Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

邮发代号 80-974

2019 Impact Factor: 1.747

Frontiers of Materials Science  2022, Vol. 16 Issue (2): 220595   https://doi.org/10.1007/s11706-022-0595-7
  本期目录
Perovskite solar cells: recent progress and strategies developed for minimizing interfacial recombination
Rengasamy DHANABAL, Suhash Ranjan DEY()
Combinatorial Materials Laboratory, Department of Materials Science and Metallurgical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, Telangana, India
 全文: PDF(27478 KB)   HTML
Abstract

Organometallic perovskite is a new generation photovoltaic material with exemplary properties such as high absorption co-efficient, optimal bandgap, high defect tolerance factor and long carrier diffusion length. However, suitable electrodes and charge transport materials are required to fulfill photovoltaic processes where interfaces between hole transport material/perovskite and perovskite/electron transport material are affected by phenomena of charge carrier separation, transportation, collection by the interfaces and band alignment. Based on recent available literature and several strategies for minimizing the recombination of charge carriers at the interfaces, this review addresses the properties of hole transport materials, relevant working mechanisms, and the interface engineering of perovskite solar cell (PSC) device architecture, which also provides significant insights to design and development of PSC devices with high efficiency.

Key wordslight absorption    p–i–n and n–i–p structure    interface recombination    build-in potential    perovskite solar cell
收稿日期: 2021-11-09      出版日期: 2022-07-14
Corresponding Author(s): Suhash Ranjan DEY   
 引用本文:   
. [J]. Frontiers of Materials Science, 2022, 16(2): 220595.
Rengasamy DHANABAL, Suhash Ranjan DEY. Perovskite solar cells: recent progress and strategies developed for minimizing interfacial recombination. Front. Mater. Sci., 2022, 16(2): 220595.
 链接本文:  
https://academic.hep.com.cn/foms/CN/10.1007/s11706-022-0595-7
https://academic.hep.com.cn/foms/CN/Y2022/V16/I2/220595
Fig.1  
Fig.2  
Fig.3  
Fig.4  
HTM μ/(cm2·V?1·s?1) PM PM deposition Device structure Dopant Voc/V PCE/% Refs.
CuSCN 25 MAPbI3 OSSD Inverted 1.0 15.6 [55]
NiO 0.14 MAPbI3 SET Inverted 1.06 17.3 [56]
CuI 9.3 MAPbI3 GSC Inverted 1.04 13.58 [57]
Cu2O MAPbI3 SD Inverted 0.95 11.00 [58]
PEDOT:PSS 10?2–10?3 MAPbI3 Inverted Li-TFSI, TBP 1.1 18.1 [59?60]
PTAA 10?2–10?3 (FAPbI3)1?x(MAPbBr3)x TSSD Mesoscopic Li-TFSI, TBP 1.06 20.2 [59,61]
P3HT < 0.1 MAPbI3 OSSD Li-TFSI, TBP, PMMA 1.02 15.3 [62?63]
Spiro-OMeTAD 10?3–10?4 MAPbI3 OSSD Mesoscopic Li-TFSI, TBP 1.08 19.71 [64?65]
Tab.1  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
Fig.9  
1 N, Re R M, May J J, Dooley , et al.. Photovoltaic technology: the case for thin film solar cells. Advancement of Science, 2010, 285( 5428): 692– 698
2 G H, Carey A L, Abdelhady Z, Ning , et al.. Colloidal quantum dot solar cells. Chemical Reviews, 2015, 115( 23): 12732– 12763
https://doi.org/10.1021/acs.chemrev.5b00063 pmid: 26106908
3 N G, Park H Segawa . Research direction toward theoretical efficiency in perovskite solar cells. ACS Photonics, 2018, 5( 8): 2970– 2977
https://doi.org/10.1021/acsphotonics.8b00124
4 L, Schmidt-Mende V, Dyakonov S, Olthof , et al.. Roadmap on organic‒inorganic hybrid perovskite semiconductors and devices. APL Materials, 2021, 9( 10): 109202
https://doi.org/10.1063/5.0047616
5 J Y, Kim J W, Lee H S, Jung , et al.. High-efficiency perovskite solar cells. Chemical Reviews, 2020, 120( 15): 7867– 7918
https://doi.org/10.1021/acs.chemrev.0c00107 pmid: 32786671
6 A W Y, Ho-Baillie J, Zheng M A, Mahmud , et al.. Recent progress and future prospects of perovskite tandem solar cells. Applied Physics Reviews, 2021, 8( 4): 041307
