A novel bird-nest-like air superoleophobic/superhydrophilic Cu(OH)2-based composite coating for efficient oil–water separation
Zhiwei ZENG1, Xinzhu WU1, Yan LIU1(), Lulu LONG1, Bo WANG2, Lilin WANG1, Gang YANG1, Xiaohong ZHANG1, Fei SHEN1, Yanzong ZHANG1()
1. College of Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, China 2. Beijing Municipal Road & Bridge Co., Ltd., Beijing 100045, China
An air superoleophobic/superhydrophilic composite coating with a unique structure was fabricated by oxidation and further modification of the copper mesh, and its design principle was clarified. This unique bird-nest-like configuration gives it instant superhydrophilicity due to the high surface roughness and high polar surface free energy components, while air superoleophobicity is caused by its extremely low dispersive surface free energy components. Furthermore, a water-resistance mechanism was proposed whereby a polyelectrolyte plays a critical role in improving the water-resistance of fluorosurfactants. It can separate oil–water mixtures with high efficiency (98.72%) and high flux (25185 L·m−2·h−1), and can be reused. In addition, our composite coating had certain anti-acid, anti-alkali, anti-salt and anti-sand impact performance. More importantly, after being soaked in water for a long time or being exposed to the air for a long time, it still retained ultra-high air oil contact angle and showed excellent stability, which provided the possibility for practical applications. Thus, these findings offer the potential for significant practical applications in managing oily wastewater and marine oil spill incidents.
Z Chu , Y Feng , S Seeger . Oil/water separation with selective superantiwetting/superwetting surface materials. Angewandte Chemie International Edition, 2015, 54( 8): 2328– 2338 https://doi.org/10.1002/anie.201405785
pmid: 25425089
2
Y Zhao , X Yang , L Yan . et al.. Biomimetic nanoparticle-engineered superwettable membranes for efficient oil/water separation. Journal of Membrane Science, 2021, 618 : 118525 https://doi.org/10.1016/j.memsci.2020.118525
3
Y Guo , L Gong , S Gao . et al.. Cupric phosphate mineralized polymer membrane with superior cycle stability for oil/water emulsion separation. Journal of Membrane Science, 2020, 612 : 118427 https://doi.org/10.1016/j.memsci.2020.118427
B Wang , W Liang , Z Guo . et al.. Biomimetic super-lyophobic and super-lyophilic materials applied for oil/water separation: a new strategy beyond nature. Chemical Society Reviews, 2015, 44( 1): 336– 361 https://doi.org/10.1039/C4CS00220B
pmid: 25311259
6
J Ge , H Y Zhao , H W Zhu . et al.. Advanced sorbents for oil-spill cleanup: recent advances and future perspectives. Advanced Materials, 2016, 28( 47): 10459– 10490 https://doi.org/10.1002/adma.201601812
pmid: 27731513
7
D D Ma , J W Shi , L W Sun . et al.. Knack behind the high performance CdS/ZnS‒NiS nanocomposites: optimizing synergistic effect between cocatalyst and heterostructure for boosting hydrogen evolution. Chemical Engineering Journal, 2022, 431 : 133446 https://doi.org/10.1016/j.cej.2021.133446
8
J H Shin , J H Heo , S Jeon . et al.. Bio-inspired hollow PDMS sponge for enhanced oil‒water separation. Journal of Hazardous Materials, 2019, 365 : 494– 501 https://doi.org/10.1016/j.jhazmat.2018.10.078
pmid: 30466047
9
J Li , Y Yang , W Ma . et al.. One-pot room-temperature synthesis of covalent organic framework-coated superhydrophobic sponges for highly efficient oil‒water separation. Journal of Hazardous Materials, 2021, 411 : 125190 https://doi.org/10.1016/j.jhazmat.2021.125190
pmid: 33858120
10
W Li , Y Y Liu , Y Bai . et al.. Anchoring ZIF-67 particles on amidoximerized polyacrylonitrile fibers for radionuclide sequestration in wastewater and seawater. Journal of Hazardous Materials, 2020, 395 : 122692 https://doi.org/10.1016/j.jhazmat.2020.122692
pmid: 32330785
11
X R Li , X C Yang , H G Xue . et al.. Metal-organic frameworks as a platform for clean energy applications. EnergyChem, 2020, 2( 2): 100027 https://doi.org/10.1016/j.enchem.2020.100027
12
S Cao , B Li , R Zhu . et al.. Design and synthesis of covalent organic frameworks towards energy and environment fields. Chemical Engineering Journal, 2019, 355 : 602– 623 https://doi.org/10.1016/j.cej.2018.08.184
13
Z Guo , B Long , S Gao . et al.. Carbon nanofiber based superhydrophobic foam composite for high performance oil/water separation. Journal of Hazardous Materials, 2021, 402 : 123838 https://doi.org/10.1016/j.jhazmat.2020.123838
pmid: 33254815
14
X Gao , L P Xu , Z Xue . et al.. Dual-scaled porous nitrocellulose membranes with underwater superoleophobicity for highly efficient oil/water separation. Advanced Materials, 2014, 26( 11): 1771– 1775 https://doi.org/10.1002/adma.201304487
pmid: 24347397
15
Z W Zeng , Y Liu , L Long . et al.. Fabrication of novel superhydrophilic/underwater superoleophobic composite coatings and study on the relationship between their long-term wettability and excellent oil‒water separation performance. Surface and Coatings Technology, 2022, 434 : 128193 https://doi.org/10.1016/j.surfcoat.2022.128193
16
S Yang , Y Si , Q Fu . et al.. Superwetting hierarchical porous silica nanofibrous membranes for oil/water microemulsion separation. Nanoscale, 2014, 6( 21): 12445– 12449 https://doi.org/10.1039/C4NR04668D
pmid: 25260122
17
Y Shi , W Yang , X Feng . et al.. Fabrication of superhydrophobic-superoleophilic copper mesh via thermal oxidation and its application in oil‒water separation. Applied Surface Science, 2016, 367 : 493– 499 https://doi.org/10.1016/j.apsusc.2016.01.233
18
M Tenjimbayashi , K Sasaki , T Matsubayashi . et al.. A biologically inspired attachable, self-standing nanofibrous membrane for versatile use in oil‒water separation. Nanoscale, 2016, 8( 21): 10922– 10927 https://doi.org/10.1039/C6NR03349K
pmid: 27188304
19
H Wang , F Gao , R Ren . et al.. Caffeic acid polymer rapidly modified sponge with excellent anti-oil-adhesion property and efficient separation of oil-in-water emulsions. Journal of Hazardous Materials, 2021, 404( Pt B): 124197 https://doi.org/10.1016/j.jhazmat.2020.124197
pmid: 33091695
20
Y Long , Y Shen , H Tian . et al.. Superwettable coprinus comatus coated membranes used toward the controllable separation of emulsified oil/water mixtures. Journal of Membrane Science, 2018, 565 : 85– 94 https://doi.org/10.1016/j.memsci.2018.08.013
21
X Wang , M Li , Y Shen . et al.. Facile preparation of loess-coated membranes for multifunctional surfactant stabilized oil-in-water emulsion separation. Green Chemistry, 2019, 21( 11): 3190– 3199 https://doi.org/10.1039/C9GC00747D
22
Z Y Luo , S S Lyu , D C Mo . Cauliflower-like nickel with polar Ni(OH)2/NiOxFy shell to decorate copper meshes for efficient oil/water separation. ACS Omega, 2019, 4( 24): 20486– 20492 https://doi.org/10.1021/acsomega.9b02152
pmid: 31858032
23
Z W Zeng , X Z Wu , Y Liu . et al.. Fabrication of a durable coral-like superhydrophilic MgO coating on stainless steel mesh for efficient oil/water separation. Chemical Engineering Science, 2022, 248 : 117144 https://doi.org/10.1016/j.ces.2021.117144
24
S Zhang , G Jiang , S Gao . et al.. Cupric phosphate nanosheets-wrapped inorganic membranes with superhydrophilic and outstanding anticrude oil-fouling property for oil/water separation. ACS Nano, 2018, 12( 1): 795– 803 https://doi.org/10.1021/acsnano.7b08121
pmid: 29298377
25
J Dai , L Wang , Y Wang . et al.. Robust nacre-like graphene oxide‒calcium carbonate hybrid mesh with underwater superoleophobic property for highly efficient oil/water separation. ACS Applied Materials & Interfaces, 2020, 12( 4): 4482– 4493 https://doi.org/10.1021/acsami.9b18664
pmid: 31894968
26
L Yan , P Li , W Zhou . et al.. Shrimp shell inspired antifouling chitin nanofibrous membrane for efficient oil/water emulsion separation with in situ removal of heavy metal ions. ACS Sustainable Chemistry & Engineering, 2019, 7( 2): 2064– 2072 https://doi.org/10.1021/acssuschemeng.8b04511
27
W Zhang , Y Zhu , X Liu . et al.. Salt-induced fabrication of superhydrophilic and underwater superoleophobic PAA-g-PVDF membranes for effective separation of oil-in-water emulsions. Angewandte Chemie International Edition, 2014, 53( 3): 856– 860 https://doi.org/10.1002/anie.201308183
pmid: 24307602
28
J B Fan , Y Song , S Wang . et al.. Directly coating hydrogel on filter paper for effective oil‒water separation in highly acidic, alkaline, and salty environment. Advanced Functional Materials, 2015, 25( 33): 5368– 5375 https://doi.org/10.1002/adfm.201501066
29
J Chen , Y Zhang , C Chen . et al.. Cellulose sponge with superhydrophilicity and high oleophobicity both in air and under water for efficient oil‒water emulsion separation. Macromolecular Materials and Engineering, 2017, 302( 9): 1700086 https://doi.org/10.1002/mame.201700086
30
J Yang , Z Zhang , X Xu . et al.. Superhydrophilic/superoleophobic coatings. Journal of Materials Chemistry, 2012, 22( 7): 2834– 2837 https://doi.org/10.1039/c2jm15987b
31
M Qu , X Ma , J He . et al.. Facile selective and diverse fabrication of superhydrophobic, superoleophobic-superhydrophilic and superamphiphobic materials from kaolin. ACS Applied Materials & Interfaces, 2017, 9( 1): 1011– 1020 https://doi.org/10.1021/acsami.6b10964
pmid: 27959496
32
S Amirpoor , R S Moakhar , A Dolati . A novel superhydrophilic/superoleophobic nanocomposite PDMS-NH2/PFONa-SiO2 coated-mesh for the highly efficient and durable separation of oil and water. Surface and Coatings Technology, 2020, 394 : 125859 https://doi.org/10.1016/j.surfcoat.2020.125859
33
F Li , Z Wang , S Huang . et al.. Flexible, durable, and unconditioned superoleophobic/superhydrophilic surfaces for controllable transport and oil‒water separation. Advanced Functional Materials, 2018, 28( 20): 1706867 https://doi.org/10.1002/adfm.201706867
34
Y Pan , S Huang , F Li . et al.. Coexistence of superhydrophilicity and superoleophobicity: theory, experiments and applications in oil/water separation. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2018, 6( 31): 15057– 15063 https://doi.org/10.1039/C8TA04725A
35
K Zhang , D Kujawski , C Spurrell . et al.. Extraction of PFOA from dilute wastewater using ionic liquids that are dissolved in N-octanol. Journal of Hazardous Materials, 2021, 404( Pt B): 124091 https://doi.org/10.1016/j.jhazmat.2020.124091
pmid: 33212410
36
W Xiong , L Li , F Qiao . et al.. Air superhydrophilic-superoleophobic SiO2-based coatings for recoverable oil/water separation mesh with high flux and mechanical stability. Journal of Colloid and Interface Science, 2021, 600 : 118– 126 https://doi.org/10.1016/j.jcis.2021.05.004
pmid: 34010769
37
J Yang , L Yin , H Tang . et al.. Polyelectrolyte-fluorosurfactant complex-based meshes with superhydrophilicity and superoleophobicity for oil/water separation. Chemical Engineering Journal, 2015, 268 : 245– 250 https://doi.org/10.1016/j.cej.2015.01.073
38
C Ma , L Zhu , X R Qiao . et al.. Ni-doped brochantite@copper hydroxide hierarchical structures on copper mesh with ultrahigh oil-resistance for high-efficiency oil/water separation. Surface and Coatings Technology, 2021, 406 : 126642 https://doi.org/10.1016/j.surfcoat.2020.126642
39
C Dai , N Liu , Y Cao . et al.. Fast formation of superhydrophobic octadecylphosphonic acid (ODPA) coating for self-cleaning and oil/water separation. Soft Matter, 2014, 10( 40): 8116– 8121 https://doi.org/10.1039/C4SM01616E
pmid: 25177922
40
C Long , Y Q Qing , K An . et al.. Functional fluorination agents for opposite extreme wettability coatings with robustness, water splash inhibition, and controllable oil transport. Chemical Engineering Journal, 2021, 415 : 128895 https://doi.org/10.1016/j.cej.2021.128895
41
Y Lu , J Song , X Liu . et al.. Preparation of superoleophobic and superhydrophobic titanium surfaces via an environmentally friendly electrochemical etching method. ACS Sustainable Chemistry & Engineering, 2013, 1( 1): 102– 109 https://doi.org/10.1021/sc3000527
42
F M Fowkes , Y C Huang , B A Shah . et al.. Surface and colloid chemical studies of gamma iron oxides for magnetic memory media. Colloids and Surfaces, 1988, 29( 3): 243– 261 https://doi.org/10.1016/0166-6622(88)80121-5
43
F Li , B Bhushan , Y Pan . et al.. Bioinspired superoleophobic/superhydrophilic functionalized cotton for efficient separation of immiscible oil‒water mixtures and oil‒water emulsions. Journal of Colloid and Interface Science, 2019, 548 : 123– 130 https://doi.org/10.1016/j.jcis.2019.04.031
pmid: 30986711
44
A K Kota , G Kwon , W Choi . et al.. Hygro-responsive membranes for effective oil‒water separation. Nature Communications, 2012, 3( 1): 1025 https://doi.org/10.1038/ncomms2027
pmid: 22929782
45
J Yang , H Song , X Yan . et al.. Superhydrophilic and superoleophobic chitosan-based nanocomposite coatings for oil/water separation. Cellulose, 2014, 21( 3): 1851– 1857 https://doi.org/10.1007/s10570-014-0244-0
46
T Saito , Y Tsushima , H Sawada . Facile creation of superoleophobic and superhydrophilic surface by using fluoroalkyl end-capped vinyltrimethoxysilane oligomer/calcium silicide nanocomposites-development of these nanocomposites to environmental cyclical type-fluorine recycle through formation of calcium fluoride. Colloid & Polymer Science, 2015, 293( 1): 65– 73 https://doi.org/10.1007/s00396-014-3387-5
47
C Zhou , J Feng , J Cheng . et al.. Opposite superwetting nickel meshes for on-demand and continuous oil/water separation. Industrial & Engineering Chemistry Research, 2018, 57( 3): 1059– 1070 https://doi.org/10.1021/acs.iecr.7b04517
48
S Mosadegh-Sedghi , D Rodrigue , J Brisson . et al.. Wetting phenomenon in membrane contactors-causes and prevention. Journal of Membrane Science, 2014, 452 : 332– 353 https://doi.org/10.1016/j.memsci.2013.09.055
49
C Zhou , Z Chen , H Yang . et al.. Nature-inspired strategy toward superhydrophobic fabrics for versatile oil/water separation. ACS Applied Materials & Interfaces, 2017, 9( 10): 9184– 9194 https://doi.org/10.1021/acsami.7b00412
pmid: 28222262
50
C L Zhou , J Cheng , K Hou . et al.. Superhydrophilic and underwater superoleophobic titania nanowires surface for oil repellency and oil/water separation. Chemical Engineering Journal, 2016, 301 : 249– 256 https://doi.org/10.1016/j.cej.2016.05.026
51
F Zhang , W B Zhang , Z Shi . et al.. Nanowire-haired inorganic membranes with superhydrophilicity and underwater ultralow adhesive superoleophobicity for high-efficiency oil/water separation. Advanced Materials, 2013, 25( 30): 4192– 4198 https://doi.org/10.1002/adma.201301480
pmid: 23788392
52
C L Zhou , A Zhao , J Cheng . et al.. CuC2O4 nanoribbons on copper mesh with underwater superoleophobicity for oil/water separation. Materials Letters, 2016, 185 : 403– 406 https://doi.org/10.1016/j.matlet.2016.09.031
53
H Zhou , H Wang , W Yang . et al.. Durable superoleophobic-superhydrophilic fabrics with high anti-oil-fouling property. RSC Advances, 2018, 8( 47): 26939– 26947 https://doi.org/10.1039/C8RA04645J
54
Y Sun , Z Guo . Novel and cutting-edge applications for a solvent-responsive superoleophobic-superhydrophilic surface: water-infused omniphobic surface and separating organic liquid mixtures. Chemical Engineering Journal, 2020, 381 : 122629 https://doi.org/10.1016/j.cej.2019.122629