Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

邮发代号 80-974

2019 Impact Factor: 1.747

Frontiers of Materials Science  2022, Vol. 16 Issue (1): 220591   https://doi.org/10.1007/s11706-022-0591-y
  本期目录
Controlled synthesis of Pt-loaded yolk–shell TiO2@SiO2 nanoreactors as effective photocatalysts for hydrogen generation
Min SHI, Niannian HU, Haimei LIU, Cheng QIAN, Chang LV, Sheng WANG()
School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
 全文: PDF(2414 KB)   HTML
Abstract

Yolk–shell and hollow structures are powerful platforms for controlled release, confined nanocatalysis, and optical and electronic applications. This contribution describes a fabrication strategy for a yolk–shell nanoreactor (NR) using a post decoration approach. The widely studied yolk–shell structure of silica-coated TiO2 (TiO2@SiO2) was used as a model. At first, anatase TiO2 spheres were prepared, and subsequently were given a continuous coating of carbonaceous and silica layers. Finally, the carbonaceous layer was removed to produce a yolk–shell structure TiO2@SiO2. By using an in-situ photodeposition method, Pt-encased spheres (Pt-TiO2@SiO2) were synthesized with Pt nanoparticles grown on the surface of the TiO2 core, which contained void spaces suitable for use as NRs. The NR showed enhanced hydrogen production with a rate of 24.56 mmol·g−1·h−1 in the presence of a sacrificial agent under simulated sunlight. This strategy holds the potential to be extended for the synthesis of other yolk–shell photocatalytic NRs with different metal oxides.

Key wordsnanoreactor    TiO2    SiO2    photocatalyst    hydrogen generation
收稿日期: 2021-11-22      出版日期: 2022-04-06
Corresponding Author(s): Sheng WANG   
作者简介:

Peng Lu, Renxing Wang, and Yue Xing contributed equally to this work.