https://doi.org/10.1063/5.0061483
7 Q, Chen Marco N, De Y, Yang , et al.. Under the spotlight: the organic–inorganic hybrid halide perovskite for optoelectronic applications. Nano Today, 2015, 10( 3): 355– 396
https://doi.org/10.1016/j.nantod.2015.04.009
8 P K, Kung M H, Li P Y, Lin , et al.. A review of inorganic hole transport materials for perovskite solar cells. Advanced Materials Interfaces, 2018, 5( 22): 1800882
https://doi.org/10.1002/admi.201800882
9 T, Wu Z, Qin Y, Wang , et al.. The main progress of perovskite solar cells in 2020–2021. Nano-Micro Letters, 2021, 13( 1): 152
https://doi.org/10.1007/s40820-021-00672-w
10 J H, Im C R, Lee J W, Lee , et al.. 6.5% Efficient perovskite quantum-dot-sensitized solar cell. Nanoscale, 2011, 3( 10): 4088– 4093
https://doi.org/10.1039/c1nr10867k pmid: 21897986
11 Y, Bai X, Meng S Yang . Interface engineering for highly efficient and stable planar p–i–n perovskite solar cells. Advanced Energy Materials, 2018, 8( 5): 1701883
https://doi.org/10.1002/aenm.201701883
12 S D, Stranks G E, Eperon G, Grancini , et al.. Electron‒hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science, 2013, 342( 6156): 341– 344
https://doi.org/10.1126/science.1243982 pmid: 24136964
13 J H, Noh S H, Im J H, Heo , et al.. Chemical management for colorful, efficient, and stable inorganic‒organic hybrid nanostructured solar cells. Nano Letters, 2013, 13( 4): 1764– 1769
https://doi.org/10.1021/nl400349b pmid: 23517331
14 J P, Correa-Baena A, Abate M, Saliba , et al.. The rapid evolution of highly efficient perovskite solar cells. Energy & Environmental Science, 2017, 10( 3): 710– 727
https://doi.org/10.1039/C6EE03397K
15 J, Qu X, Jiang Z, Yu , et al.. Improved performance and air stability of perovskite solar cells based on low-cost organic hole-transporting material X60 by incorporating its dicationic salt. Science China Chemistry, 2018, 61( 2): 172– 179
https://doi.org/10.1007/s11426-017-9141-9
16 N S, Kumar K C B Naidu . A review on perovskite solar cells (PSCs), materials and applications. Journal of Materiomics, 2021, 7( 5): 940– 956
https://doi.org/10.1016/j.jmat.2021.04.002
17 A, Kojima K, Teshima Y, Shirai , et al.. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of the American Chemical Society, 2009, 131( 17): 6050– 6051
https://doi.org/10.1021/ja809598r pmid: 19366264
18 NREL. Chart: Best research — cell efficiencies. Available from:
19 A, Ghazy M, Safdar M, Lastusaari , et al.. Advances in upconversion enhanced solar cell performance. Solar Energy Materials and Solar Cells, 2021, 230 : 111234
https://doi.org/10.1016/j.solmat.2021.111234
20 D, Luo R, Su W, Zhang , et al.. Minimizing non-radiative recombination losses in perovskite solar cells. Nature Reviews Materials, 2020, 5( 1): 44– 60
https://doi.org/10.1038/s41578-019-0151-y
21 P, Tonui S O, Oseni G, Sharma , et al.. Perovskites photovoltaic solar cells: an overview of current status. Renewable & Sustainable Energy Reviews, 2018, 91 : 1025– 1044
https://doi.org/10.1016/j.rser.2018.04.069
22 E L, Lim C C, Yap M H H, Jumali , et al.. A mini review: can graphene be a novel material for perovskite solar cell applications?. Nano-Micro Letters, 2018, 10( 2): 27
https://doi.org/10.1007/s40820-017-0182-0 pmid: 30393676
23 H Q, Tan X, Zhao A, Jiao , et al.. Optimizing bifacial all-perovskite tandem solar cell: how to balance light absorption and recombination. Solar Energy, 2022, 231 : 1092– 1106
https://doi.org/10.1016/j.solener.2021.12.040
24 D H, Kang N G Park . On the current‒voltage hysteresis in perovskite solar cells: dependence on perovskite composition and methods to remove hysteresis. Advanced Materials, 2019, 31( 34): 1805214
https://doi.org/10.1002/adma.201805214
25 Y, Xu Q Lin . Photodetectors based on solution-processable semiconductors: recent advances and perspectives. Applied Physics Reviews, 2020, 7( 1): 011315
https://doi.org/10.1063/1.5144840
26 Z, Yu L Sun . Inorganic hole-transporting materials for perovskite solar cells. Small Methods, 2018, 2( 2): 1700280
https://doi.org/10.1002/smtd.201700280
27 S S, Mali C K Hong . p–i–n/n–i–p type planar hybrid structure of highly efficient perovskite solar cells towards improved air stability: synthetic strategies and the role of p-type hole transport layer (HTL) and n-type electron transport layer (ETL) metal oxides. Nanoscale, 2016, 8( 20): 10528– 10540
https://doi.org/10.1039/C6NR02276F pmid: 27161123
28 W, Tress N, Marinova O, Inganas, et al.. In: 2014 IEEE 40th Photovoltaic Specialists Conference (PVSC), 2014, 1563‒ 1566
29 L, Zhu J, Xiao J, Shi , et al.. Efficient CH3NH3PbI3 perovskite solar cells with 2TPA-n-DP hole-transporting layers. Nano Research, 2015, 8( 4): 1116– 1127
https://doi.org/10.1007/s12274-014-0592-y
30 V, Sarritzu N, Sestu D, Marongiu , et al.. Optical determination of Shockley‒Read‒Hall and interface recombination currents in hybrid perovskites. Scientific Reports, 2017, 7 : 44629
https://doi.org/10.1038/srep44629
31 K, Tvingstedt O, Malinkiewicz A, Baumann , et al.. Radiative efficiency of lead iodide based perovskite solar cells. Scientific Reports, 2014, 4 : 6071
https://doi.org/10.1038/srep06071
32 J, You L, Meng T B, Song , et al.. Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers. Nature Nanotechnology, 2016, 11( 1): 75– 81
https://doi.org/10.1038/nnano.2015.230 pmid: 26457966
33 S, Li Y L, Cao W H, Li , et al.. A brief review of hole transporting materials commonly used in perovskite solar cells. Rare Metals, 2021, 40( 10): 2712– 2729
https://doi.org/10.1007/s12598-020-01691-z
34 Z, Zhu Y, Bai T, Zhang , et al.. High-performance hole-extraction layer of sol‒gel-processed NiO nanocrystals for inverted planar perovskite solar cells. Angewandte Chemie International Edition, 2014, 53( 46): 12571– 12575
https://doi.org/10.1002/anie.201405176 pmid: 25044246
35 F, Ma Y, Zhao J, Li , et al.. Nickel oxide for inverted structure perovskite solar cells. Journal of Energy Chemistry, 2021, 52 : 393– 411
https://doi.org/10.1016/j.jechem.2020.04.027
36 X, Yin Z, Song Z, Li , et al.. Toward ideal hole transport materials: a review on recent progress in dopant-free hole transport materials for fabricating efficient and stable perovskite solar cells. Energy & Environmental Science, 2020, 13( 11): 4057– 4086
https://doi.org/10.1039/D0EE02337J
37 J H, Park J, Seo S, Park , et al.. Efficient CH3NH3PbI3 perovskite solar cells employing nanostructured p-type NiO electrode formed by a pulsed laser deposition. Advanced Materials, 2015, 27( 27): 4013– 4019
https://doi.org/10.1002/adma.201500523 pmid: 26038099
38 J, Liu S, Pathak T, Stergiopoulos , et al.. Employing PEDOT as the p-type charge collection layer in regular organic–inorganic perovskite solar cells. The Journal of Physical Chemistry Letters, 2015, 6( 9): 1666– 1673
https://doi.org/10.1021/acs.jpclett.5b00545
39 P, Qin S, Tanaka S, Ito , et al.. Inorganic hole conductor-based lead halide perovskite solar cells with 12.4% conversion efficiency. Nature Communications, 2014, 5 : 3834
https://doi.org/10.1038/ncomms4834
40 V E, Madhavan I, Zimmermann C, Roldán-Carmona , et al.. Copper thiocyanate inorganic hole-transporting material for high-efficiency perovskite solar cells. ACS Energy Letters, 2016, 1( 6): 1112– 1117
https://doi.org/10.1021/acsenergylett.6b00501
41 S, Ye W, Sun Y, Li , et al.. CuSCN-based inverted planar perovskite solar cell with an average PCE of 15.6%. Nano Letters, 2015, 15( 6): 3723– 3728
https://doi.org/10.1021/acs.nanolett.5b00116 pmid: 25938881
42 V E, Madhavan I, Zimmermann A A B, Baloch , et al.. CuSCN as hole transport material with 3D/2D perovskite solar cells. ACS Applied Energy Materials, 2020, 3( 1): 114– 121
https://doi.org/10.1021/acsaem.9b01692
43 S, Naqvi A Patra . Hole transport materials for perovskite solar cells: a computational study. Materials Chemistry and Physics, 2021, 258 : 123863
https://doi.org/10.1016/j.matchemphys.2020.123863
44 J A, Christians R C M, Fung P V Kamat . An inorganic hole conductor for organo-lead halide perovskite solar cells. Improved hole conductivity with copper iodide. Journal of the American Chemical Society, 2014, 136( 2): 758– 764
https://doi.org/10.1021/ja411014k pmid: 24350620
45 W Y, Chen L L, Deng S M, Dai , et al.. Low-cost solution-processed copper iodide as an alternative to PEDOT:PSS hole transport layer for efficient and stable inverted planar heterojunction perovskite solar cells. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2015, 3( 38): 19353– 19359
https://doi.org/10.1039/C5TA05286F
46 P, Nazari F, Ansari B A, Nejand , et al.. Physicochemical interface engineering of CuI/Cu as advanced potential hole-transporting materials/metal contact couples in hysteresis-free ultralow-cost and large-area perovskite solar cells. The Journal of Physical Chemistry C, 2017, 121( 40): 21935– 21944
https://doi.org/10.1021/acs.jpcc.7b07061
47 H, Wang Z, Yu J, Lai , et al.. One plus one greater than two: high-performance inverted planar perovskite solar cells based on a composite CuI/CuSCN hole-transporting layer. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2018, 6( 43): 21435– 21444
https://doi.org/10.1039/C8TA07332E
48 X P, Xu S Y, Li Y, Li , et al.. Recent progress in organic hole-transporting materials with 4-anisylamino-based end caps for efficient perovskite solar cells. Rare Metals, 2021, 40( 7): 1669– 1690
https://doi.org/10.1007/s12598-020-01617-9
49 N K, Elumalai C, Vijila R, Jose , et al.. Metal oxide semiconducting interfacial layers for photovoltaic and photocatalytic applications. Materials for Renewable and Sustainable Energy, 2015, 4( 3): 11
https://doi.org/10.1007/s40243-015-0054-9
50 D, Magaldi M, Ulfa M P, Nghiem , et al.. Hole transporting materials for perovskite solar cells: molecular versus polymeric carbazole-based derivatives. Journal of Materials Science, 2020, 55( 11): 4820– 4829
https://doi.org/10.1007/s10853-019-04342-6
51 A K, Jena Y, Numata M, Ikegami , et al.. Role of spiro-OMeTAD in performance deterioration of perovskite solar cells at high temperature and reuse of the perovskite films to avoid Pb-waste. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2018, 6( 5): 2219– 2230
https://doi.org/10.1039/C7TA07674F
52 W, Li X, Lai F, Meng , et al.. Efficient defect-passivation and charge-transfer with interfacial organophosphorus ligand modification for enhanced performance of perovskite solar cells. Solar Energy Materials and Solar Cells, 2020, 211 : 110527
https://doi.org/10.1016/j.solmat.2020.110527
53 A, Matsushita M, Yanagida Y, Shirai , et al.. Degradation of perovskite solar cells by the doping level decrease of HTL revealed by capacitance spectroscopy. Solar Energy Materials and Solar Cells, 2021, 220 : 110854
https://doi.org/10.1016/j.solmat.2020.110854
54 Q, Wang Q, Dong T, Li , et al.. Thin insulating tunneling contacts for efficient and water-resistant perovskite solar cells. Advanced Materials, 2016, 28( 31): 6734– 6739
https://doi.org/10.1002/adma.201600969 pmid: 27184864
55 R, Dhakal Y, Huh D, Galipeau , et al.. Chapter 16: AlSb compound semiconductor as absorber layer in thin film solar cells. In: Kosyachenko L A, ed. Solar Cells ― New Aspects and Solutions. Rijeka, Croatia: InTech, 2011, 341– 356
56 S, Liu R, Liu Y, Chen , et al.. Nickel oxide hole injection/transport layers for efficient solution-processed organic light-emitting diodes. Chemistry of Materials, 2014, 26( 15): 4528– 4534
https://doi.org/10.1021/cm501898y
57 Y, Kokubun H, Watanabe M Wada . Electrical properties of CuI thin films. Japanese Journal of Applied Physics, 1971, 10( 7): 864– 867
https://doi.org/10.1143/JJAP.10.864
58 W, Yu F, Li H, Wang , et al.. Ultrathin Cu2O as an efficient inorganic hole transporting material for perovskite solar cells. Nanoscale, 2016, 8( 11): 6173– 6179
https://doi.org/10.1039/C5NR07758C pmid: 26931167
59 W S, Yang J H, Noh N J Jeon . High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science, 2015, 348( 6240): 1234– 1237
https://doi.org/10.1126/science.aaa9272
60 S A, Rutledge A S Helmy . Carrier mobility enhancement in poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) having undergone rapid thermal annealing. Journal of Applied Physics, 2013, 114( 13): 133708– 133713
https://doi.org/10.1063/1.4824104
61 J H, Heo S H, Im J H, Noh , et al.. Efficient inorganic–organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors. Nature Photonics, 2013, 7( 6): 486– 491
https://doi.org/10.1038/nphoton.2013.80
62 I, McCulloch M, Heeney C, Bailey , et al.. Liquid-crystalline semiconducting polymers with high charge-carrier mobility. Nature Materials, 2006, 5( 4): 328– 333
https://doi.org/10.1038/nmat1612 pmid: 16547518
63 S N, Habisreutinger T, Leijtens G E, Eperon , et al.. Carbon nanotube/polymer composites as a highly stable hole collection layer in perovskite solar cells. Nano Letters, 2014, 14( 10): 5561– 5568
https://doi.org/10.1021/nl501982b pmid: 25226226
64 N, Ahn D Y, Son I H, Jang , et al.. Highly reproducible perovskite solar cells with average efficiency of 18.3% and best efficiency of 19.7% fabricated via Lewis base adduct of lead(II) iodide. Journal of the American Chemical Society, 2015, 137( 27): 8696– 8699
https://doi.org/10.1021/jacs.5b04930 pmid: 26125203
65 W H, Nguyen C D, Bailie E L, Unger , et al.. Enhancing the hole-conductivity of spiro-OMeTAD without oxygen or lithium salts by using spiro(TFSI)2 in perovskite and dye-sensitized solar cells. Journal of the American Chemical Society, 2014, 136( 31): 10996– 11001
https://doi.org/10.1021/ja504539w pmid: 25051503
66 R, Gottesman P, Lopez-Varo L, Gouda , et al.. Dynamic phenomena at perovskite/electron-selective contact interface as interpreted from photovoltage decays. CHEM, 2016, 1( 5): 776– 789
https://doi.org/10.1016/j.chempr.2016.10.002
67 R, Dhanabal S, Velmathi A C Bose . Fabrication of RuO2‒Ag3PO4 heterostructure nanocomposites: investigations of band alignment on the enhanced visible light photocatalytic activity. Journal of Hazardous Materials, 2018, 344 : 865– 874
https://doi.org/10.1016/j.jhazmat.2017.11.034 pmid: 29190584
68 H, Choi C K, Mai H B, Kim , et al.. Conjugated polyelectrolyte hole transport layer for inverted-type perovskite solar cells. Nature Communications, 2015, 6 : 7348
https://doi.org/10.1038/ncomms8348
69 Z, Gu L, Zuo T T, Larsen-Olsen , et al.. Interfacial engineering of self-assembled monolayer modified semi-roll-to-roll planar heterojunction perovskite solar cells on flexible substrates. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2015, 3( 48): 24254– 24260
https://doi.org/10.1039/C5TA07008B
70 Q, Xi G, Gao H, Zhou , et al.. Highly efficient inverted solar cells based on perovskite grown nanostructures mediated by CuSCN. Nanoscale, 2017, 9( 18): 6136– 6144
https://doi.org/10.1039/C7NR01135K pmid: 28447686
71 P, Liu Z, Liu C, Qin , et al.. High-performance perovskite solar cells based on passivating interfacial and intergranular defects. Solar Energy Materials and Solar Cells, 2020, 212 : 110555
