1. Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China 2. Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China 3. School of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
Herein, the rational design micromilieus involved silk fibroin (SF)-based materials have been used to encapsulate the osteoblasts, forming an extracellular coated shell on the cells, which exhibited the high potential to shift the regulation of osteoblasts to osteocytes by encapsulation cues. SF coating treated cells showed a change in cell morphology from osteoblasts-like to osteocytes-like shape compared with untreated ones. Moreover, the expression of alkaline phosphatase (ALP), collagen I (Col I) and osteocalcin (OCN) further indicated a potential approach for inducing osteoblasts regulation, which typically accelerates calcium deposition and cell calcification, presenting a key role for the SF encapsulation in controlling osteoblasts behavior. This discovery showed that SF-based cell encapsulation could be used for osteoblasts behavior regulation, which offers a great potential to modulate mammalian cells’ phenotype involving alternating surrounding cues.
W, Youn J Y, Kim J, Park et al.. Single-cell nanoencapsulation: from passive to active shells.Advanced Materials, 2020, 32(35): 1907001 https://doi.org/10.1002/adma.201907001
2
C C Perry . Silicification: the processes by which organisms capture and mineralize silica.Reviews in Mineralogy and Geochemistry, 2003, 54(1): 291–327 https://doi.org/10.2113/0540291
3
M, Hildebrand S J L Lerch . Diatom silica biomineralization: parallel development of approaches and understanding.Seminars in Cell & Developmental Biology, 2015, 46: 27–35 https://doi.org/10.1016/j.semcdb.2015.06.007
4
M A, Abdelhamid S P Pack . Biomimetic and bioinspired silicifications: recent advances for biomaterial design and applications.Acta Biomaterialia, 2021, 120: 38–56 https://doi.org/10.1016/j.actbio.2020.05.017
5
S, Yao B, Jin Z, Liu et al.. Biomineralization: from material tactics to biological strategy.Advanced Materials, 2017, 29(14): 1605903 https://doi.org/10.1002/adma.201605903
6
Z, Liu X, Xu R Tang . Improvement of biological organisms using functional material shells.Advanced Functional Materials, 2016, 26(12): 1862–1880 https://doi.org/10.1002/adfm.201504480
7
B, Wang P, Liu W, Jiang et al.. Yeast cells with an artificial mineral shell: protection and modification of living cells by biomimetic mineralization.Angewandte Chemie International Edition, 2008, 47: 3560–3564 https://doi.org/10.1002/anie.200704718
8
G, Wang L, Wang P, Liu et al.. Extracellular silica nanocoat confers thermotolerance on individual cells: a case study of material-based functionalization of living cells.ChemBioChem, 2010, 11(17): 2368–2373 https://doi.org/10.1002/cbic.201000494
9
Y, Yang G, Wang G, Zhu et al.. The effect of amorphous calcium phosphate on protein protection against thermal denaturation.Chemical Communications, 2015, 51(41): 8705–8707 https://doi.org/10.1039/C5CC01420D
10
D, Zhong Y, Wang F, Xie et al.. A biomineralized Prussian blue nanotherapeutic for enhanced cancer photothermal therapy.Journal of Materials Chemistry B, 2022, 10(25): 4889–4896 https://doi.org/10.1039/D2TB00775D
11
H, Amani H, Arzaghi M, Bayandori et al.. Controlling cell behavior through the design of biomaterial surfaces: a focus on surface modification techniques.Advanced Materials Interfaces, 2019, 6(13): 1900572 https://doi.org/10.1002/admi.201900572
12
R, Zhao J, Cao X, Yang et al.. Inorganic materials based macrophages regulation for cancer therapy: basic concepts and recent advances.Biomaterials Science, 2021, 9(13): 4568–4590 https://doi.org/10.1039/D1BM00508A
13
R, Zhao X, Liu X, Yang et al.. Nanomaterial-based organelles protect normal cells against chemotherapy-induced cytotoxicity.Advanced Materials, 2018, 30(27): 1801304 https://doi.org/10.1002/adma.201801304
14
D, Luo S, Ruan A, Liu et al.. Laminin functionalized biomimetic apatite to regulate the adhesion and proliferation behaviors of neural stem cells.International Journal of Nanomedicine, 2018, 13: 6223–6233 https://doi.org/10.2147/IJN.S176596
15
W, Xiong X, Zhao G, Zhu et al.. Silicification-induced cell aggregation for the sustainable production of H2 under aerobic conditions.Angewandte Chemie International Edition, 2015, 54(41): 11961–11965 https://doi.org/10.1002/anie.201504634
16
W, Youn E H, Ko M H, Kim et al.. Cytoprotective encapsulation of individual jurkat T cells within durable TiO2 shells for T-cell therapy.Angewandte Chemie International Edition, 2017, 56(36): 10702–10706 https://doi.org/10.1002/anie.201703886
17
J, Lee J, Choi J H, Park et al.. Cytoprotective silica coating of individual mammalian cells through bioinspired silicification.Angewandte Chemie International Edition, 2014, 53(31): 8056–8059 https://doi.org/10.1002/anie.201402280
18
Y, Wang D, Zhong F, Xie et al.. Manganese phosphate-doxorubicin-based nanomedicines using mimetic mineralization for cancer chemotherapy.ACS Biomaterials Science & Engineering, 2022, 8(5): 1930–1941 https://doi.org/10.1021/acsbiomaterials.2c00011
19
D P, Bhattarai S, Shrestha B K, Shrestha et al.. A controlled surface geometry of polyaniline doped titania nanotubes biointerface for accelerating MC3T3-E1 cells growth in bone tissue engineering.Chemical Engineering Journal, 2018, 350: 57–68 https://doi.org/10.1016/j.cej.2018.05.162
20
N, Dirckx M C, Moorer T L, Clemens et al.. The role of osteoblasts in energy homeostasis.Nature Reviews Endocrinology, 2019, 15(11): 651–665 https://doi.org/10.1038/s41574-019-0246-y
21
D, Khare B, Basu A K Dubey . Electrical stimulation and piezoelectric biomaterials for bone tissue engineering applications.Biomaterials, 2020, 258: 120280
22
R P, Abuna F S, Oliveira H B, Lopes et al.. The Wnt/β-catenin signaling pathway is regulated by titanium with nanotopography to induce osteoblast differentiation.Colloids and Surfaces B: Biointerfaces, 2019, 184: 110513 https://doi.org/10.1016/j.colsurfb.2019.110513
23
S, Nadine S G, Patrício C R, Correia et al.. Dynamic microfactories co-encapsulating osteoblastic and adipose-derived stromal cells for the biofabrication of bone units.Biofabrication, 2019, 12(1): 015005 https://doi.org/10.1088/1758-5090/ab3e16
M K, DeBari C I III, King T A, Altgold et al.. Silk fibroin as a green material.ACS Biomaterials Science & Engineering, 2021, 7(8): 3530–3544 https://doi.org/10.1021/acsbiomaterials.1c00493
26
B, Kundu R, Rajkhowa S C, Kundu et al.. Silk fibroin biomaterials for tissue regenerations.Advanced Drug Delivery Reviews, 2013, 65(4): 457–470 https://doi.org/10.1016/j.addr.2012.09.043
27
T, Asakura T, Tanaka R Tanaka . Advanced silk fibroin biomaterials and application to small-diameter silk vascular grafts.ACS Biomaterials Science & Engineering, 2019, 5(11): 5561–5577 https://doi.org/10.1021/acsbiomaterials.8b01482
28
Y, Zhang L, Lu Y, Chen et al.. Polydopamine modification of silk fibroin membranes significantly promotes their wound healing effect.Biomaterials Science, 2019, 7(12): 5232–5237 https://doi.org/10.1039/C9BM00974D
29
B, Wang H, Xu J, Li et al.. Degradable allyl Antheraea pernyi silk fibroin thermoresponsive hydrogels to support cell adhesion and growth.RSC Advances, 2021, 11(45): 28401–28409 https://doi.org/10.1039/D1RA04436B
30
J R, Mauney T, Nguyen K, Gillen et al.. Engineering adipose-like tissue in vitro and in vivo utilizing human bone marrow and adipose-derived mesenchymal stem cells with silk fibroin 3D scaffolds.Biomaterials, 2007, 28(35): 5280–5290 https://doi.org/10.1016/j.biomaterials.2007.08.017
31
M, Garcia-Fuentes A J, Meinel M, Hilbe et al.. Silk fibroin/hyaluronan scaffolds for human mesenchymal stem cell culture in tissue engineering.Biomaterials, 2009, 30(28): 5068–5076 https://doi.org/10.1016/j.biomaterials.2009.06.008
32
Y, Yan B, Cheng K, Chen et al.. Enhanced osteogenesis of bone marrow-derived mesenchymal stem cells by a functionalized silk fibroin hydrogel for bone defect repair.Advanced Healthcare Materials, 2019, 8(3): 1801043 https://doi.org/10.1002/adhm.201801043
33
D K, Kim S, Lee M, Kim et al.. Exosome-coated silk fibroin 3D-scaffold for inducing osteogenic differentiation of bone marrow derived mesenchymal stem cells.Chemical Engineering Journal, 2021, 406: 127080 https://doi.org/10.1016/j.cej.2020.127080
34
D, Luo C, Yao R, Zhang et al.. Silk fibroin/collagen blended membrane fabricated via a green papermaking method for potential guided bone regeneration application: in vitro and in vivo evaluation.ACS Biomaterials Science & Engineering, 2021, 7(12): 5788–5797 https://doi.org/10.1021/acsbiomaterials.1c01060
35
H, Kong R, Zhao Q, Zhang et al.. Biosilicified oncolytic adenovirus for cancer viral gene therapy.Biomaterials Science, 2020, 8(19): 5317–5328 https://doi.org/10.1039/D0BM00681E
36
D, Luo X, Xu M Z, Iqbal et al.. siRNA-loaded hydroxyapatite nanoparticles for KRAS gene silencing in anti-pancreatic cancer therapy.Pharmaceutics, 2021, 13(9): 1428 https://doi.org/10.3390/pharmaceutics13091428
37
M Z, Iqbal D, Luo O U, Akakuru et al.. Facile synthesis of biocompatible magnetic titania nanorods for T1-magnetic resonance imaging and enhanced phototherapy of cancers.Journal of Materials Chemistry B, 2021, 9(33): 6623–6633 https://doi.org/10.1039/D1TB01097B
38
R, Zhao B, Wang X, Yang et al.. A drug-free tumor therapy strategy: cancer-cell-targeting calcification.Angewandte Chemie International Edition, 2016, 55(17): 5225–5229 https://doi.org/10.1002/anie.201601364
39
J O, Buitrago K D, Patel A, El-Fiqi et al.. Silk fibroin/collagen protein hybrid cell-encapsulating hydrogels with tunable gelation and improved physical and biological properties.Acta Biomaterialia, 2018, 69: 218–233 https://doi.org/10.1016/j.actbio.2017.12.026
40
M, Farina J F, Alexander U, Thekkedath et al.. Cell encapsulation: overcoming barriers in cell transplantation in diabetes and beyond.Advanced Drug Delivery Reviews, 2019, 139: 92–115 https://doi.org/10.1016/j.addr.2018.04.018
41
L, Chang X, Li X, Tang et al.. Micro-patterned hydroxyapatite/silk fibroin coatings on Mg‒Zn‒Y‒Nd‒Zr alloys for better corrosion resistance and cell behavior guidance.Frontiers of Materials Science, 2020, 14(4): 413–425 https://doi.org/10.1007/s11706-020-0525-5
42
S J, Xu F Z, Cui X L, Yu et al.. Glioma cell line proliferation controlled by different chemical functional groups in vitro.Frontiers of Materials Science, 2013, 7(1): 69–75 https://doi.org/10.1007/s11706-013-0195-7
43
D W, Li F L, He J, He et al.. From 2D to 3D: the morphology, proliferation and differentiation of MC3T3-E1 on silk fibroin/chitosan matrices.Carbohydrate Polymers, 2017, 178: 69–77 https://doi.org/10.1016/j.carbpol.2017.09.035
R A, Marklein Surdo J L, Lo I H, Bellayr et al.. High content imaging of early morphological signatures predicts long term mineralization capacity of human mesenchymal stem cells upon osteogenic induction.Stem Cells, 2016, 34(4): 935–947 https://doi.org/10.1002/stem.2322
46
D, Jhala H, Rather R Vasita . Polycaprolactone–chitosan nanofibers influence cell morphology to induce early osteogenic differentiation.Biomaterials Science, 2016, 4(11): 1584–1595 https://doi.org/10.1039/C6BM00492J
47
A U, Khan R, Qu T, Fan et al.. A glance on the role of actin in osteogenic and adipogenic differentiation of mesenchymal stem cells.Stem Cell Research & Therapy, 2020, 11(1): 283 https://doi.org/10.1186/s13287-020-01789-2
48
A, Rutkovskiy K O, Stensløkken I J Vaage . Osteoblast differentiation at a glance.Medical Science Monitor Basic Research, 2016, 22: 95–106 https://doi.org/10.12659/MSMBR.901142
49
E G, Long M, Buluk M B, Gallagher et al.. Human mesenchymal stem cell morphology, migration, and differentiation on micro and nano-textured titanium.Bioactive Materials, 2019, 4: 249–255 https://doi.org/10.1016/j.bioactmat.2019.08.001
50
L, He G, Si J, Huang et al.. Mechanical regulation of stem-cell differentiation by the stretch-activated Piezo channel.Nature, 2018, 555(7694): 103–106 https://doi.org/10.1038/nature25744
51
R, Yan J, Li Q, Wu et al.. Trace element-augmented titanium implant with targeted angiogenesis and enhanced osseointegration in osteoporotic rats.Frontiers in Chemistry, 2022, 10: 839062 https://doi.org/10.3389/fchem.2022.839062
52
M, Li P, Xiong M, Mo et al.. Electrophoretic-deposited novel ternary silk fibroin/graphene oxide/hydroxyapatite nanocomposite coatings on titanium substrate for orthopedic applications.Frontiers of Materials Science, 2016, 10(3): 270–280 https://doi.org/10.1007/s11706-016-0347-7
53
C, Liu H, Zhai Z, Zhang et al.. Cells recognize and prefer bone-like hydroxyapatite: biochemical understanding of ultrathin mineral platelets in bone.ACS Applied Materials & Interfaces, 2016, 8(44): 29997–30004 https://doi.org/10.1021/acsami.6b10374
54
Y, Yu B, Sun C, Yi et al.. Stem cell homing-based tissue engineering using bioactive materials.Frontiers of Materials Science, 2017, 11(2): 93–105 https://doi.org/10.1007/s11706-017-0373-0
55
Y, Tang P, Rajendran V P, Veeraraghavan et al.. Osteogenic differentiation and mineralization potential of zinc oxide nanoparticles from Scutellaria baicalensis on human osteoblast-like MG-63 cells.Materials Science and Engineering C, 2021, 119: 111656 https://doi.org/10.1016/j.msec.2020.111656
56
M, Patel W G Koh . Composite hydrogel of methacrylated hyaluronic acid and fragmented polycaprolactone nanofiber for osteogenic differentiation of adipose-derived stem cells.Pharmaceutics, 2020, 12(9): 902 https://doi.org/10.3390/pharmaceutics12090902
57
Z G, Karaji F, Jahanmard A H, Mirzaei et al.. A multifunctional silk coating on additively manufactured porous titanium to prevent implant-associated infection and stimulate bone regeneration.Biomedical Materials, 2020, 15(6): 065016 https://doi.org/10.1088/1748-605X/aba40b