V G Ralchenko, et al.. Thermal conductivity of high purity synthetic single crystal diamonds. Physical Review B, 2018, 97(14): 144305 https://doi.org/10.1103/PhysRevB.97.144305
154
A V Sukhadolau, E V Ivakin, V G Ralchenko, et al.. Thermal conductivity of CVD diamond at elevated temperatures. Diamond and Related Materials, 2005, 14(3–7): 589–593 https://doi.org/10.1016/j.diamond.2004.12.002
155
E Worner, E Pleuler, C Wild, et al.. Thermal and optical properties of high purity CVD diamond discs doped with boron and nitrogen. Diamond and Related Materials, 2003, 12(3–7): 744–748 https://doi.org/10.1016/S0925-9635(02)00274-1
156
H Verhoeven, A Flöter, H Reiß, et al.. Influence of the microstructure on the thermal properties of thin polycrystalline diamond films. Applied Physics Letters, 1997, 71(10): 1329–1331 https://doi.org/10.1063/1.119886
157
D T Morelli, T M Hartnett, C J Robinson. Phonon-defect scattering in high thermal conductivity diamond films. Applied Physics Letters, 1991, 59(17): 2112–2114 https://doi.org/10.1063/1.106096
158
F Faili, N Palmer, S Oh, et al.. Physical and thermal characterization of CVD diamond: a bottoms-up review. IEEE ITHERM Conference, 2017, 9: 1–7
159
J E Graebner, S Jin, G W Kammlott, et al.. Large anisotropic thermal conductivity in synthetic diamond films. Nature, 1992, 359(6394): 401–403 https://doi.org/10.1038/359401a0
160
R B Simon, J Anaya, F Faili, et al.. Effect of grain size of polycrystalline diamond on its heat spreading properties. Applied Physics Express, 2016, 9(6): 061302 https://doi.org/10.7567/APEX.9.061302
161
A Sood, R Cheaito, T Bai, et al.. Direct visualization of thermal conductivity suppression due to enhanced phonon scattering near individual grain boundaries. Nano Letters, 2018, 18(6): 3466–3472 https://doi.org/10.1021/acs.nanolett.8b00534
162
D J Twitchen, C S J Pickles, S E Coe, et al.. Thermal conductivity measurements on CVD diamond. Diamond and Related Materials, 2001, 10(3–7): 731–735 https://doi.org/10.1016/S0925-9635(00)00515-X
163
A V Khomich, V G Ralchenko, A V Vlasov, et al.. Effect of high temperature annealing on optical and thermal properties of CVD diamond. Diamond and Related Materials, 2001, 10(3–7): 546–551 https://doi.org/10.1016/S0925-9635(00)00517-3
164
I Friel, S L Geoghegan, D J Twitchen, et al.. Development of high quality single crystal diamond for novel laser applications. Proceedings of SPIE, 2010, 7838: 783819 https://doi.org/10.1117/12.864981
165
G Huszka, N Malpiece, M Naamoun, et al.. Single crystal diamond gain mirrors for high performance vertical external cavity surface emitting lasers. Diamond and Related Materials, 2020, 104: 107744 https://doi.org/10.1016/j.diamond.2020.107744
166
I Friel. Optical quality diamond grown by chemical vapor deposition. In: Mildren R, Rabeau J, eds. Optical Engineering of Diamond. Wiley-VCH, 2013
167
J M Dodson, J R Brandon, H K Dhillon, et al.. Single crystal and polycrystalline CVD diamond for demanding optical applications. Proceedings of the Society for Photo-Instrumentation Engineers, 2011, 8016: 80160L https://doi.org/10.1117/12.885188
168
A M Bennett, B J Wickham, H K Dhillon, et al.. Development of high-purity optical grade single-crystal CVD diamond for intracavity cooling. Proceedings of the Society for Photo-Instrumentation Engineers, 2014, 8959: 89590R https://doi.org/10.1117/12.2037811
169
H Y Liu, S Reilly, J Herrnsdorf, et al.. Large radius of curvature micro-lenses on single crystal diamond for application in monolithic diamond Raman lasers. Diamond and Related Materials, 2016, 65: 37–41 https://doi.org/10.1016/j.diamond.2016.01.016
170
D C Parrotta, A J Kemp, M D Dawson, et al.. Multiwatt, continuous-wave, tunable diamond Raman laser with intracavity frequency-doubling to the visible region. IEEE Journal of Selected Topics in Quantum Electronics, 2013, 19(4): 1400108 https://doi.org/10.1109/JSTQE.2013.2249046
171
A McKay, O Kitzler, R P Mildren. Simultaneous brightness enhancement and wavelength conversion to the eye-safe region in a high-power diamond Raman laser. Laser & Photonics Reviews, 2014, 8(3): L37–L41 https://doi.org/10.1002/lpor.201400012
172
K Desjardins, M Pomorski, J Morse. Ultra-thin optical grade scCVD diamond as X-ray beam position monitor. Journal of Synchrotron Radiation, 2014, 21(6): 1217–1223 https://doi.org/10.1107/S1600577514016191
173
A R Lang, A P W Makepeace, M Moore, et al.. On the variation of X-ray diffraction contrast with wavelength: a study with synchrotron radiation. Journal of Applied Crystallography, 1983, 16(1): 113–125 https://doi.org/10.1107/S0021889883010031
C S J Pickles, T D Madgwick, R S Sussmann, et al.. Optical performance of chemically vapour-deposited diamond at infrared wavelengths. Diamond and Related Materials, 2000, 9(3–6): 916–920 https://doi.org/10.1016/S0925-9635(99)00366-0
J X Yang, X F Duan, F X Lu, et al.. The influence of dark feature on optical and thermal property of DC Arc Plasma Jet CVD diamond films. Diamond and Related Materials, 2005, 14(10): 1583–1587 https://doi.org/10.1016/j.diamond.2005.03.010
178
K Meykens, K Haenen, M Nesla’dek, et al.. Measurement and mapping of very low optical absorption of CVD diamond. Diamond and Related Materials, 2000, 9(3–6): 1021–1025 https://doi.org/10.1016/S0925-9635(99)00222-8
179
M Karlsson, F Nikolajeff. Diamond micro-optics: microlenses and antireflection structured surfaces for the infrared spectral region. Optics Express, 2003, 11(5): 502–507 https://doi.org/10.1364/OE.11.000502
180
V Y Yurov, E V Bushuev, A F Popovich, et al.. Near-infrared refractive index of synthetic single crystal and polycrystalline diamonds at high temperatures. Journal of Applied Physics, 2017, 122(24): 243106 https://doi.org/10.1063/1.5008387
181
K Yamamoto, H Iwasaki, S Tsuji, et al.. Terahertz time-domain spectroscopy of CVD diamond. IEEE 37th International Conference on Infrared Millimeter and Terahertz Waves, 2012, 9: 6380244
182
Y T Zheng, R Zhang, X D Chen, et al.. Doomed couple of diamond with terahertz frequency: hyperfine quality discrimination and complex dielectric responses of diamond in the terahertz waveband. ACS Applied Electronic Materials, 2020, 2(5): 1459–1469 https://doi.org/10.1021/acsaelm.0c00216
183
B M Garin, V V Parshin, S E Myasnikova, et al.. Nature of millimeter wave losses in low loss CVD diamonds. Diamond and Related Materials, 2003, 12(10–11): 1755–1759 https://doi.org/10.1016/S0925-9635(03)00199-7
184
H Yamada, A Meier, F Mazzocchi, et al.. Dielectric properties of single crystalline diamond wafers with large area at microwave wavelengths. Diamond and Related Materials, 2015, 58: 1–4 https://doi.org/10.1016/j.diamond.2015.05.004
185
Y Liu, M Ding, J Su, et al.. Dielectric properties of nitrogen-doped polycrystalline diamond films in Ka band. Diamond and Related Materials, 2017, 76: 68–73 https://doi.org/10.1016/j.diamond.2017.04.009
186
C N Lin, Y J Lu, X Yang, et al.. Diamond-based all-carbon photodetectors for solar-blind imaging. Advanced Optical Materials, 2018, 6(15): 1800068 https://doi.org/10.1002/adom.201800068
187
Y J Lu, C N Lin, C X Shan. Optoelectronic diamond: growth, properties, and photodetection applications. Advanced Optical Materials, 2018, 6(20): 1800359 https://doi.org/10.1002/adom.201800359
M W Geis, T C Wade, C H Wuorio, et al.. Progress toward diamond power field-effect transistors. Physica Status Solidi A: Applications and Materials Science, 2018, 215(22): 1800681 https://doi.org/10.1002/pssa.201800681
190
S A Bogdanov, A M Gorbachev, D B Radishev, et al.. Nanometric diamond delta doping with boron. Physica Status Solidi: Rapid Research Letters, 2017, 1: 1600329
C I Pakes, J A Garrido, H Kawarada. Diamond surface conductivity: properties, devices, and sensors. MRS Bulletin, 2014, 39(6): 542–548 https://doi.org/10.1557/mrs.2014.95
193
J F Prins. n-Type semiconducting diamond by means of oxygen-ion implantation. Physical Review B, 2000, 61(11): 7191–7194 https://doi.org/10.1103/PhysRevB.61.7191
194
I Stenger, M A Pinault-Thaury, T Kociniewski, et al.. Impurity-to-band activation energy in phosphorus doped diamond. Journal of Applied Physics, 2013, 114(7): 073711 https://doi.org/10.1063/1.4818946
195
M A Pinault-Thaury, I Stenger, R Gillet, et al.. Attractive electron mobility in (113) n-type phosphorus-doped homoepitaxial diamond. Carbon, 2021, 175: 254–258 https://doi.org/10.1016/j.carbon.2021.01.011
I Sakaguchi, M N Gamo, Y Kikuchi, et al.. Sulfur: a donor dopant for n-type diamond semiconductors. Physical Review B, 1999, 60(4): R2139–R2141 https://doi.org/10.1103/PhysRevB.60.R2139
E B Lombardi, A Mainwood, K Osuch. Interaction of hydrogen with boron, phosphorus, and sulfur in diamond. Physical Review B, 2004, 70(20): 205201 https://doi.org/10.1103/PhysRevB.70.205201
200
J P Goss, P R Briddon, M J Shaw. Density functional simulations of silicon-containing point defects in diamond. Physical Review B, 2007, 76(7): 075204 https://doi.org/10.1103/PhysRevB.76.075204
201
V A Chernyshev, J Meijer, D Grambole, et al.. n-Type diamond produced by MeV lithium implantation in channeling direction. Diamond and Related Materials, 2008, 17(11): 1933–1935 https://doi.org/10.1016/j.diamond.2008.04.014
S J Sque, R Jones, J P Goss, et al.. Shallow donors in diamond: chalcogens, pnictogens, and their hydrogen complexes. Physical Review Letters, 2004, 92(1): 017402 https://doi.org/10.1103/PhysRevLett.92.017402
204
C Masante, J Pernot, A Marechal, et al.. High temperature operation of a monolithic bidirectional diamond switch. Diamond and Related Materials, 2021, 111: 108185 https://doi.org/10.1016/j.diamond.2020.108185
205
F Lloret, D Eon, E Bustarret, et al.. Selectively boron doped homoepitaxial diamond growth for power device applications. Applied Physics Letters, 2021, 118(2): 023504 https://doi.org/10.1063/5.0031478
206
J Achard, A Tallaire. Diamond wafer technologies for semiconductor device applications. In: Koizumi S, Umezawa H, Pernot J, et al.., eds. Power Electronics Device Applications of Diamond Semiconductors. Cambridge, UK: Woodhead Publishing, 2018, 1–97
207
M A Pinault-Thaury, S Temgoua, R Gillet, et al.. Phosphorus-doped (113) CVD diamond: A breakthrough towards bipolar diamond devices. Applied Physics Letters, 2019, 114(11): 112106 https://doi.org/10.1063/1.5079924
208
I A Khramtsov, D Y Fedyanin. Superinjection in diamond p-i-n diodes: bright single-photon electroluminescence of color centers beyond the doping limit. Physical Review Applied, 2019, 12(2): 024013 https://doi.org/10.1103/PhysRevApplied.12.024013
209
P Udvarhelyi, V O Shkolnikov, A Gali, et al.. Spin–strain interaction in nitrogen-vacancy centers in diamond. Physical Review B, 2018, 98(7): 075201 https://doi.org/10.1103/PhysRevB.98.075201
210
J Pernot, P N Volpe, F Omnès, et al.. Hall hole mobility in boron-doped homoepitaxial diamond. Physical Review B, 2010, 81(20): 205203 https://doi.org/10.1103/PhysRevB.81.205203
211
S Yamasaki, E Gheeraert, Y Koide. Doping and interface of homoepitaxial diamond for electronic applications. MRS Bulletin, 2014, 39(6): 499–503 https://doi.org/10.1557/mrs.2014.100
212
D Jena, U K Mishra. Effect of scattering by strain fields surrounding edge dislocations on electron transport in two-dimensional electron gases. Applied Physics Letters, 2002, 80(1): 64–66 https://doi.org/10.1063/1.1429758
213
O Klein, M Mayr, M Fischer, et al.. Propagation and annihilation of threading dislocations during off-axis growth of heteroepitaxial diamond films. Diamond and Related Materials, 2016, 65: 53–58 https://doi.org/10.1016/j.diamond.2016.01.024
214
M Schreck, P Ščajev, M Träger, et al.. Charge carrier trapping by dislocations in single crystal diamond. Journal of Applied Physics, 2020, 127(12): 125102 https://doi.org/10.1063/1.5140662
215
C E Nebel, J Munz, M Stutzmann, et al.. Electronic properties of CVD and synthetic diamond. Physical Review B, 1997, 55(15): 9786–9791 https://doi.org/10.1103/PhysRevB.55.9786
216
A Secroun, O Brinza, A Tardieu, et al.. Dislocation imaging for electronics application crystal selection. Physica Status Solidi A: Applications and Materials Science, 2007, 204(12): 4298–4304 https://doi.org/10.1002/pssa.200776331
217
A Reznik, C Uzan-Saguy, R Kalish. Effects of point defects on the electrical properties of doped diamond. Diamond and Related Materials, 2000, 9(3–6): 1051–1056 https://doi.org/10.1016/S0925-9635(00)00225-9
218
R Kalish, C Uzan-Saguy, B Philosoph, et al.. Loss of electrical conductivity in boron-doped diamond due to ion-induced damage. Applied Physics Letters, 1997, 70(8): 999–1001 https://doi.org/10.1063/1.118461
219
A Lohstroh, P J Sellin, S G Wang, et al.. Effect of dislocations on charge carrier mobility–lifetime product in synthetic single crystal diamond. Applied Physics Letters, 2007, 90(10): 102111 https://doi.org/10.1063/1.2711754
220
H Umezawa. Recent advances in diamond power semiconductor devices. Materials Science in Semiconductor Processing, 2018, 78: 147–156 https://doi.org/10.1016/j.mssp.2018.01.007
221
H Umezawa, T Saito, N Tokuda, et al.. Leakage current analysis of diamond Schottky barrier diode. Applied Physics Letters, 2007, 90(7): 073506 https://doi.org/10.1063/1.2643374
222
M Kasu, M Kubovic, A Aleksov, et al.. Influence of epitaxy on the surface conduction of diamond film. Diamond and Related Materials, 2004, 13(2): 226–232 https://doi.org/10.1016/j.diamond.2003.10.025
Y Mokuno, Y Kato, N Tsubouchi, et al.. A nitrogen doped low-dislocation density free-standing single crystal diamond plate fabricated by a lift-off process. Applied Physics Letters, 2014, 104(25): 252109 https://doi.org/10.1063/1.4885552
226
A Boussadi, A Tallaire, M Kasu, et al.. Reduction of dislocation densities in single crystal CVD diamond by confinement in the lateral sector. Diamond and Related Materials, 2018, 83: 162–169 https://doi.org/10.1016/j.diamond.2018.02.010
227
P M Martineau, M P Gaukroger, K B Guy, et al.. High crystalline quality single crystal chemical vapour deposition diamond. Journal of Physics: Condensed Matter, 2009, 21(36): 364205 https://doi.org/10.1088/0953-8984/21/36/364205
228
A Tallaire, O Brinza, V Mille, et al.. Reduction of dislocations in single crystal diamond by lateral growth over a macroscopic hole. Advanced Materials, 2017, 29(16): 1604823 https://doi.org/10.1002/adma.201604823
A Balducci, M Marinelli, E Milani, et al.. Distribution of electrically active defects in chemical vapor deposition diamond: model and measurement. Applied Physics Letters, 2005, 86(2): 022108 https://doi.org/10.1063/1.1842856
231
M Schreck, S Gsell, R Brescia, et al.. Ion bombardment induced buried lateral growth: the key mechanism for the synthesis of single crystal diamond wafers. Scientific Reports, 2017, 7(1): 44462 https://doi.org/10.1038/srep44462
232
H Yamada, A Chayahara, Y Mokuno, et al.. Uniform growth and repeatable fabrication of inch-sized wafers of a single-crystal diamond. Diamond and Related Materials, 2013, 33: 27–31 https://doi.org/10.1016/j.diamond.2012.12.012
233
M Naamoun, A Tallaire, P Doppelt, et al.. Reduction of dislocation densities in single crystal CVD diamond by using self-assembled metallic masks. Diamond and Related Materials, 2015, 58: 62–68 https://doi.org/10.1016/j.diamond.2015.06.012
234
K Ichikawa, K Kurone, H Kodama, et al.. High crystalline quality heteroepitaxial diamond using grid-patterned nucleation and growth on Ir. Diamond and Related Materials, 2019, 94: 92–100 https://doi.org/10.1016/j.diamond.2019.01.027
235
H Aida, K Ikejiri, S Kim, et al.. Overgrowth of diamond layers on diamond microneedles: new concept for freestanding diamond substrate by heteroepitaxy. Diamond and Related Materials, 2016, 66: 77–82 https://doi.org/10.1016/j.diamond.2016.03.019
Y Dong, J Y Xu, S C Zhang, et al.. Composite-pulse enhanced room-temperature diamond magnetometry. Functional Diamond, 2021, 1(1): 125–134 https://doi.org/10.1080/26941112.2021.1898792
238
J O Orwa, C Santori, K M C Fu, et al.. Engineering of nitrogen-vacancy color centers in high purity diamond by ion implantation and annealing. Journal of Applied Physics, 2011, 109(8): 083530 https://doi.org/10.1063/1.3573768
239
J Smits, J T Damron, P Kehayias, et al.. Two-dimensional nuclear magnetic resonance spectroscopy with a microfluidic diamond quantum sensor. Science Advances, 2019, 5(7): eaaw7895 https://doi.org/10.1126/sciadv.aaw7895
D B Bucher, D P L A Craik, M P Backlund, et al.. Quantum diamond spectrometer for nanoscale NMR and ESR spectroscopy. Nature Protocols, 2019, 14(9): 2707–2747 https://doi.org/10.1038/s41596-019-0201-3
242
S Sangtawesin, T O Brundage, Z J Atkins, et al.. Highly tunable formation of nitrogen-vacancy centers via ion implantation. Applied Physics Letters, 2014, 105(6): 063107 https://doi.org/10.1063/1.4892971
L Razinkovas, M W Doherty, N B Manson, et al.. Vibrational and vibronic structure of isolated point defects: the nitrogen-vacancy center in diamond. Physical Review B, 2021, 104(4): 045303 https://doi.org/10.1103/PhysRevB.104.045303
245
P Siyushev, M Nesladek, E Bourgeois, et al.. Photoelectrical imaging and coherent spin-state readout of single nitrogen-vacancy centers in diamond. Science, 2019, 363(6428): 728–731 https://doi.org/10.1126/science.aav2789
246
B Hensen, H Bernien, A E Dre’au, et al.. Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres. Nature, 2015, 526(7575): 682–686 https://doi.org/10.1038/nature15759
247
F Z Shi, Q Zhang, P F Wang, et al.. Single-protein spin resonance spectroscopy under ambient conditions. Science, 2015, 347(6226): 1135–1138 https://doi.org/10.1126/science.aaa2253
248
C E Bradley, J Randall, M H Abobeih, et al.. A ten-qubit solid-state spin register with quantum memory up to one minute. Physical Review X, 2019, 9(3): 031045 https://doi.org/10.1103/PhysRevX.9.031045
249
R Li, F Kong, P J Zhao, et al.. Nanoscale electrometry based on a magnetic-field-resistant spin sensor. Physical Review Letters, 2020, 124(24): 247701 https://doi.org/10.1103/PhysRevLett.124.247701
250
M Atatüre, D Englund, N Vamivakas, et al.. Material platforms for spin-based photonic quantum technologies. Nature Reviews: Materials, 2018, 3(5): 38–51 https://doi.org/10.1038/s41578-018-0008-9
251
C Bradac, W B Gao, J Forneris, et al.. Quantum nanophotonics with group IV defects in diamond. Nature Communications, 2019, 10: 5625 https://doi.org/10.1038/s41467-019-13332-w
252
A M Zaitsev. Vibronic spectra of impurity-related optical centers in diamond. Physical Review B, 2000, 61(19): 12909–12922 https://doi.org/10.1103/PhysRevB.61.12909
253
T A Kennedy, J S Colton, J E Butler, et al.. Long coherence times at 300 K for nitrogen-vacancy center spins in diamond grown by chemical vapor deposition. Applied Physics Letters, 2003, 83(20): 4190–4192 https://doi.org/10.1063/1.1626791
254
T Gaebel, M Domhan, I Popa, et al.. Room-temperature coherent coupling of single spins in diamond. Nature Physics, 2006, 2(6): 408–413 https://doi.org/10.1038/nphys318
255
G Balasubramanian, P Neumann, D Twitchen, et al.. Ultralong spin coherence time in isotopically engineered diamond. Nature Materials, 2009, 8(5): 383–387 https://doi.org/10.1038/nmat2420
256
F Dolde, I Jakobi, B Naydenov, et al.. Room-temperature entanglement between single defect spins in diamond. Nature Physics, 2013, 9(3): 139–143 https://doi.org/10.1038/nphys2545
T Teraji. Ultrapure homoepitaxial diamond films grown by chemical vapor deposition for quantum device application. Semiconductors and Semimetals, 2020, 103: 37–55 https://doi.org/10.1016/bs.semsem.2020.03.002
259
J Achard, V Jacques, A Tallaire. Chemical vapour deposition diamond single crystals with nitrogen-vacancy centres: a review of material synthesis and technology for quantum sensing applications. Journal of Physics D: Applied Physics, 2020, 53(31): 313001 https://doi.org/10.1088/1361-6463/ab81d1
260
F Lenzini, N Gruhler, N Walter, et al.. Diamond as a platform for integrated quantum photonics. Advanced Quantum Technologies, 2018, 1(3): 1800061 https://doi.org/10.1002/qute.201800061
261
A Faraon, P E Barclay, C Santori, et al.. Resonant enhancement of the zero-phonon emission from a colour centre in a diamond cavity. Nature Photonics, 2011, 5(5): 301–305 https://doi.org/10.1038/nphoton.2011.52
262
B J M Hausmann, B J Shields, Q Quan, et al.. Coupling of NV centers to photonic crystal nanobeams in diamond. Nano Letters, 2013, 13(12): 5791–5796 https://doi.org/10.1021/nl402174g
263
D Riedel, I Söllner, B J Shields, et al.. Deterministic enhancement of coherent photon generation from a nitrogen-vacancy center in ultrapure diamond. Physical Review X, 2017, 7(3): 031040 https://doi.org/10.1103/PhysRevX.7.031040
264
M Hoinkis, E R Weber, M I Landstrass, et al.. Paramagnetic nitrogen in chemical vapor deposition diamond thin films. Applied Physics Letters, 1991, 59(15): 1870–1871 https://doi.org/10.1063/1.106172
265
T Lühmann, N Raatz, R John, et al.. Screening and engineering of colour centres in diamond. Journal of Physics D: Applied Physics, 2018, 51(48): 483002 https://doi.org/10.1088/1361-6463/aadfab
266
T Yamamoto, T Umeda, K Watanabe, et al.. Extending spin coherence times of diamond qubits by high-temperature annealing. Physical Review B, 2013, 88(7): 075206 https://doi.org/10.1103/PhysRevB.88.075206
267
M A Lobaev, A M Gorbachev, S A Bogdanov, et al.. Influence of CVD diamond growth conditions on nitrogen incorporation. Diamond and Related Materials, 2017, 72: 1–6 https://doi.org/10.1016/j.diamond.2016.12.011
268
S Mi, M Kiss, T Graziosi, et al.. Integrated photonic devices in single crystal diamond. Journal of Physics: Photonics, 2020, 2(4): 042001 https://doi.org/10.1088/2515-7647/aba171
269
S A Bogdanov, A M Gorbachev, D B Radishev, et al.. Investigation of high-density nitrogen vacancy center ensembles created in electron-irradiated and vacuum-annealed delta-doped layers. Physica Status Solidi: Rapid Research Letters, 2021, 15(2): 2000550 https://doi.org/10.1002/pssr.202000550
270
C J Stephen, B L Green, Y N D Lekhai, et al.. Deep three-dimensional solid-state qubit arrays with long-lived spin coherence. Physical Review Applied, 2019, 12(6): 064005 https://doi.org/10.1103/PhysRevApplied.12.064005
271
J Achard, F Silva, O Brinza, et al.. Coupled effect of nitrogen addition and surface temperature on the morphology and the kinetics of thick CVD diamond single crystals. Diamond and Related Materials, 2007, 16(4–7): 685–689 https://doi.org/10.1016/j.diamond.2006.09.012
272
R Kalish. Ion implantation in diamond for quantum information processing (QIP): doping and damaging. In: Prawer S, Aharonovich I, eds. Quantum Information Processing with Diamond: Principles and Applications. 1st ed. Cambridge, UK: Woodhead Publishing, 2014, 36–67
273
J R Rabeau, P Reichart, G Tamanyan, et al.. Implantation of labeled single nitrogen vacancy centers in diamond using 15N. Applied Physics Letters, 2006, 88(2): 023113 https://doi.org/10.1063/1.2158700
274
J Meijer, B Burchard, M Domhan, et al.. Generation of single color centers by focused nitrogen implantation. Applied Physics Letters, 2005, 87(26): 261909 https://doi.org/10.1063/1.2103389
275
T Lühmann, R John, R Wunderlich, et al.. Coulomb-driven single defect engineering for scalable qubits and spin sensors in diamond. Nature Communications, 2019, 10(1): 4956 https://doi.org/10.1038/s41467-019-12556-0
276
F F de Oliveira, D Antonov, Y Wang, et al.. Tailoring spin defects in diamond by lattice charging. Nature Communications, 2017, 8: 15409 https://doi.org/10.1038/ncomms15409
277
C Osterkamp, J Scharpf, S Pezzagna, et al.. Increasing the creation yield of shallow single defects in diamond by surface plasma treatment. Applied Physics Letters, 2013, 103(19): 193118 https://doi.org/10.1063/1.4829875
278
P Reichart, G Datzmann, A Hauptner, et al.. Three-dimensional hydrogen microscopy in diamond. Science, 2004, 306(5701): 1537–1540 https://doi.org/10.1126/science.1102910
279
K Czelej, M R Zemła, P Spiewak, et al.. Quantum behavior of hydrogen-vacancy complexes in diamond. Physical Review B, 2018, 98(23): 235111 https://doi.org/10.1103/PhysRevB.98.235111
280
E D Herbschleb, H Kato, Y Maruyama, et al.. Ultra-long coherence times amongst room-temperature solid-state spins. Nature Communications, 2019, 10(1): 3766 https://doi.org/10.1038/s41467-019-11776-8
281
A Dreau, J R Maze, M Lesik, et al.. High-resolution spectroscopy of single NV defects coupled with nearby 13C nuclear spins in diamond. Physical Review B, 2012, 85(13): 134107 https://doi.org/10.1103/PhysRevB.85.134107
282
N Mizuochi, P Neumann, F Rempp, et al.. Coherence of single spins coupled to a nuclear spin bath of varying density. Physical Review B, 2009, 80(4): 041201 https://doi.org/10.1103/PhysRevB.80.041201