https://doi.org/10.1016/j.solmat.2020.110555
72 Y, Bai H, Chen S, Xiao , et al.. Effects of a molecular monolayer modification of NiO nanocrystal layer surfaces on perovskite crystallization and interface contact toward faster hole extraction and higher photovoltaic performance. Advanced Functional Materials, 2016, 26( 17): 2950– 2958
https://doi.org/10.1002/adfm.201505215
73 M I, Haider A, Fakharuddin S, Ahmed , et al.. Modulating defect density of NiO hole transport layer via tuning interfacial oxygen stoichiometry in perovskite solar cells. Solar Energy, 2022, 233 : 326– 336
https://doi.org/10.1016/j.solener.2022.01.023
74 J, You L, Meng T B, Song , et al.. Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers. Nature Nanotechnology, 2016, 11( 1): 75– 81
https://doi.org/10.1038/nnano.2015.230 pmid: 26457966
75 S N, Vijayaraghavan J, Wall H G, Menon , et al.. Interfacial engineering with NiOx nanofibers as hole transport layer for carbon-based perovskite solar cells. Solar Energy, 2021, 230 : 591– 597
https://doi.org/10.1016/j.solener.2021.10.039
76 Y, Ma Y, Zhang H, Zhang , et al.. Effective carrier transport tuning of CuOx quantum dots hole interfacial layer for high-performance inverted perovskite solar cell. Applied Surface Science, 2021, 547 : 149117
https://doi.org/10.1016/j.apsusc.2021.149117
77 L, Hu Q, Zhao S, Huang , et al.. Flexible and efficient perovskite quantum dot solar cells via hybrid interfacial architecture. Nature Communications, 2021, 12 : 466
https://doi.org/10.1038/s41467-020-20749-1
78 Y, Zheng J, Kong D, Huang , et al.. Spray coating of the PCBM electron transport layer significantly improves the efficiency of p–i–n planar perovskite solar cells. Nanoscale, 2018, 10( 24): 11342– 11348
https://doi.org/10.1039/C8NR01763H pmid: 29741180
79 Z, Zhu Q, Xue H, He , et al.. A PCBM electron transport layer containing small amounts of dual polymer additives that enables enhanced perovskite solar cell performance. Advanced Science, 2016, 3( 9): 1500353
https://doi.org/10.1002/advs.201500353 pmid: 27711265
80 F, Wu W, Gao H, Yu , et al.. Efficient small-molecule non-fullerene electron transporting materials for high-performance inverted perovskite solar cells. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2018, 6( 10): 4443– 4448
https://doi.org/10.1039/C8TA00492G
81 J, Zhou J, Hou X, Tao , et al.. Solution-processed electron transport layer of n-doped fullerene for efficient and stable all carbon based perovskite solar cells. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2019, 7( 13): 7710– 7716
https://doi.org/10.1039/C9TA00118B
82 D, Yang X, Zhang K, Wang , et al.. Stable efficiency exceeding 20.6% for inverted perovskite solar cells through polymer-optimized PCBM electron-transport layers. Nano Letters, 2019, 19( 5): 3313– 3320
https://doi.org/10.1021/acs.nanolett.9b00936 pmid: 30986075
83 M, Li B, Du Y, Wu , et al.. Fused-ring electron acceptor as an efficient interfacial material for planar and flexible perovskite solar cells. Organic Electronics, 2021, 98 : 106293
https://doi.org/10.1016/j.orgel.2021.106293
84 Y, Huang H, Zhong W, Li , et al.. Bifunctional ionic liquid for enhancing efficiency and stability of carbon counter electrode-based MAPbI3 perovskites solar cells. Solar Energy, 2022, 231 : 1048– 1060
https://doi.org/10.1016/j.solener.2021.12.046
85 W, Ke G, Fang Q, Liu , et al.. Low-temperature solution-processed tin oxide as an alternative electron transporting layer for efficient perovskite solar cells. Journal of the American Chemical Society, 2015, 137( 21): 6730– 6733
https://doi.org/10.1021/jacs.5b01994 pmid: 25987132
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed