Perovskite solar cells: recent progress and strategies developed for minimizing interfacial recombination
Rengasamy DHANABAL, Suhash Ranjan DEY()
Combinatorial Materials Laboratory, Department of Materials Science and Metallurgical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, Telangana, India
Organometallic perovskite is a new generation photovoltaic material with exemplary properties such as high absorption co-efficient, optimal bandgap, high defect tolerance factor and long carrier diffusion length. However, suitable electrodes and charge transport materials are required to fulfill photovoltaic processes where interfaces between hole transport material/perovskite and perovskite/electron transport material are affected by phenomena of charge carrier separation, transportation, collection by the interfaces and band alignment. Based on recent available literature and several strategies for minimizing the recombination of charge carriers at the interfaces, this review addresses the properties of hole transport materials, relevant working mechanisms, and the interface engineering of perovskite solar cell (PSC) device architecture, which also provides significant insights to design and development of PSC devices with high efficiency.
N G, Park H Segawa . Research direction toward theoretical efficiency in perovskite solar cells. ACS Photonics, 2018, 5( 8): 2970– 2977 https://doi.org/10.1021/acsphotonics.8b00124
4
L, Schmidt-Mende V, Dyakonov S, Olthof , et al.. Roadmap on organic‒inorganic hybrid perovskite semiconductors and devices. APL Materials, 2021, 9( 10): 109202 https://doi.org/10.1063/5.0047616
A W Y, Ho-Baillie J, Zheng M A, Mahmud , et al.. Recent progress and future prospects of perovskite tandem solar cells. Applied Physics Reviews, 2021, 8( 4): 041307 https://doi.org/10.1063/5.0061483
7
Q, Chen Marco N, De Y, Yang , et al.. Under the spotlight: the organic–inorganic hybrid halide perovskite for optoelectronic applications. Nano Today, 2015, 10( 3): 355– 396 https://doi.org/10.1016/j.nantod.2015.04.009
8
P K, Kung M H, Li P Y, Lin , et al.. A review of inorganic hole transport materials for perovskite solar cells. Advanced Materials Interfaces, 2018, 5( 22): 1800882 https://doi.org/10.1002/admi.201800882
9
T, Wu Z, Qin Y, Wang , et al.. The main progress of perovskite solar cells in 2020–2021. Nano-Micro Letters, 2021, 13( 1): 152 https://doi.org/10.1007/s40820-021-00672-w
10
J H, Im C R, Lee J W, Lee , et al.. 6.5% Efficient perovskite quantum-dot-sensitized solar cell. Nanoscale, 2011, 3( 10): 4088– 4093 https://doi.org/10.1039/c1nr10867k
pmid: 21897986
11
Y, Bai X, Meng S Yang . Interface engineering for highly efficient and stable planar p–i–n perovskite solar cells. Advanced Energy Materials, 2018, 8( 5): 1701883 https://doi.org/10.1002/aenm.201701883
12
S D, Stranks G E, Eperon G, Grancini , et al.. Electron‒hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science, 2013, 342( 6156): 341– 344 https://doi.org/10.1126/science.1243982
pmid: 24136964
13
J H, Noh S H, Im J H, Heo , et al.. Chemical management for colorful, efficient, and stable inorganic‒organic hybrid nanostructured solar cells. Nano Letters, 2013, 13( 4): 1764– 1769 https://doi.org/10.1021/nl400349b
pmid: 23517331
14
J P, Correa-Baena A, Abate M, Saliba , et al.. The rapid evolution of highly efficient perovskite solar cells. Energy & Environmental Science, 2017, 10( 3): 710– 727 https://doi.org/10.1039/C6EE03397K
15
J, Qu X, Jiang Z, Yu , et al.. Improved performance and air stability of perovskite solar cells based on low-cost organic hole-transporting material X60 by incorporating its dicationic salt. Science China Chemistry, 2018, 61( 2): 172– 179 https://doi.org/10.1007/s11426-017-9141-9
16
N S, Kumar K C B Naidu . A review on perovskite solar cells (PSCs), materials and applications. Journal of Materiomics, 2021, 7( 5): 940– 956 https://doi.org/10.1016/j.jmat.2021.04.002
17
A, Kojima K, Teshima Y, Shirai , et al.. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of the American Chemical Society, 2009, 131( 17): 6050– 6051 https://doi.org/10.1021/ja809598r
pmid: 19366264
18
NREL. Chart: Best research — cell efficiencies. Available from:
19
A, Ghazy M, Safdar M, Lastusaari , et al.. Advances in upconversion enhanced solar cell performance. Solar Energy Materials and Solar Cells, 2021, 230 : 111234 https://doi.org/10.1016/j.solmat.2021.111234
20
D, Luo R, Su W, Zhang , et al.. Minimizing non-radiative recombination losses in perovskite solar cells. Nature Reviews Materials, 2020, 5( 1): 44– 60 https://doi.org/10.1038/s41578-019-0151-y
21
P, Tonui S O, Oseni G, Sharma , et al.. Perovskites photovoltaic solar cells: an overview of current status. Renewable & Sustainable Energy Reviews, 2018, 91 : 1025– 1044 https://doi.org/10.1016/j.rser.2018.04.069
22
E L, Lim C C, Yap M H H, Jumali , et al.. A mini review: can graphene be a novel material for perovskite solar cell applications?. Nano-Micro Letters, 2018, 10( 2): 27 https://doi.org/10.1007/s40820-017-0182-0
pmid: 30393676
23
H Q, Tan X, Zhao A, Jiao , et al.. Optimizing bifacial all-perovskite tandem solar cell: how to balance light absorption and recombination. Solar Energy, 2022, 231 : 1092– 1106 https://doi.org/10.1016/j.solener.2021.12.040
24
D H, Kang N G Park . On the current‒voltage hysteresis in perovskite solar cells: dependence on perovskite composition and methods to remove hysteresis. Advanced Materials, 2019, 31( 34): 1805214 https://doi.org/10.1002/adma.201805214
25
Y, Xu Q Lin . Photodetectors based on solution-processable semiconductors: recent advances and perspectives. Applied Physics Reviews, 2020, 7( 1): 011315 https://doi.org/10.1063/1.5144840
26
Z, Yu L Sun . Inorganic hole-transporting materials for perovskite solar cells. Small Methods, 2018, 2( 2): 1700280 https://doi.org/10.1002/smtd.201700280
27
S S, Mali C K Hong . p–i–n/n–i–p type planar hybrid structure of highly efficient perovskite solar cells towards improved air stability: synthetic strategies and the role of p-type hole transport layer (HTL) and n-type electron transport layer (ETL) metal oxides. Nanoscale, 2016, 8( 20): 10528– 10540 https://doi.org/10.1039/C6NR02276F
pmid: 27161123
28
W, Tress N, Marinova O, Inganas, et al.. In: 2014 IEEE 40th Photovoltaic Specialists Conference (PVSC), 2014, 1563‒ 1566
29
L, Zhu J, Xiao J, Shi , et al.. Efficient CH3NH3PbI3 perovskite solar cells with 2TPA-n-DP hole-transporting layers. Nano Research, 2015, 8( 4): 1116– 1127 https://doi.org/10.1007/s12274-014-0592-y
30
V, Sarritzu N, Sestu D, Marongiu , et al.. Optical determination of Shockley‒Read‒Hall and interface recombination currents in hybrid perovskites. Scientific Reports, 2017, 7 : 44629 https://doi.org/10.1038/srep44629
31
K, Tvingstedt O, Malinkiewicz A, Baumann , et al.. Radiative efficiency of lead iodide based perovskite solar cells. Scientific Reports, 2014, 4 : 6071 https://doi.org/10.1038/srep06071
32
J, You L, Meng T B, Song , et al.. Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers. Nature Nanotechnology, 2016, 11( 1): 75– 81 https://doi.org/10.1038/nnano.2015.230
pmid: 26457966
33
S, Li Y L, Cao W H, Li , et al.. A brief review of hole transporting materials commonly used in perovskite solar cells. Rare Metals, 2021, 40( 10): 2712– 2729 https://doi.org/10.1007/s12598-020-01691-z
34
Z, Zhu Y, Bai T, Zhang , et al.. High-performance hole-extraction layer of sol‒gel-processed NiO nanocrystals for inverted planar perovskite solar cells. Angewandte Chemie International Edition, 2014, 53( 46): 12571– 12575 https://doi.org/10.1002/anie.201405176
pmid: 25044246
35
F, Ma Y, Zhao J, Li , et al.. Nickel oxide for inverted structure perovskite solar cells. Journal of Energy Chemistry, 2021, 52 : 393– 411 https://doi.org/10.1016/j.jechem.2020.04.027
36
X, Yin Z, Song Z, Li , et al.. Toward ideal hole transport materials: a review on recent progress in dopant-free hole transport materials for fabricating efficient and stable perovskite solar cells. Energy & Environmental Science, 2020, 13( 11): 4057– 4086 https://doi.org/10.1039/D0EE02337J
37
J H, Park J, Seo S, Park , et al.. Efficient CH3NH3PbI3 perovskite solar cells employing nanostructured p-type NiO electrode formed by a pulsed laser deposition. Advanced Materials, 2015, 27( 27): 4013– 4019 https://doi.org/10.1002/adma.201500523
pmid: 26038099
38
J, Liu S, Pathak T, Stergiopoulos , et al.. Employing PEDOT as the p-type charge collection layer in regular organic–inorganic perovskite solar cells. The Journal of Physical Chemistry Letters, 2015, 6( 9): 1666– 1673 https://doi.org/10.1021/acs.jpclett.5b00545
39
P, Qin S, Tanaka S, Ito , et al.. Inorganic hole conductor-based lead halide perovskite solar cells with 12.4% conversion efficiency. Nature Communications, 2014, 5 : 3834 https://doi.org/10.1038/ncomms4834
40
V E, Madhavan I, Zimmermann C, Roldán-Carmona , et al.. Copper thiocyanate inorganic hole-transporting material for high-efficiency perovskite solar cells. ACS Energy Letters, 2016, 1( 6): 1112– 1117 https://doi.org/10.1021/acsenergylett.6b00501
V E, Madhavan I, Zimmermann A A B, Baloch , et al.. CuSCN as hole transport material with 3D/2D perovskite solar cells. ACS Applied Energy Materials, 2020, 3( 1): 114– 121 https://doi.org/10.1021/acsaem.9b01692
43
S, Naqvi A Patra . Hole transport materials for perovskite solar cells: a computational study. Materials Chemistry and Physics, 2021, 258 : 123863 https://doi.org/10.1016/j.matchemphys.2020.123863
44
J A, Christians R C M, Fung P V Kamat . An inorganic hole conductor for organo-lead halide perovskite solar cells. Improved hole conductivity with copper iodide. Journal of the American Chemical Society, 2014, 136( 2): 758– 764 https://doi.org/10.1021/ja411014k
pmid: 24350620
45
W Y, Chen L L, Deng S M, Dai , et al.. Low-cost solution-processed copper iodide as an alternative to PEDOT:PSS hole transport layer for efficient and stable inverted planar heterojunction perovskite solar cells. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2015, 3( 38): 19353– 19359 https://doi.org/10.1039/C5TA05286F
46
P, Nazari F, Ansari B A, Nejand , et al.. Physicochemical interface engineering of CuI/Cu as advanced potential hole-transporting materials/metal contact couples in hysteresis-free ultralow-cost and large-area perovskite solar cells. The Journal of Physical Chemistry C, 2017, 121( 40): 21935– 21944 https://doi.org/10.1021/acs.jpcc.7b07061
47
H, Wang Z, Yu J, Lai , et al.. One plus one greater than two: high-performance inverted planar perovskite solar cells based on a composite CuI/CuSCN hole-transporting layer. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2018, 6( 43): 21435– 21444 https://doi.org/10.1039/C8TA07332E
48
X P, Xu S Y, Li Y, Li , et al.. Recent progress in organic hole-transporting materials with 4-anisylamino-based end caps for efficient perovskite solar cells. Rare Metals, 2021, 40( 7): 1669– 1690 https://doi.org/10.1007/s12598-020-01617-9
49
N K, Elumalai C, Vijila R, Jose , et al.. Metal oxide semiconducting interfacial layers for photovoltaic and photocatalytic applications. Materials for Renewable and Sustainable Energy, 2015, 4( 3): 11 https://doi.org/10.1007/s40243-015-0054-9
50
D, Magaldi M, Ulfa M P, Nghiem , et al.. Hole transporting materials for perovskite solar cells: molecular versus polymeric carbazole-based derivatives. Journal of Materials Science, 2020, 55( 11): 4820– 4829 https://doi.org/10.1007/s10853-019-04342-6
51
A K, Jena Y, Numata M, Ikegami , et al.. Role of spiro-OMeTAD in performance deterioration of perovskite solar cells at high temperature and reuse of the perovskite films to avoid Pb-waste. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2018, 6( 5): 2219– 2230 https://doi.org/10.1039/C7TA07674F
52
W, Li X, Lai F, Meng , et al.. Efficient defect-passivation and charge-transfer with interfacial organophosphorus ligand modification for enhanced performance of perovskite solar cells. Solar Energy Materials and Solar Cells, 2020, 211 : 110527 https://doi.org/10.1016/j.solmat.2020.110527
53
A, Matsushita M, Yanagida Y, Shirai , et al.. Degradation of perovskite solar cells by the doping level decrease of HTL revealed by capacitance spectroscopy. Solar Energy Materials and Solar Cells, 2021, 220 : 110854 https://doi.org/10.1016/j.solmat.2020.110854
54
Q, Wang Q, Dong T, Li , et al.. Thin insulating tunneling contacts for efficient and water-resistant perovskite solar cells. Advanced Materials, 2016, 28( 31): 6734– 6739 https://doi.org/10.1002/adma.201600969
pmid: 27184864
55
R, Dhakal Y, Huh D, Galipeau , et al.. Chapter 16: AlSb compound semiconductor as absorber layer in thin film solar cells. In: Kosyachenko L A, ed. Solar Cells ― New Aspects and Solutions. Rijeka, Croatia: InTech, 2011, 341– 356
56
S, Liu R, Liu Y, Chen , et al.. Nickel oxide hole injection/transport layers for efficient solution-processed organic light-emitting diodes. Chemistry of Materials, 2014, 26( 15): 4528– 4534 https://doi.org/10.1021/cm501898y
57
Y, Kokubun H, Watanabe M Wada . Electrical properties of CuI thin films. Japanese Journal of Applied Physics, 1971, 10( 7): 864– 867 https://doi.org/10.1143/JJAP.10.864
58
W, Yu F, Li H, Wang , et al.. Ultrathin Cu2O as an efficient inorganic hole transporting material for perovskite solar cells. Nanoscale, 2016, 8( 11): 6173– 6179 https://doi.org/10.1039/C5NR07758C
pmid: 26931167
59
W S, Yang J H, Noh N J Jeon . High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science, 2015, 348( 6240): 1234– 1237 https://doi.org/10.1126/science.aaa9272
60
S A, Rutledge A S Helmy . Carrier mobility enhancement in poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) having undergone rapid thermal annealing. Journal of Applied Physics, 2013, 114( 13): 133708– 133713 https://doi.org/10.1063/1.4824104
61
J H, Heo S H, Im J H, Noh , et al.. Efficient inorganic–organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors. Nature Photonics, 2013, 7( 6): 486– 491 https://doi.org/10.1038/nphoton.2013.80
62
I, McCulloch M, Heeney C, Bailey , et al.. Liquid-crystalline semiconducting polymers with high charge-carrier mobility. Nature Materials, 2006, 5( 4): 328– 333 https://doi.org/10.1038/nmat1612
pmid: 16547518
63
S N, Habisreutinger T, Leijtens G E, Eperon , et al.. Carbon nanotube/polymer composites as a highly stable hole collection layer in perovskite solar cells. Nano Letters, 2014, 14( 10): 5561– 5568 https://doi.org/10.1021/nl501982b
pmid: 25226226
64
N, Ahn D Y, Son I H, Jang , et al.. Highly reproducible perovskite solar cells with average efficiency of 18.3% and best efficiency of 19.7% fabricated via Lewis base adduct of lead(II) iodide. Journal of the American Chemical Society, 2015, 137( 27): 8696– 8699 https://doi.org/10.1021/jacs.5b04930
pmid: 26125203
65
W H, Nguyen C D, Bailie E L, Unger , et al.. Enhancing the hole-conductivity of spiro-OMeTAD without oxygen or lithium salts by using spiro(TFSI)2 in perovskite and dye-sensitized solar cells. Journal of the American Chemical Society, 2014, 136( 31): 10996– 11001 https://doi.org/10.1021/ja504539w
pmid: 25051503
66
R, Gottesman P, Lopez-Varo L, Gouda , et al.. Dynamic phenomena at perovskite/electron-selective contact interface as interpreted from photovoltage decays. CHEM, 2016, 1( 5): 776– 789 https://doi.org/10.1016/j.chempr.2016.10.002
67
R, Dhanabal S, Velmathi A C Bose . Fabrication of RuO2‒Ag3PO4 heterostructure nanocomposites: investigations of band alignment on the enhanced visible light photocatalytic activity. Journal of Hazardous Materials, 2018, 344 : 865– 874 https://doi.org/10.1016/j.jhazmat.2017.11.034
pmid: 29190584
68
H, Choi C K, Mai H B, Kim , et al.. Conjugated polyelectrolyte hole transport layer for inverted-type perovskite solar cells. Nature Communications, 2015, 6 : 7348 https://doi.org/10.1038/ncomms8348
69
Z, Gu L, Zuo T T, Larsen-Olsen , et al.. Interfacial engineering of self-assembled monolayer modified semi-roll-to-roll planar heterojunction perovskite solar cells on flexible substrates. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2015, 3( 48): 24254– 24260 https://doi.org/10.1039/C5TA07008B
70
Q, Xi G, Gao H, Zhou , et al.. Highly efficient inverted solar cells based on perovskite grown nanostructures mediated by CuSCN. Nanoscale, 2017, 9( 18): 6136– 6144 https://doi.org/10.1039/C7NR01135K
pmid: 28447686
71
P, Liu Z, Liu C, Qin , et al.. High-performance perovskite solar cells based on passivating interfacial and intergranular defects. Solar Energy Materials and Solar Cells, 2020, 212 : 110555 https://doi.org/10.1016/j.solmat.2020.110555
72
Y, Bai H, Chen S, Xiao , et al.. Effects of a molecular monolayer modification of NiO nanocrystal layer surfaces on perovskite crystallization and interface contact toward faster hole extraction and higher photovoltaic performance. Advanced Functional Materials, 2016, 26( 17): 2950– 2958 https://doi.org/10.1002/adfm.201505215
73
M I, Haider A, Fakharuddin S, Ahmed , et al.. Modulating defect density of NiO hole transport layer via tuning interfacial oxygen stoichiometry in perovskite solar cells. Solar Energy, 2022, 233 : 326– 336 https://doi.org/10.1016/j.solener.2022.01.023
74
J, You L, Meng T B, Song , et al.. Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers. Nature Nanotechnology, 2016, 11( 1): 75– 81 https://doi.org/10.1038/nnano.2015.230
pmid: 26457966
75
S N, Vijayaraghavan J, Wall H G, Menon , et al.. Interfacial engineering with NiOx nanofibers as hole transport layer for carbon-based perovskite solar cells. Solar Energy, 2021, 230 : 591– 597 https://doi.org/10.1016/j.solener.2021.10.039
76
Y, Ma Y, Zhang H, Zhang , et al.. Effective carrier transport tuning of CuOx quantum dots hole interfacial layer for high-performance inverted perovskite solar cell. Applied Surface Science, 2021, 547 : 149117 https://doi.org/10.1016/j.apsusc.2021.149117
77
L, Hu Q, Zhao S, Huang , et al.. Flexible and efficient perovskite quantum dot solar cells via hybrid interfacial architecture. Nature Communications, 2021, 12 : 466 https://doi.org/10.1038/s41467-020-20749-1
78
Y, Zheng J, Kong D, Huang , et al.. Spray coating of the PCBM electron transport layer significantly improves the efficiency of p–i–n planar perovskite solar cells. Nanoscale, 2018, 10( 24): 11342– 11348 https://doi.org/10.1039/C8NR01763H
pmid: 29741180
79
Z, Zhu Q, Xue H, He , et al.. A PCBM electron transport layer containing small amounts of dual polymer additives that enables enhanced perovskite solar cell performance. Advanced Science, 2016, 3( 9): 1500353 https://doi.org/10.1002/advs.201500353
pmid: 27711265
80
F, Wu W, Gao H, Yu , et al.. Efficient small-molecule non-fullerene electron transporting materials for high-performance inverted perovskite solar cells. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2018, 6( 10): 4443– 4448 https://doi.org/10.1039/C8TA00492G
81
J, Zhou J, Hou X, Tao , et al.. Solution-processed electron transport layer of n-doped fullerene for efficient and stable all carbon based perovskite solar cells. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2019, 7( 13): 7710– 7716 https://doi.org/10.1039/C9TA00118B
82
D, Yang X, Zhang K, Wang , et al.. Stable efficiency exceeding 20.6% for inverted perovskite solar cells through polymer-optimized PCBM electron-transport layers. Nano Letters, 2019, 19( 5): 3313– 3320 https://doi.org/10.1021/acs.nanolett.9b00936
pmid: 30986075
83
M, Li B, Du Y, Wu , et al.. Fused-ring electron acceptor as an efficient interfacial material for planar and flexible perovskite solar cells. Organic Electronics, 2021, 98 : 106293 https://doi.org/10.1016/j.orgel.2021.106293
84
Y, Huang H, Zhong W, Li , et al.. Bifunctional ionic liquid for enhancing efficiency and stability of carbon counter electrode-based MAPbI3 perovskites solar cells. Solar Energy, 2022, 231 : 1048– 1060 https://doi.org/10.1016/j.solener.2021.12.046
85
W, Ke G, Fang Q, Liu , et al.. Low-temperature solution-processed tin oxide as an alternative electron transporting layer for efficient perovskite solar cells. Journal of the American Chemical Society, 2015, 137( 21): 6730– 6733 https://doi.org/10.1021/jacs.5b01994
pmid: 25987132