 引用本文:   
. [J]. Frontiers of Materials Science, 2022, 16(1): 220591.
Min SHI, Niannian HU, Haimei LIU, Cheng QIAN, Chang LV, Sheng WANG. Controlled synthesis of Pt-loaded yolk–shell TiO2@SiO2 nanoreactors as effective photocatalysts for hydrogen generation. Front. Mater. Sci., 2022, 16(1): 220591.
 链接本文:  
https://academic.hep.com.cn/foms/CN/10.1007/s11706-022-0591-y
https://academic.hep.com.cn/foms/CN/Y2022/V16/I1/220591
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
1 Z Teng, W Li, Y Tang, et al.. Mesoporous organosilica hollow nanoparticles: synthesis and applications. Advanced Materials, 2019, 31(38): 1707612
https://doi.org/10.1002/adma.201707612 pmid: 30285290
2 W Zhu, Z Chen, Y Pan, et al.. Functionalization of hollow nanomaterials for catalytic applications: nanoreactor construction. Advanced Materials, 2019, 31(38): 1800426
https://doi.org/10.1002/adma.201800426 pmid: 30125990
3 L Ji, H Zheng, Y Wei, et al.. Temperature-controlled fabrication of Co–Fe-based nanoframes for efficient oxygen evolution. Science China Materials, 2022, 65(2): 431–441
https://doi.org/10.1007/s40843-021-1743-7
4 J Lee, S M Kim, I S Lee. Functionalization of hollow nanoparticles for nanoreactor applications. Nano Today, 2014, 9(5): 631–667
https://doi.org/10.1016/j.nantod.2014.09.003
5 B Zuo, W Li, X Wu, et al.. Recent advances in the synthesis, surface modifications and applications of core–shell magnetic mesoporous silica nanospheres. Chemistry: An Asian Journal, 2020, 15(8): 1248–1265
https://doi.org/10.1002/asia.202000045 pmid: 32083794
6 C Gao, F Lyu, Y Yin. Encapsulated metal nanoparticles for catalysis. Chemical Reviews, 2021, 121(2): 834–881
https://doi.org/10.1021/acs.chemrev.0c00237 pmid: 32585087
7 S Xiong, R Tang, D Gong, et al.. Yolk–shell catalyst: from past to future. Applied Materials Today, 2020, 21: 100798
https://doi.org/10.1016/j.apmt.2020.100798
8 B Vaz, V Salgueirino, M Perez-Lorenzo, et al.. Enhancing the exploitation of functional nanomaterials through spatial confinement: the case of inorganic submicrometer capsules. Langmuir, 2015, 31(32): 8745–8755
https://doi.org/10.1021/acs.langmuir.5b00098 pmid: 25736568
9 M Sanles-Sobrido, M Perez-Lorenzo, B Rodriguez-Gonzalez, et al.. Highly active nanoreactors: nanomaterial encapsulation based on confined catalysis. Angewandte Chemie International Edition, 2012, 51(16): 3877–3882
https://doi.org/10.1002/anie.201105283 pmid: 22307952
10 K M Yeo, S Choi, R M Anisur, et al.. Surfactant-free platinum-on-gold nanodendrites with enhanced catalytic performance for oxygen reduction. Angewandte Chemie International Edition, 2011, 50(3): 745–748
https://doi.org/10.1002/anie.201005775 pmid: 21226168
11 M Xiao, C Zhao, H Chen, et al.. “Ship-in-a-bottle” growth of noble metal nanostructures. Advanced Functional Materials, 2012, 22(21): 4526–4532
https://doi.org/10.1002/adfm.201200941
12 J Chen, Y Bai, J Feng, et al.. Anisotropic seeded growth of Ag nanoplates confined in shape-deformable spaces. Angewandte Chemie International Edition, 2021, 60(8): 4117–4124
https://doi.org/10.1002/anie.202011334 pmid: 33037723
13 T Kwon, N Kumari, A Kumar, et al.. Au/Pt-egg-in-nest nanomotor for glucose-powered catalytic motion and enhanced molecular transport to living cells. Angewandte Chemie International Edition, 2021, 60(32): 17579–17586
https://doi.org/10.1002/anie.202103827 pmid: 34107153
14 S Tanaka, D Nogami, N Tsuda, et al.. Synthesis of highly-monodisperse spherical titania particles with diameters in the submicron range. Journal of Colloid and Interface Science, 2009, 334(2): 188–194
https://doi.org/10.1016/j.jcis.2009.02.060 pmid: 19398105
15 S Wang, T Wang, W Chen, et al.. Phase-selectivity photocatalysis: a new approach in organic pollutants’ photodecomposition by nanovoid core (TiO2)/shell (SiO2) nanoparticles. Chemical Communications, 2008, (32): 3756–3758
https://doi.org/10.1039/b802127a pmid: 18685767
16 T Wang, S Wang, W Chen, et al.. Chemical morphology freezing: chemical protection of the physical morphology of high photoactivity anatase TiO2 nanotubes. Journal of Materials Chemistry, 2009, 19(27): 4692–4694
https://doi.org/10.1039/b906896a
17 S Wang, T Wang, Y Gao, et al.. Wet photochemical filling: a new low-diameter tube-filling method based on differentiated nanotube surfaces. Journal of Materials Chemistry, 2011, 21(48): 19337–19343
https://doi.org/10.1039/c1jm13453a
18 P Mulvaney. Surface plasmon spectroscopy of nanosized metal particles. Langmuir, 1996, 12(3): 788–800
https://doi.org/10.1021/la9502711
19 A Wood, M Giersig, P Mulvaney. Fermi level equilibration in quantum dot-metal nanojunctions. The Journal of Physical Chemistry B, 2001, 105(37): 8810–8815
https://doi.org/10.1021/jp011576t
20 R López, R Gómez. Band-gap energy estimation from diffuse reflectance measurements on sol–gel and commercial TiO2: a comparative study. Journal of Sol-Gel Science and Technology, 2012, 61(1): 1–7
https://doi.org/10.1007/s10971-011-2582-9
21 S Munir, S M Shah, H Hussain, et al.. Effect of carrier concentration on the optical band gap of TiO2 nanoparticles. Materials & Design, 2016, 92: 64–72
https://doi.org/10.1016/j.matdes.2015.12.022
22 E Can, B Uralcan, R Yildirim. Enhancing charge transfer in photocatalytic hydrogen production over dye-sensitized Pt/TiO2 by ionic liquid coating. ACS Applied Energy Materials, 2021, 4(10): 10931–10939
https://doi.org/10.1021/acsaem.1c01553
23 F Wang, Z Jin, Y Jiang, et al.. Probing the charge separation process on In2S3/Pt-TiO2 nanocomposites for boosted visible-light photocatalytic hydrogen production. Applied Catalysis B: Environmental, 2016, 198: 25–31
https://doi.org/10.1016/j.apcatb.2016.05.048
24 B Cao, G Li, H Li. Hollow spherical RuO2@TiO2@Pt bifunctional photocatalyst for coupled H2 production and pollutant degradation. Applied Catalysis B: Environmental, 2016, 194: 42–49
https://doi.org/10.1016/j.apcatb.2016.04.033
25 J Zhang, Z Yu, Z Gao, et al.. Porous TiO2 nanotubes with spatially separated platinum and CoOx cocatalysts produced by atomic layer deposition for photocatalytic hydrogen production. Angewandte Chemie International Edition, 2017, 56(3): 816–820
https://doi.org/10.1002/anie.201611137 pmid: 27966808
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed