Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

邮发代号 80-974

2019 Impact Factor: 1.747

Frontiers of Materials Science  2023, Vol. 17 Issue (1): 230631   https://doi.org/10.1007/s11706-023-0631-2
  本期目录
Inorganic hollow mesoporous spheres-based delivery for antimicrobial agents
Yunping Qiao1, Yanyang Han1, Rengui Guan1, Shiliang Liu2, Xinling Bi3, Shanshan Liu1, Wei Cui1, Tao Zhang1(), Tao He1()
1. Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Clearspring RD 30th, Laishan, Yantai 264005, China
2. Weifang Branch Company, Shandong HI-speed Transportation Construction Group Co., Ltd., Qingzhou 262500, China
3. Shandong Jinhai Titanium Resources Technology Co., Ltd., Binzhou 256600, China
 全文: PDF(2540 KB)   HTML
Abstract

Microorganisms coexist with human beings and have formed a complex relationship with us. However, the abnormal spread of pathogens can cause infectious diseases thus demands antibacterial agents. Currently available antimicrobials, such as silver ions, antimicrobial peptides and antibiotics, have diverse concerns in chemical stability, biocompatibility, or triggering drug resistance. The “encapsulate-and-deliver” strategy can protect antimicrobials against decomposing, so to avoid large dose release induced resistance and achieve the controlled release. Considering loading capacity, engineering feasibility, and economic viability, inorganic hollow mesoporous spheres (iHMSs) represent one kind of promising and suitable candidates for real-life antimicrobial applications. Here we reviewed the recent research progress of iHMSs-based antimicrobial delivery. We summarized the synthesis of iHMSs and the drug loading method of various antimicrobials, and discussed the future applications. To prevent and mitigate the spread of an infective disease, multilateral coordination at the national level is required. Moreover, developing effective and practicable antimicrobials is the key to enhancing our capability to eliminate pathogenic microbes. We believe that our conclusion will be beneficial for researches on the antimicrobial delivery in both lab and mass production phases.

Key wordsantimicrobial    inorganic hollow mesoporous sphere    encapsulate-and-deliver    drug delivery
收稿日期: 2022-04-21      出版日期: 2023-03-06
Corresponding Author(s): Tao Zhang,Tao He   
作者简介:

Qingyong Zheng and Ya Gao contributed equally to this work.

 引用本文:   
. [J]. Frontiers of Materials Science, 2023, 17(1): 230631.
Yunping Qiao, Yanyang Han, Rengui Guan, Shiliang Liu, Xinling Bi, Shanshan Liu, Wei Cui, Tao Zhang, Tao He. Inorganic hollow mesoporous spheres-based delivery for antimicrobial agents. Front. Mater. Sci., 2023, 17(1): 230631.
 链接本文:  
https://academic.hep.com.cn/foms/CN/10.1007/s11706-023-0631-2
https://academic.hep.com.cn/foms/CN/Y2023/V17/I1/230631
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
1 M, Gautam D H, Park S J, Park et al.. Plug-in safe-by-design nanoinorganic antibacterials.ACS Nano, 2019, 13(11): 12798–12809
2 H, Zheng Z, Ji K R, Roy et al.. Engineered graphene oxide nanocomposite capable of preventing the evolution of antimicrobial resistance.ACS Nano, 2019, 13(10): 11488–11499
3 I E, Kepiro I, Marzuoli K, Hammond et al.. Engineering chirally blind protein pseudocapsids into antibacterial persisters.ACS Nano, 2020, 14(2): 1609–1622
4 S M, Imani L, Ladouceur T, Marshall et al.. Antimicrobial nanomaterials and coatings: current mechanisms and future perspectives to control the spread of viruses including SARS-CoV-2.ACS Nano, 2020, 14(10): 12341–12369
5 S V Bhaskar . Foodborne diseases — disease burden.In: Food Safety in the 21st Century. Elsevier, 2017, 1–10
6 A D, Wales V M, Allen R H Davies . Chemical treatment of animal feed and water for the control of Salmonella.Foodborne Pathogens and Disease, 2010, 7(1): 3–15
7 W, Witte H, Tschäpe I, Klare , et al.. Antibiotics in animal feed. Acta Veterinaria Scandinavica. Supplementum, 2000, 93: 37–44, discussion 37–44
8 M, Bacanlı N Başaran . Importance of antibiotic residues in animal food.Food and Chemical Toxicology, 2019, 125: 462–466
9 Health Organization World . Antimicrobial resistance. Released date: 2021–11-17
10 T, Thorsteinsson M, Másson K G, Kristinsson et al.. Soft antimicrobial agents: synthesis and activity of labile environmentally friendly long chain quaternary ammonium compounds.Journal of Medicinal Chemistry, 2003, 46(19): 4173–4181
11 J, Lee D G Lee . Antimicrobial peptides (AMPs) with dual mechanisms: membrane disruption and apoptosis.Journal of Microbiology and Biotechnology, 2015, 25(6): 759–764
12 N, Matougui A C, Groo A, Umerska et al.. A comparison of different strategies for antimicrobial peptides incorporation onto/into lipid nanocapsules.Nanomedicine, 2019, 14(13): 1647–1662
13 M F, Abdelbar R S, Shams O M, Morsy et al.. Highly ordered functionalized mesoporous silicate nanoparticles reinforced poly (lactic acid) gatekeeper surface for infection treatment.International Journal of Biological Macromolecules, 2020, 156: 858–868
14 J, Mun J W, Mok S, Jeong et al.. Drug-eluting contact lens containing cyclosporine-loaded cholesterol-hyaluronate micelles for dry eye syndrome.RSC Advances, 2019, 9(29): 16578–16585
15 X J, Wang G F, Shu X L, Xu et al.. Combinational protective therapy for spinal cord injury medicated by sialic acid-driven and polyethylene glycol based micelles.Biomaterials, 2019, 217: 119326
16 Y, Li J Shi . Hollow-structured mesoporous materials: chemical synthesis, functionalization and applications.Advanced Materials, 2014, 26(20): 3176–3205
17 A M, El-Toni M A, Habila J P, Labis et al.. Design, synthesis and applications of core-shell, hollow core, and nanorattle multifunctional nanostructures.Nanoscale, 2016, 8(5): 2510–2531
18 S F, Soares T, Fernandes A L, Daniel-da-Silva et al.. The controlled synthesis of complex hollow nanostructures and prospective applications.Proceedings of the Royal Society A - Mathematical, Physical and Engineering Sciences, 2019, 475(2224): 20180677
19 Ziarani G, Mohammadi M, Malmir N, Lashgari et al.. The role of hollow magnetic nanoparticles in drug delivery.RSC Advances, 2019, 9(43): 25094–25106
20 M, Alipour M, Halwani A, Omri et al.. Antimicrobial effectiveness of liposomal polymyxin B against resistant Gram-negative bacterial strains.International Journal of Pharmaceutics, 2008, 355(1–2): 293–298
21 B, Afra M, Mohammadi M, Soleimani et al.. Preparation, statistical optimization, in vitro characterization, and in vivo pharmacological evaluation of solid lipid nanoparticles encapsulating propolis flavonoids: a novel treatment for skin edema.Drug Development and Industrial Pharmacy, 2020, 46(7): 1163–1176
22 E, Niza M, Božik I, Bravo et al.. PEI-coated PLA nanoparticles to enhance the antimicrobial activity of carvacrol.Food Chemistry, 2020, 328: 127131
23 M, Stanisz Ł, Klapiszewski T Jesionowski . Recent advances in the fabrication and application of biopolymer-based micro- and nanostructures: a comprehensive review.Chemical Engineering Journal, 2020, 397: 125409
24 K, Raemdonck J, Demeester Smedt S De . Advanced nanogel engineering for drug delivery.Soft Matter, 2009, 5(4): 707–715
25 I, Neamtu A G, Rusu A, Diaconu et al.. Basic concepts and recent advances in nanogels as carriers for medical applications.Drug Delivery, 2017, 24(1): 539–557
26 Y, Guo Q, Zhang Q, Zhu et al.. Copackaging photosensitizer and PD-L1 siRNA in a nucleic acid nanogel for synergistic cancer photoimmunotherapy.Science Advances, 2022, 8(16): eabn2941
27 X, Liu Z, Wang X, Feng et al.. Platensimycin-encapsulated poly(lactic-co-glycolic acid) and poly(amidoamine) dendrimers nanoparticles with enhanced anti-staphylococcal activity in vivo.Bioconjugate Chemistry, 2020, 31(5): 1425–1437
28 J, Liu N P, Wickramaratne S Z, Qiao et al.. Molecular-based design and emerging applications of nanoporous carbon spheres.Nature Materials, 2015, 14(8): 763–774
29 Y, Dong D, Liu Z Yang . A brief review of methods for terminal functionalization of DNA.Methods, 2014, 67(2): 116–122
30 C, Li A, Faulkner-Jones A R, Dun et al.. Rapid formation of a supramolecular polypeptide-DNA hydrogel for in situ three-dimensional multilayer bioprinting.Angewandte Chemie International Edition, 2015, 54(13): 3957–3961
31 C, Li M J, Rowland Y, Shao et al.. Responsive double network hydrogels of interpenetrating DNA and CB[8] host‒guest supramolecular systems.Advanced Materials, 2015, 27(21): 3298–3304
32 Y, Shao H, Jia T, Cao et al.. Supramolecular hydrogels based on DNA self-assembly.Accounts of Chemical Research, 2017, 50(4): 659–668
33 J, Shi Z, Shi Y, Dong et al.. Responsive DNA-based supramolecular hydrogels.ACS Applied Bio Materials, 2020, 3(5): 2827–2837
34 T, Yuan Y, Shao X, Zhou et al.. Highly permeable DNA supramolecular hydrogel promotes neurogenesis and functional recovery after completely transected spinal cord injury.Advanced Materials, 2021, 33(35): 2102428
35 Y, Jin Y, Li S, Song et al.. DNA supramolecular hydrogel as a biocompatible artificial vitreous substitute.Advanced Materials Interfaces, 2022, 9(5): 2101321
36 W, Li D Zhao . An overview of the synthesis of ordered mesoporous materials.Chemical Communications, 2013, 49(10): 943–946
37 D, Zhao N, Yang L, Xu et al.. Hollow structures as drug carriers: recognition, response, and release.Nano Research, 2022, 15(2): 739–757
38 Z, Li K, Xu L, Qin et al.. Hollow nanomaterials in advanced drug delivery systems: from single- to multiple shells.Advanced Materials, 2022, 34: 2203890
39 C, Argyo V, Weiss C, Bräuchle et al.. Multifunctional mesoporous silica nanoparticles as a universal platform for drug delivery.Chemistry of Materials, 2014, 26(1): 435–451
40 J, Wagner D, Gößl N, Ustyanovska et al.. Mesoporous silica nanoparticles as pH-responsive carrier for the immune-activating drug resiquimod enhance the local immune response in mice.ACS Nano, 2021, 15(3): 4450–4466
41 N A, Soomro Q, Wu S A, Amur et al.. Natural drug physcion encapsulated zeolitic imidazolate framework, and their application as antimicrobial agent.Colloids and Surfaces B: Biointerfaces, 2019, 182: 110364
42 B, Kwakye-Awuah C, Williams M A, Kenward et al.. Antimicrobial action and efficiency of silver-loaded zeolite X.Journal of Applied Microbiology, 2008, 104(5): 1516–1524
43 X, Li Z, Shi Z, Cui et al.. Silver chloride loaded hollow mesoporous silica particles and their application in the antibacterial coatings on denture base.Chemical Research in Chinese Universities, 2018, 34(3): 495–499
44 J, Wang J, Wan N, Yang et al.. Hollow multishell structures exercise temporal-spatial ordering and dynamic smart behaviour.Nature Reviews Chemistry, 2020, 4(3): 159–168
45 R, Eivazzadeh-Keihan K K, Chenab R, Taheri-Ledari et al.. Recent advances in the application of mesoporous silica-based nanomaterials for bone tissue engineering.Materials Science and Engineering C, 2020, 107: 110267
46 V, Selvarajan S, Obuobi P L R Ee . Silica nanoparticles — a versatile tool for the treatment of bacterial infections.Frontiers in Chemistry, 2020, 8: 602
47 T, Yanagisawa T, Shimizu K, Kuroda et al.. The preparation of alkyltrimethylammonium-kanemite complexes and their conversion to microporous materials.Bulletin of the Chemical Society of Japan, 1990, 63(4): 988–992
48 C T, Kresge M E, Leonowicz W J, Roth et al.. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism.Nature, 1992, 359(6397): 710–712
49 R, Jin Y, Yang Y, Zou et al.. A general route to hollow mesoporous rare-earth silicate nanospheres as a catalyst support.Chemistry, 2014, 20(8): 2344–2351
50 H M, Abdelaal B Harbrecht . Approachable way to synthesize 3D silica hollow nanospheres with mesoporous shells via simple template-assisted technique.ChemistrySelect, 2016, 1(18): 5961–5966
51 J, Sharma G Polizos . Hollow silica particles: recent progress and future perspectives.Nanomaterials, 2020, 10(8): 1599
52 W, Kerdlap C, Thongpitak S, Keawmaungkom et al.. Natural rubber as a template for making hollow silica spheres and their use as antibacterial agents.Microporous and Mesoporous Materials, 2019, 273: 10–18
53 W, Zhao M, Lang Y, Li et al.. Fabrication of uniform hollow mesoporous silica spheres and ellipsoids of tunable size through a facile hard-templating route.Journal of Materials Chemistry, 2009, 19(18): 2778–2783
54 Q, Yu P, Wang S, Hu et al.. Hydrothermal synthesis of hollow silica spheres under acidic conditions.Langmuir, 2011, 27(11): 7185–7191
55 Y, Sun Y, Mao N, Di et al.. Core-template-free synthesis of molecularly ethane-bridged hollow mesoporous silica spheres from acid-hydrolyzed precursor.New Journal of Chemistry, 2020, 44(33): 13997–14004
56 S, Tang X, Huang X, Chen et al.. Hollow mesoporous zirconia nanocapsules for drug delivery.Advanced Functional Materials, 2010, 20(15): 2442–2447
57 S H, Wu C Y, Mou H P Lin . Synthesis of mesoporous silica nanoparticles.Chemical Society Reviews, 2013, 42(9): 3862–3875
58 Y, Si M, Chen L Wu . Syntheses and biomedical applications of hollow micro-/nano-spheres with large-through-holes.Chemical Society Reviews, 2016, 45(3): 690–714
59 Y, Cao Z, Xing M, Hu et al.. Mesoporous black N-TiO2−x hollow spheres as efficient visible-light-driven photocatalysts.Journal of Catalysis, 2017, 356: 246–254
60 T, Zhao A, Elzatahry X, Li et al.. Single-micelle-directed synthesis of mesoporous materials.Nature Reviews Materials, 2019, 4(12): 775–791
61 Z, Wang J, Qi N, Yang et al.. Core‒shell nano/microstructures for heterogeneous tandem catalysis.Materials Chemistry Frontiers, 2021, 5(3): 1126–1139
62 L, Sun H, Lv J, Feng et al.. Noble-metal-based hollow mesoporous nanoparticles: synthesis strategies and applications.Advanced Materials, 2022, 34(31): 2201954
63 J, Hu M, Chen X, Fang et al.. Fabrication and application of inorganic hollow spheres.Chemical Society Reviews, 2011, 40(11): 5472–5491
64 S B, Yoon J Y, Kim J H, Kim et al.. Template synthesis of nanostructured silica with hollow core and mesoporous shell structures.Current Applied Physics, 2006, 6(6): 1059–1063
65 Y, Li N, Li W, Pan et al.. Hollow mesoporous silica nanoparticles with tunable structures for controlled drug delivery.ACS Applied Materials & Interfaces, 2017, 9(3): 2123–2129
66 S B, Yoon K, Sohn J Y, Kim et al.. Fabrication of carbon capsules with hollow macroporous core/mesoporous shell structures.Advanced Materials, 2002, 14(1): 19–21
67 L, Dai W, Li K, Zhou et al.. Interfacial anchoring effect for enhanced lithium storage performance of sesame balls-like Fe3O4/C hollow nanospheres.Journal of Electroanalytical Chemistry, 2019, 855: 113626
68 S, Sultana M A, Alam M, Takafuji et al.. Hybrid mesoporous microspheres from aqueous droplets containing a silica nanoparticle-polymer network in a W/O suspension.RSC Advances, 2016, 6(49): 42756–42762
69 N, Hao K W, Jayawardana X, Chen et al.. One-step synthesis of amine-functionalized hollow mesoporous silica nanoparticles as efficient antibacterial and anticancer materials.ACS Applied Materials & Interfaces, 2015, 7(2): 1040–1045
70 K, Cheng S, Peng C, Xu et al.. Porous hollow Fe3O4 nanoparticles for targeted delivery and controlled release of cisplatin.Journal of the American Chemical Society, 2009, 131(30): 10637–10644
71 S T, Nishanthi K K, Yadav A, Baruah et al.. Nanostructured silver decorated hollow silica and their application in the treatment of microbial contaminated water at room temperature.New Journal of Chemistry, 2019, 43(23): 8993–9001
72 Y, Li B P, Bastakoti M, Imura et al.. Dual soft-template system based on colloidal chemistry for the synthesis of hollow mesoporous silica nanoparticles.Chemistry, 2015, 21(17): 6375–6380
73 S, Wang M, Zhang D, Wang et al.. Synthesis of hollow mesoporous silica microspheres through surface sol-gel process on polystyrene-co-poly(4-vinylpyridine) core–shell microspheres.Microporous and Mesoporous Materials, 2011, 139(1): 1–7
74 F, Wang Y, Tang B, Zhang et al.. Preparation of novel magnetic hollow mesoporous silica microspheres and their efficient adsorption.Journal of Colloid and Interface Science, 2012, 386(1): 129–134
75 Q, Shang Y Zhou . Facile fabrication of hollow mesoporous silica microspheres with hierarchical shell structure via a sol-gel process.Journal of Sol-Gel Science and Technology, 2015, 75(1): 206–214
76 J, Poostforooshan S, Belbekhouche M, Shaban et al.. Aerosol-assisted synthesis of tailor-made hollow mesoporous silica microspheres for controlled release of antibacterial and anticancer agents.ACS Applied Materials & Interfaces, 2020, 12(6): 6885–6898
77 P, Chen Y, Zhao T, Chen et al.. Synthesis of montmorillonite-chitosan hollow and hierarchical mesoporous spheres with single-template layer-by-layer assembly.Journal of Materials Science and Technology, 2019, 35(10): 2325–2330
78 X, Guo Q, Zhang X, Ding et al.. Synthesis and application of several sol-gel-derived materials via sol-gel process combining with other technologies: a review.Journal of Sol-Gel Science and Technology, 2016, 79(2): 328–358
79 K, Zhang L L, Xu J G, Jiang et al.. Facile large-scale synthesis of monodisperse mesoporous silica nanospheres with tunable pore structure.Journal of the American Chemical Society, 2013, 135(7): 2427–2430
80 W, Liu Y, Zhang J, Xu et al.. Facile synthesis of hollow mesoporous silica microspheres via surface sol-gel process on functional polymeric microsphere template.Journal of Nanoscience and Nanotechnology, 2016, 16(12): 12644–12650
81 S M, Seyed-Talebi I, Kazeminezhad H Motamedi . TiO2 hollow spheres as a novel antibiotic carrier for the direct delivery of gentamicin.Ceramics International, 2018, 44(12): 13457–13462
82 M U, Munir A, Ihsan Y, Sarwar et al.. Hollow mesoporous hydroxyapatite nanostructures; smart nanocarriers with high drug loading and controlled releasing features.International Journal of Pharmaceutics, 2018, 544(1): 112–120
83 X, Chen H J Schluesener . Nanosilver: a nanoproduct in medical application.Toxicology Letters, 2008, 176(1): 1–12
84 N, Durán M, Durán Jesus M B, de et al.. Silver nanoparticles: a new view on mechanistic aspects on antimicrobial activity.Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12(3): 789–799
85 S W P, Wijnhoven W J G M, Peijnenburg C A, Herberts et al.. Nano-silver — a review of available data and knowledge gaps in human and environmental risk assessment.Nanotoxicology, 2009, 3(2): 109–138
86 M K, Rai S D, Deshmukh A P, Ingle et al.. Silver nanoparticles: the powerful nanoweapon against multidrug-resistant bacteria: activity of silver nanoparticles against MDR bacteria.Journal of Applied Microbiology, 2012, 112(5): 841–852
87 L P, Silva A P, Silveira C C, Bonatto et al.. Silver nanoparticles as antimicrobial agents.In: Ficai A, Grumezescu A M, eds. Nanostructures for Antimicrobial Therapy. Amsterdam, Netherlands: Elsevier, 2017, 577–596
88 F, Zhang X, Wu Y, Chen et al.. Application of silver nanoparticles to cotton fabric as an antibacterial textile finish.Fibers and Polymers, 2009, 10(4): 496–501
89 Badawy A M, El R G, Silva B, Morris et al.. Surface charge-dependent toxicity of silver nanoparticles.Environmental Science & Technology, 2011, 45(1): 283–287
90 A B G Lansdown . A review of the use of silver in wound care: facts and fallacies.British Journal of Nursing, 2004, 13(Sup1): S6–S19
https://doi.org/10.12968/bjon.2004.13.Sup1.12535
91 B, Yu K M, Leung Q, Guo et al.. Synthesis of Ag‒TiO2 composite nano thin film for antimicrobial application.Nanotechnology, 2011, 22(11): 115603
92 Q L, Feng J, Wu G Q, Chen et al.. A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus.Journal of Biomedical Materials Research, 2000, 52(4): 662–668
93 I, Sondi B Salopek-Sondi . Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria.Journal of Colloid and Interface Science, 2004, 275(1): 177–182
94 Van H P, Gashe B A, Ahmad J. Colloidal silver as an antimicrobial agent: fact or fiction? Journal of Wound Care, 2004, 13(4): 154–155
95 C, Greulich D, Braun A, Peetsch et al.. The toxic effect of silver ions and silver nanoparticles towards bacteria and human cells occurs in the same concentration range.RSC Advances, 2012, 2(17): 6981
96 J, Jiravova K B, Tomankova M, Harvanova et al.. The effect of silver nanoparticles and silver ions on mammalian and plant cells in vitro.Food and Chemical Toxicology, 2016, 96: 50–61
97 P, Dibrov J, Dzioba K K, Gosink et al.. Chemiosmotic mechanism of antimicrobial activity of Ag+ in Vibrio cholerae.Antimicrobial Agents and Chemotherapy, 2002, 46(8): 2668–2670
98 K, Mijnendonckx N, Leys J, Mahillon et al.. Antimicrobial silver: uses, toxicity and potential for resistance.Biometals, 2013, 26(4): 609–621
99 D, Guo L, Zhu Z, Huang et al.. Anti-leukemia activity of PVP-coated silver nanoparticles via generation of reactive oxygen species and release of silver ions.Biomaterials, 2013, 34(32): 7884–7894
100 Y, Yakabe T, Sano H, Ushio et al.. Kinetic studies of the interaction between silver ion and deoxyribonucleic acid.Chemistry Letters, 1980, 9(4): 373–376
101 A, Melaiye W J Youngs . Silver and its application as an antimicrobial agent.Expert Opinion on Therapeutic Patents, 2005, 15(2): 125–130
102 C, Greulich J, Diendorf T, Simon et al.. Uptake and intracellular distribution of silver nanoparticles in human mesenchymal stem cells.Acta Biomaterialia, 2011, 7(1): 347–354
103 Q, Yu Z, Wu H Chen . Dual-function antibacterial surfaces for biomedical applications.Acta Biomaterialia, 2015, 16: 1–13
104 S J, Soenen W J, Parak J, Rejman et al.. (Intra)cellular stability of inorganic nanoparticles: effects on cytotoxicity, particle functionality, and biomedical applications.Chemical Reviews, 2015, 115(5): 2109–2135
105 H, Yang Y, Liu Q, Shen et al.. Mesoporous silica microcapsule-supported Ag nanoparticles fabricated via nano-assembly and its antibacterial properties.Journal of Materials Chemistry, 2012, 22(45): 24132–24138
106 J, Hrenovic J, Milenkovic I, Goic-Barisic et al.. Antibacterial activity of modified natural clinoptilolite against clinical isolates of Acinetobacter baumannii.Microporous and Mesoporous Materials, 2013, 169: 148–152
107 N, Perkas A, Lipovsky G, Amirian et al.. Biocidal properties of TiO2 powder modified with Ag nanoparticles.Journal of Materials Chemistry B: Materials for Biology and Medicine, 2013, 1(39): 5309–5316
108 S, Zhang R, Fu D, Wu et al.. Preparation and characterization of antibacterial silver-dispersed activated carbon aerogels.Carbon, 2004, 42(15): 3209–3216
109 W, Fang L, Ma J, Zheng et al.. Fabrication of silver-loaded hollow mesoporous aluminosilica nanoparticles and their antibacterial activity.Journal of Materials Science, 2014, 49(9): 3407–3413
110 X, Wan L, Zhuang B, She et al.. In-situ reduction of monodisperse nanosilver on hierarchical wrinkled mesoporous silica with radial pore channels and its antibacterial performance.Materials Science and Engineering C, 2016, 65: 323–330
111 P, Xu J, Liang X, Cao et al.. Facile synthesis of monodisperse of hollow mesoporous SiO2 nanoparticles and in-situ growth of Ag nanoparticles for antibacterial.Journal of Colloid and Interface Science, 2016, 474: 114–118
112 L, Lin H, Zhang H, Cui et al.. Preparation and antibacterial activities of hollow silica‒Ag spheres.Colloids and Surfaces B: Biointerfaces, 2013, 101: 97–100
113 S F, Chen J P, Li K, Qian et al.. Large scale photochemical synthesis of M@TiO2 nanocomposites (M = Ag, Pd, Au, Pt) and their optical properties, CO oxidation performance, and antibacterial effect.Nano Research, 2010, 3(4): 244–255
114 Y, Kobayashi H, Katakami E, Mine et al.. Silica coating of silver nanoparticles using a modified Stöber method.Journal of Colloid and Interface Science, 2005, 283(2): 392–396
115 C, Torres-Torres L, Tamayo-Rivera R, Rangel-Rojo et al.. Ultrafast optical phase modulation with metallic nanoparticles in ion-implanted bilayer silica.Nanotechnology, 2011, 22(35): 355710
116 P H, Chiu C J, Huang T Y, Wu et al.. Characterization and synthesis of silica-coated silver nanoparticles by sol-gel method with controlling of adding ammonical silver nitrate amount.Ferroelectrics, 2011, 421(1): 30–36
117 J E Q, Quinsaat F A, Nüesch H, Hofmann et al.. Dielectric properties of silver nanoparticles coated with silica shells of different thicknesses.RSC Advances, 2013, 3(19): 6964–6971
118 M, Liong B, France K A, Bradley et al.. Antimicrobial activity of silver nanocrystals encapsulated in mesoporous silica nanoparticles.Advanced Materials, 2009, 21(17): 1684–1689
119 H, Yang W, You Q, Shen et al.. Preparation of lotus-leaf-like antibacterial film based on mesoporous silica microcapsule-supported Ag nanoparticles.RSC Advances, 2014, 4(6): 2793–2796
120 Q, Shen J, Wang H, Yang et al.. Controllable preparation and properties of mesoporous silica hollow microspheres inside-loaded Ag nanoparticles.Journal of Non-Crystalline Solids, 2014, 391: 112–116
121 X, Li W, Zuo M, Luo et al.. Silver chloride loaded hollow mesoporous aluminosilica spheres and their application in antibacterial coatings.Materials Letters, 2013, 105: 159–161
122 Y, Qiao G, Mai Y, Li et al.. Customizing the spatial distribution and release of silver for the antibacterial action via biomineralized self-assembling silver-loaded hydroxyapatite.Materials Advances, 2022, 3(20): 7595–7605
123 R Gómez-Lus . Evolution of bacterial resistance to antibiotics during the last three decades.International Microbiology, 1998, 1(4): 279–284
124 G, Kapoor S, Saigal A Elongavan . Action and resistance mechanisms of antibiotics: a guide for clinicians.Journal of Anaesthesiology, Clinical Pharmacology, 2017, 33(3): 300–305
125 Health Organization World . New report calls for urgent action to avert antimicrobial resistance crisis. Released date: 2019–04-29
126 K, Smerkova K, Dolezelikova L, Bozdechova et al.. Nanomaterials with active targeting as advanced antimicrobials.Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2020, 12(5): e1636
127 Y A, Nor H, Zhang S, Purwajanti et al.. Hollow mesoporous carbon nanocarriers for vancomycin delivery: understanding the structure-release relationship for prolonged antibacterial performance.Journal of Materials Chemistry B: Materials for Biology and Medicine, 2016, 4(43): 7014–7021
128 D, Deepika J B PonnanEttiyappan . Synthesis and characterization of microporous hollow core‒shell silica nanoparticles (HCSNs) of tunable thickness for controlled release of doxorubicin.Journal of Nanoparticle Research, 2018, 20(7): 187
129 I, Gessner E, Krakor A, Jurewicz et al.. Hollow silica capsules for amphiphilic transport and sustained delivery of antibiotic and anticancer drugs.RSC Advances, 2018, 8(44): 24883–24892
130 L, Cui H, Neoh M, Shoji et al.. Contribution of vraSR and graSR point mutations to vancomycin resistance in vancomycin-intermediate Staphylococcus aureus.Antimicrobial Agents and Chemotherapy, 2009, 53(3): 1231–1234
131 G M, Pacifici K Allegaert . Clinical pharmacokinetics of vancomycin in the neonate: a review.Clinics, 2012, 67(7): 831–837
132 J, Kurczewska P, Sawicka M, Ratajczak , et al.. Vancomycin-modified silica: synthesis, controlled release and biological activity of the drug. International Journal of Pharmaceutics, 2015, 486(1‒2): 226–231
133 X, Hao X, Hu C, Zhang et al.. Hybrid mesoporous silica-based drug carrier nanostructures with improved degradability by hydroxyapatite.ACS Nano, 2015, 9(10): 9614–9625
134 T-K, Nguyen R, Selvanayagam K K K, Ho et al.. Co-delivery of nitric oxide and antibiotic using polymeric nanoparticles.Chemical Science, 2016, 7(2): 1016–1027
135 M, Mahlapuu J, Håkansson L, Ringstad et al.. Antimicrobial peptides: an emerging category of therapeutic agents.Frontiers in Cellular and Infection Microbiology, 2016, 6: 194
136 A A, Bahar D Ren . Antimicrobial peptides.Pharmaceuticals, 2013, 6(12): 1543–1575
137 W F, Broekaert B P A, Cammue Bolle M F C, De et al.. Antimicrobial peptides from plants.Critical Reviews in Plant Sciences, 1997, 16(3): 297–323
138 J, Tam S, Wang K, Wong et al.. Antimicrobial peptides from plants.Pharmaceuticals, 2015, 8(4): 711–757
139 K V R, Reddy R D, Yedery C Aranha . Antimicrobial peptides: premises and promises.International Journal of Antimicrobial Agents, 2004, 24(6): 536–547
140 W, Li J, Tailhades N M, O’Brien-Simpson et al.. Proline-rich antimicrobial peptides: potential therapeutics against antibiotic-resistant bacteria.Amino Acids, 2014, 46(10): 2287–2294
141 L, Holfeld D, Knappe R Hoffmann . Proline-rich antimicrobial peptides show a long-lasting post-antibiotic effect on Enterobacteriaceae and Pseudomonas aeruginosa.Journal of Antimicrobial Chemotherapy, 2018, 73(4): 933–941
142 M Malmsten . Interactions of antimicrobial peptides with bacterial membranes and membrane components.Current Topics in Medicinal Chemistry, 2015, 16(1): 16–24
143 K A Brogden . Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nature Reviews.Microbiology, 2005, 3(3): 238–250
144 G, Pavithrra R Rajasekaran . Gramicidin peptide to combat antibiotic resistance: a review.International Journal of Peptide Research and Therapeutics, 2020, 26(1): 191–199
145 L D, Walensky G H Bird . Hydrocarbon-stapled peptides: principles, practice, and progress: miniperspective.Journal of Medicinal Chemistry, 2014, 57(15): 6275–6288
146 R, Mourtada H D, Herce D J, Yin et al.. Design of stapled antimicrobial peptides that are stable, nontoxic and kill antibiotic-resistant bacteria in mice.Nature Biotechnology, 2019, 37(10): 1186–1197
147 Brogden N K, Brogden K A. Will new generations of modified antimicrobial peptides improve their potential as pharmaceuticals? International Journal of Antimicrobial Agents, 2011, 28(3): 217–225
148 Y Y, Han H Y, Liu D J, Han et al.. Role of glycosylation in the anticancer activity of antibacterial peptides against breast cancer cells.Biochemical Pharmacology, 2013, 86(9): 1254–1262
149 M Zasloff . Antimicrobial peptides of multicellular organisms.Nature, 2002, 415(6870): 389–395
150 Q, Yu T, Deng F C, Lin et al.. Supramolecular assemblies of heterogeneous mesoporous silica nanoparticles to co-deliver antimicrobial peptides and antibiotics for synergistic eradication of pathogenic biofilms.ACS Nano, 2020, 14(5): 5926–5937
151 I, Izquierdo-Barba M, Vallet-Regí N, Kupferschmidt et al.. Incorporation of antimicrobial compounds in mesoporous silica film monolith.Biomaterials, 2009, 30(29): 5729–5736
152 C, Gao I, Izquierdo-Barba I, Nakase et al.. Mesostructured silica based delivery system for a drug with a peptide as a cell-penetrating vector.Microporous and Mesoporous Materials, 2009, 122(1): 201–207
153 K, Braun A, Pochert M, Lindén et al.. Membrane interactions of mesoporous silica nanoparticles as carriers of antimicrobial peptides.Journal of Colloid and Interface Science, 2016, 475: 161–170
154 C, Xu Y, He Z, Li et al.. Nanoengineered hollow mesoporous silica nanoparticles for the delivery of antimicrobial proteins into biofilms.Journal of Materials Chemistry B: Materials for Biology and Medicine, 2018, 6(13): 1899–1902
155 D, He Y, Yu F, Liu et al.. Quaternary ammonium salt-based cross-linked micelle templated synthesis of highly active silver nanocomposite for synergistic anti-biofilm application.Chemical Engineering Journal, 2020, 382: 122976
156 A L, Andrade Vasconcelos M A, de F V de S, Arruda et al.. Antimicrobial activity and antibiotic synergy of a biphosphinic ruthenium complex against clinically relevant bacteria.Biofouling, 2020, 36(4): 442–454
157 Zharkova M S, Orlov D S, Golubeva O Yu, et al. Application of antimicrobial peptides of the innate immune system in combination with conventional antibiotics — a novel way to combat antibiotic resistance? Frontiers in Cellular and Infection Microbiology, 2019, 9: 128
158 N, Yang M, Zhu G, Xu et al.. A near-infrared light-responsive multifunctional nanocomposite hydrogel for efficient and synergistic antibacterial wound therapy and healing promotion.Journal of Materials Chemistry B: Materials for Biology and Medicine, 2020, 8(17): 3908–3917
159 E, Aznar M, Oroval L, Pascual et al.. Gated materials for on-command release of guest molecules.Chemical Reviews, 2016, 116(2): 561–718
160 X, Zhu J, Shi H, Ma et al.. Hierarchical hydroxyapatite/polyelectrolyte microcapsules capped with AuNRs for remotely triggered drug delivery.Materials Science and Engineering C, 2019, 99: 1236–1245
161 H S, Seo J, Bang H, Kim et al.. Development of an antimicrobial sachet containing encapsulated allyl isothiocyanate to inactivate Escherichia coli O157:H7 on spinach leaves.International Journal of Food Microbiology, 2012, 159(2): 136–143
162 S Y, Park M, Barton P Pendleton . Mesoporous silica as a natural antimicrobial carrier. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 385(1‒3): 256–261
163 M, Ruiz-Rico C, Fuentes É, Pérez-Esteve et al.. Bactericidal activity of caprylic acid entrapped in mesoporous silica nanoparticles.Food Control, 2015, 56: 77–85
164 S K, Chung J Y, Seo J H, Lim et al.. Microencapsulation of essential oil for insect repellent in food packaging system.Journal of Food Science, 2013, 78(5): E709–E714
https://doi.org/10.1111/1750-3841.12111
165 M, Osanloo M M, Sedaghat H, Sereshti et al.. Nano-encapsulated tarragon (Artemisia dracunculus) essential oil as a sustained release nano-larvicide.Journal of Contemporary Medical Sciences, 2019, 5(2): 82–89
166 N, Peña-Gómez M, Ruiz-Rico É, Pérez-Esteve et al.. Novel antimicrobial filtering materials based on carvacrol, eugenol, thymol and vanillin immobilized on silica microparticles for water treatment.Innovative Food Science & Emerging Technologies, 2019, 58: 102228
167 L, Jin X, Liu C, Bian et al.. Fabrication linalool-functionalized hollow mesoporous silica spheres nanoparticles for efficiently enhance bactericidal activity.Chinese Chemical Letters, 2020, 31(8): 2137–2141
168 B, Tomšič B, Simončič B, Orel et al.. Antimicrobial activity of AgCl embedded in a silica matrix on cotton fabric.Carbohydrate Polymers, 2009, 75(4): 618–626
169 H, Li A, Granados E, Fernández et al.. Anti-inflammatory cotton fabrics and silica nanoparticles with potential topical medical applications.ACS Applied Materials & Interfaces, 2020, 12(23): 25658–25675
170 D, Zhao Y, Wei Q, Jin et al.. PEG-functionalized hollow multishelled structures with on-off switch and rate-regulation for controllable antimicrobial release.Angewandte Chemie International Edition, 2022, 61(36): e202206807
171 Health Organization World . WHO, UN set out steps to meet world COVID vaccination targets. Released date: 2021-10-17
172 Institute Wyss . A deceptively simple path to powerful new technology. Released date: 2013-11-21
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed