1. School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi’an 710021, China 2. School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
The SnO2-based family is a traditional but important gas-sensitive material. However, the requirement for high working temperature limits its practical application. Much work has been done to explore ways to improve its gas-sensing performance at room temperature (RT). For this report, SnO2, SnO, and SnO/SnO2 heterojunction was successfully synthesized by a facile hydrothermal combined with subsequent calcination. Pure SnO2 requires a high operating temperature (145 °C), while SnO/SnO2 heterojunction exhibits an excellent performance for sensing NO2 at RT. Moreover, SnO/SnO2 exhibits a fast response, of 32 s, to 50 ppm NO2 at RT (27 °C), which is much faster than that of SnO (139 s). The superior sensing properties of SnO/SnO2 heterojunction are attributed to the unique hierarchical structures, large number of adsorption sites, and enhanced electron transport. Our results show that SnO/SnO2 heterojunction can be used as a promising high-performance NO2 sensitive material at RT.
Y, Yan S, Krishnakumar H, Yu , et al.. Nickel(II) dithiocarbamate complexes containing sulforhodamine B as fluorescent probes for selective detection of nitrogen dioxide. Journal of the American Chemical Society, 2013, 135( 14): 5312– 5315 https://doi.org/10.1021/ja401555y
pmid: 23530626
2
C, Yan H, Lu J, Gao , et al.. Improved NO2 sensing properties at low temperature using reduced graphene oxide nanosheet–In2O3 heterojunction nanofibers. Journal of Alloys and Compounds, 2018, 741 : 908– 917 https://doi.org/10.1016/j.jallcom.2018.01.209
3
G, Martinelli M C, Carotta M, Ferroni , et al.. Screen-printed perovskite-type thick films as gas sensors for environmental monitoring. Sensors and Actuators B: Chemical, 1999, 55( 2–3): 99– 110 https://doi.org/10.1016/S0925-4005(99)00054-4
4
H S, Jeong M J, Park S H, Kwon , et al.. Low temperature NO2 sensing properties of RF-sputtered SnO–SnO2 heterojunction thin-film with p-type semiconducting behavior. Ceramics International, 2018, 44( 14): 17283– 17289 https://doi.org/10.1016/j.ceramint.2018.06.189
5
J Z, Ou W, Ge B, Carey , et al.. Physisorption-based charge transfer in two-dimensional SnS2 for selective and reversible NO2 gas sensing. ACS Nano, 2015, 9( 10): 10313– 10323 https://doi.org/10.1021/acsnano.5b04343
pmid: 26447741
6
M S, Choi A, Mirzaei H G, Na , et al.. Facile and fast decoration of SnO2 nanowires with Pd embedded SnO2−x nanoparticles for selective NO2 gas sensing. Sensors and Actuators B: Chemical, 2021, 340 : 129984 https://doi.org/10.1016/j.snb.2021.129984
7
Z, Yang L, Jiang J, Wang , et al.. Flexible resistive NO2 gas sensor of three-dimensional crumpled MXene Ti3C2Tx/ZnO spheres for room temperature application. Sensors and Actuators B: Chemical, 2021, 326 : 128828 https://doi.org/10.1016/j.snb.2020.128828
8
A, Umar H Y, Ammar R, Kumar , et al.. Square disks-based crossed architectures of SnO2 for ethanol gas sensing applications ― an experimental and theoretical investigation. Sensors and Actuators B: Chemical, 2020, 304 : 127352 https://doi.org/10.1016/j.snb.2019.127352
9
N A, Isaac M, Valenti A, Schmidt-Ott , et al.. Characterization of tungsten oxide thin films produced by spark ablation for NO2 gas sensing. ACS Applied Materials & Interfaces, 2016, 8( 6): 3933– 3939 https://doi.org/10.1021/acsami.5b11078
pmid: 26796099
10
V X, Hien Y W Heo . Effects of violet-, green-, and red-laser illumination on gas-sensing properties of SnO thin film. Sensors and Actuators B: Chemical, 2016, 228 : 185– 191 https://doi.org/10.1016/j.snb.2015.12.105
11
M, Hübner C E, Simion A, Tomescu-Stănoiu , et al.. Influence of humidity on CO sensing with p-type CuO thick film gas sensors. Sensors and Actuators B: Chemical, 2011, 153( 2): 347– 353 https://doi.org/10.1016/j.snb.2010.10.046
12
W, Du W, Si W, Du , et al.. Unraveling the promoted nitrogen dioxide detection performance of N-doped SnO2 microspheres at low temperature. Journal of Alloys and Compounds, 2020, 834 : 155209 https://doi.org/10.1016/j.jallcom.2020.155209
13
J Y, Liu C, Wang Q Y, Yang , et al.. Hydrothermal synthesis and gas-sensing properties of flower-like Sn3O4. Sensors and Actuators B: Chemical, 2016, 224 : 128– 133 https://doi.org/10.1016/j.snb.2015.09.089
14
P H, Suman A A, Felix H L, Tuller , et al.. Giant chemo-resistance of SnO disk-like structures. Sensors and Actuators B: Chemical, 2013, 186 : 103– 108 https://doi.org/10.1016/j.snb.2013.05.087
15
Q Q, Ren X P, Zhang Y N, Wang , et al.. Shape-controlled and stable hollow frame structures of SnO and their highly sensitive NO2 gas sensing. Sensors and Actuators B: Chemical, 2021, 340 : 129940 https://doi.org/10.1016/j.snb.2021.129940
16
S T, Rezalou T, Oznuluer U Demir . One-pot electrochemical fabrication of single-crystalline SnO nanostructures on Si and ITO substrates for catalytic, sensor and energy storage applications. Applied Surface Science, 2018, 448 : 510– 521 https://doi.org/10.1016/j.apsusc.2018.04.034
17
W T, Li X D, Zhang X Guo . Electrospun Ni-doped SnO2 nanofiber array for selective sensing of NO2. Sensors and Actuators B: Chemical, 2017, 244 : 509– 521 https://doi.org/10.1016/j.snb.2017.01.022
18
X F, Chu X H, Zhu Y P, Dong , et al.. Formaldehyde sensing properties of SnO–graphene composites prepared via hydrothermal method. Journal of Materials Science and Technology, 2015, 31( 9): 913– 917 https://doi.org/10.1016/j.jmst.2015.05.001
19
L L, Meng W Y, Bu Y, Li , et al.. Highly selective triethylamine sensing based on SnO/SnO2 nanocomposite synthesized by one-step solvothermal process and sintering. Sensors and Actuators B: Chemical, 2021, 342 : 130018 https://doi.org/10.1016/j.snb.2021.130018
20
L, Li C, Zhang W Chen . Fabrication of SnO2–SnO nanocomposites with p–n heterojunctions for the low-temperature sensing of NO2 gas. Nanoscale, 2015, 7( 28): 12133– 12142 https://doi.org/10.1039/C5NR02334C
pmid: 26123121
21
H, Yu T Y, Yang Z Y, Wang , et al.. p-N heterostructural sensor with SnO–SnO2 for fast NO2 sensing response properties at room temperature. Sensors and Actuators B: Chemical, 2018, 258 : 517– 526 https://doi.org/10.1016/j.snb.2017.11.165
22
L, Zhang R B, Tong W Y, Ge , et al.. Facile one-step hydrothermal synthesis of SnO2 microspheres with oxygen vacancies for superior ethanol sensor. Journal of Alloys and Compounds, 2020, 814 : 152266 https://doi.org/10.1016/j.jallcom.2019.152266
23
W, Ge S, Jiao Z, Chang , et al.. Ultrafast response and high selectivity toward acetone vapor using hierarchical structured TiO2 nanosheets. ACS Applied Materials & Interfaces, 2020, 12( 11): 13200– 13207 https://doi.org/10.1021/acsami.9b23181
pmid: 32096401
24
B J, Wang S Y, Ma S T, Pei , et al.. High specific surface area SnO2 prepared by calcining Sn-MOFs and their formaldehyde-sensing characteristics. Sensors and Actuators B: Chemical, 2020, 321 : 128560 https://doi.org/10.1016/j.snb.2020.128560
25
C, Liu H B, Lu J N, Zhang , et al.. Crystal facet-dependent p-type and n-type sensing responses of TiO2 nanocrystals. Sensors and Actuators B: Chemical, 2018, 263 : 557– 567 https://doi.org/10.1016/j.snb.2018.02.145
26
S, Deng V, Tjoa H M, Fan , et al.. Reduced graphene oxide conjugated Cu2O nanowire mesocrystals for high-performance NO2 gas sensor. Journal of the American Chemical Society, 2012, 134( 10): 4905– 4917 https://doi.org/10.1021/ja211683m
pmid: 22332949
27
Y J, Kwon S Y, Kang P, Wu , et al.. Selective improvement of NO2 gas sensing behavior in SnO2 nanowires by ion-beam irradiation. ACS Applied Materials & Interfaces, 2016, 8( 21): 13646– 13658 https://doi.org/10.1021/acsami.6b01619
pmid: 27167241
28
M Z, Xu R W, Yu Y X, Guo , et al.. New strategy towards the assembly of hierarchical heterostructures of SnO2/ZnO for NO2 detection at a ppb level. Inorganic Chemistry Frontiers, 2019, 6( 10): 2801– 2809 https://doi.org/10.1039/C9QI00788A
29
D, Gu X G, Li Y Y, Zhao , et al.. Enhanced NO2 sensing of SnO2/SnS2 heterojunction based sensor. Sensors and Actuators B: Chemical, 2017, 244 : 67– 76 https://doi.org/10.1016/j.snb.2016.12.125
30
H W, Kim H G, Na Y J, Kwon , et al.. Microwave-assisted synthesis of graphene–SnO2 nanocomposites and their applications in gas sensors. ACS Applied Materials & Interfaces, 2017, 9( 37): 31667– 31682 https://doi.org/10.1021/acsami.7b02533
pmid: 28846844
31
B X, Yang N V, Myung T T Tran . 1D metal oxide semiconductor materials for chemiresistive gas sensors: a review. Advanced Electronic Materials, 2021, 7( 9): 2100271 https://doi.org/10.1002/aelm.202100271
32
L, Zhou Z, Hu H Y, Li , et al.. Template-free construction of tin oxide porous hollow microspheres for room-temperature gas sensors. ACS Applied Materials & Interfaces, 2021, 13( 21): 25111– 25120 https://doi.org/10.1021/acsami.1c04651
pmid: 34003629
33
M S, Choi H G, Na J H, Bang , et al.. SnO2 nanowires decorated by insulating amorphous carbon layers for improved room-temperature NO2 sensing. Sensors and Actuators B: Chemical, 2021, 326 : 128801 https://doi.org/10.1016/j.snb.2020.128801
34
S K, Zhao Y B, Shen P F, Zhou , et al.. Enhanced NO2 sensing performance of ZnO nanowires functionalized with ultra-fine In2O3 nanoparticles. Sensors and Actuators B: Chemical, 2020, 308 : 127729 https://doi.org/10.1016/j.snb.2020.127729
35
P H, Suman A A, Felix H L, Tuller , et al.. Comparative gas sensor response of SnO2, SnO and Sn3O4 nanobelts to NO2 and potential interferents. Sensors and Actuators B: Chemical, 2015, 208 : 122– 127 https://doi.org/10.1016/j.snb.2014.10.119
36
K, Tôel S, Motomizu S Kuse . Naphthoquinonedioxime derivatives as analytical reagents for the spectrophotometric determination of nickel. Analytica Chimica Acta, 1975, 75( 2): 323– 334 https://doi.org/10.1016/S0003-2670(01)85357-5
37
B M Arghiropoulos . Electrical conductivity of pure and doped zinc oxides, catalysts of the hydrogenation of ethylene: I. Activation of the catalyst and adsorption of oxygen on pure zinc oxide. Journal of Catalysis, 1964, 3( 6): 477– 487 https://doi.org/10.1016/0021-9517(64)90048-X
38
S C Chang . Oxygen chemisorption on tin oxide: correlation between electrical conductivity and EPR measurements. Journal of Vacuum Science and Technology, 1980, 17( 1): 366– 369 https://doi.org/10.1116/1.570389