Copper(II) sulfide nanostructures and its nanohybrids: recent trends, future perspectives and current challenges
Narinder Singh1,2()
1. Department of Physics, Sardar Patel University, Mandi, Himachal Pradesh 175001, India 2. Department of Physics, Government College Nadaun, District Hamirpur, Himachal Pradesh 177033, India
Among various metal chalcogenides, metal oxides and phases of copper sulfide, copper(II) sulfide (covellite, CuS) nanostructures have enjoyed special attentiveness from researchers and scientists across the world owing to their complicated structure, peculiar composition and valency, attractive and panoramic morphologies, optical and electrical conductivity, less toxicity, and biocompatibility that can be exploited in advanced and technological applications. This review paper presents a brief idea about crystal structure, composition, and various chemical methods. The mechanism and effect of reaction parameters on the evolution of versatile and attractive morphologies have been described. Physical properties of CuS and its hybrid nanostructures, such as morphology and optical, mechanical, electrical, thermal, and thermoelectrical properties, have been carefully reviewed. A concise account of CuS and its hybrid nanostructures’ diverse applications in emerging and recent applications such as energy storage devices (lithium-ion batteries, supercapacitance), sensors, field emission, photovoltaic cells, organic pollutant removal, electromagnetic wave absorption, and emerging biomedical field (drug delivery, photothermal ablation, deoxyribonucleic acid detection, anti-microbial and theranostic) has also been elucidated. Finally, the prospects, scope, and challenges of CuS nanostructures have been discussed precisely.
2 mol·L?1 Na2S, 2 mol·L?1 S, and 0.2 mol·L?1 KCl in a solvent a)
0.59
0.26
52.77
16.19
5.04
[213]
CuS/NiS
TiO2/FTO
CdS/CdSe/ZnS
1 mol·L?1 Na2S, 0.1 mol·L?1 S, and 0.2 mol·L?1 NaOH in a solvent a)
0.599
?
?
12.47
4.19
[214]
CoS/CuS
ZnS/TiO2
ZnS/CdSe/CdS
2 mol·L?1 S and 2 mol·L?1 Na2S aqueous solution
0.54
?
58
16.09
5.03
[215]
ZnO/CuS
ZnO/FTO
CdS/CdSe
1 mol·L?1 Na2S and 1 mol·L?1 S
0.76
?
38
14.48
4.18
[216]
Tab.4
Fig.18
Fig.19
Fig.20
Precursor/component
Morphology
Dye
Irradiation
Time/min
Irradiation efficiency/%
Ref.
Cu(CH3COO)2·H2O
NPs
MB
Solar
240
90.29
[81]
Na2S·9H2O
RhB
Solar
240
69.23
EY b)
Solar
240
91.97
CR c)
Solar
240
60.35
CuCl2
NPs
MB
Visible
180
93.00
[22]
TU
CuCl2·2H2O
NTs
RhB
UV
140
87.30
[241]
Thioacetamide
MO
UV
140
91.50
CuCl2·2H2O
NPs
RhB
Visible
60
99.7
[242]
Na2S·9H2O
CuCl2
Ball-flower
RhB
UV
60
100
[243]
TU
Cu(CH3COO)2·H2O
Hierarchical flower
RhB
Xe-lamp f)
40
100
[244]
TU
Hollow nanospheres
2,4-DCP d)
Xe-lamp f)
240
100
Cu(NO3)2·3H2O
Hexagonal nanoplates
MB
Visible
45
87
[88]
TU
CHDS a)
Porous
MB
Sunlight
10
98
[245]
TU
Aggregates
MO
Sunlight
15
98
4-Chlorophenol
Sunlight
60
93
(CH3COO)2Cu·H2O
Urchin-like
MG
Sunlight
90
95
[42]
TU
Copper foam
Heirarchical
RhB
Sunlight
25
100
[58]
S powder
MB
Sunlight
25
100
CuS/PVACS
Spherical
MG
UV
60
96.51
[233]
CQDs/CuS
Spherical
MB
Visible
45
100
[238]
CdS/CuS
Microflower
MB
Visible
150
93
[246]
Au?CuS?TiO2
Nanobelts
Antibiotic OTC e)
Visible
60
96
[247]
CuS/ZnS
NRs
MB
Visible, Xe-lamp
5
95.5
[248]
rGO/CuS
Stacked and agglomerated
MG
Sunlight
90
97.6
[249]
Tab.5
Fig.21
Fig.22
Fig.23
Fig.24
Fig.25
Fig.26
Fig.27
Fig.28
Fig.29
Fig.30
1
S, Iqbal N A, Shaid M M, Sajid et al.. Extensive evaluation of changes in structural, chemical and thermal properties of copper sulfide nanoparticles at different calcination temperature.Journal of Crystal Growth, 2020, 547: 125823 https://doi.org/10.1016/j.jcrysgro.2020.125823
2
Y, Zhai M Shim . Effects of copper precursor reactivity on the shape and phase of copper sulfide nanocrystals.Chemistry of Materials, 2017, 29(5): 2390–2397 https://doi.org/10.1021/acs.chemmater.7b00461
3
N, Loudhaief Salem M, Ben H, Labiadh et al.. Electrical properties and fluctuation induced conductivity studies of Bi-based superconductors added by CuS nanoparticles synthesized through the aqueous route.Materials Chemistry and Physics, 2020, 242: 122464 https://doi.org/10.1016/j.matchemphys.2019.122464
4
S, Arora K, Kabra K, Joshi et al.. Structural, elastic, thermodynamic and electronic properties of covellite, CuS.Physica B: Condensed Matter, 2020, 582: 311142 https://doi.org/10.1016/j.physb.2018.11.007
5
S I, Raj A, Jaiswal I Uddin . Ultrasmall aqueous starch-capped CuS quantum dots with tunable localized surface plasmon resonance and composition for the selective and sensitive detection of mercury(ii) ions.RSC Advances, 2020, 10(24): 14050–14059 https://doi.org/10.1039/C9RA09306K
6
Y, Liu M, Liu M T Swihart . Plasmonic copper sulfide-based materials: a brief introduction to their synthesis, doping, alloying, and applications.The Journal of Physical Chemistry C, 2017, 121(25): 13435–13447 https://doi.org/10.1021/acs.jpcc.7b00894
7
S M H, AL-Jawad A A, Taha A M, Redha et al.. Studying the structural, morphological, and optical properties of CuS:Ni nanostructure prepared by a hydrothermal method for biological activity.Journal of Sol-Gel Science and Technology, 2019, 91(2): 310–323 https://doi.org/10.1007/s10971-019-05023-1
8
C, Feng L, Zhang Z, Wang et al.. Synthesis of copper sulfide nanowire bundles in a mixed solvent as a cathode material for lithium-ion batteries.Journal of Power Sources, 2014, 269: 550–555 https://doi.org/10.1016/j.jpowsour.2014.07.006
9
R M, Córdova-Castro M, Casavola Schilfgaarde M, van et al.. Anisotropic plasmonic CuS nanocrystals as a natural electronic material with hyperbolic optical dispersion.ACS Nano, 2019, 13(6): 6550–6560 https://doi.org/10.1021/acsnano.9b00282
10
F, Tao Y, Zhang S, Cao et al.. CuS nanoflowers/semipermeable collodion membrane composite for high-efficiency solar vapor generation.Materials Today Energy, 2018, 9: 285–294 https://doi.org/10.1016/j.mtener.2018.06.003
11
S S, Kalanur H Seo . Tuning plasmonic properties of CuS thin films via valence band filling.RSC Advances, 2017, 7(18): 11118–11122 https://doi.org/10.1039/C6RA27076J
12
K, Ghosh S K Srivastava . Enhanced supercapacitor performance and electromagnetic interference shielding effectiveness of CuS quantum dots grown on reduced graphene oxide sheets.ACS Omega, 2021, 6(7): 4582–4596 https://doi.org/10.1021/acsomega.0c05034
13
M A, Adedeji M S, Hamed G T Mola . Light trapping using copper decorated nano-composite in the hole transport layer of organic solar cell.Solar Energy, 2020, 203: 83–90 https://doi.org/10.1016/j.solener.2020.04.005
14
Z, Bano R M Y, Saeed S, Zhu et al.. Mesoporous CuS nanospheres decorated rGO aerogel for high photocatalytic activity towards Cr(VI) and organic pollutants.Chemosphere, 2020, 246: 125846 https://doi.org/10.1016/j.chemosphere.2020.125846
15
A, Venkadesh J, Mathiyarasu S Radhakrishnan . Electrochemical enzyme-free sensing of oxalic acid using amine mediated synthesis of CuS nanosphere.Analytical Sciences, 2021, 37(7): 949–954 https://doi.org/10.2116/analsci.20P370
16
Z, Shalabayev M, Baláz N, Daneu et al.. Sulfur-mediated mechanochemical synthesis of spherical and needle-like copper sulfide nanocrystals with antibacterial activity.ACS Sustainable Chemistry & Engineering, 2019, 7(15): 12897–12909 https://doi.org/10.1021/acssuschemeng.9b01849
17
B J, Rani G, Ravi R, Yuvakkumar et al.. Investigation on copper based oxide, sulfide and selenide derivatives oxygen evolution reaction activity.Applied Nanoscience, 2020, 10(11): 4299–4306 https://doi.org/10.1007/s13204-020-01531-7
18
C, Ramamoorthy V Rajendran . Synthesis and characterization of CuS nanostructures: structural, optical, electrochemical and photocatalytic activity by the hydro/solvothermal process.International Journal of Hydrogen Energy, 2017, 42(42): 26454–26463 https://doi.org/10.1016/j.ijhydene.2017.07.078
19
G, Srinidhi S, Sudalaimani K, Giribabu et al.. Amperometric determination of hydrazine using a CuS-ordered mesoporous carbon electrode.Microchimica Acta, 2020, 187(6): 359 https://doi.org/10.1007/s00604-020-04325-4
20
N, Singh M Taunk . Structural, optical, and electrical studies of sonochemically synthesized CuS nanoparticles.Semiconductors, 2020, 54(9): 1016–1022 https://doi.org/10.1134/S1063782620090262
21
M, Saranya C, Santhosh S P, Augustine et al.. Synthesis and characterisation of CuS nanomaterials using hydrothermal route.Journal of Experimental Nanoscience, 2014, 9(4): 329–336 https://doi.org/10.1080/17458080.2012.661471
22
M, Pal N R, Mathews E, Sanchez-Mora et al.. Synthesis of CuS nanoparticles by a wet chemical route and their photocatalytic activity.Journal of Nanoparticle Research, 2015, 17(7): 301 https://doi.org/10.1007/s11051-015-3103-5
23
M C, Portillo R V, Gutiérrez M A M, Ramírez et al.. Structural properties of sulfur copper (CuS) nanocrystals grown by chemical bath deposition.Optik, 2020, 208: 164518 https://doi.org/10.1016/j.ijleo.2020.164518
24
D, Ayodhya G Veerabhadram . Facile fabrication, characterization and efficient photocatalytic activity of surfactant free ZnS, CdS and CuS nanoparticles.Journal of Science. Advanced Materials and Devices, 2019, 4(3): 381–391 https://doi.org/10.1016/j.jsamd.2019.08.006
25
S, Radhakrishnan H Y, Kim B S Kim . A novel CuS microflower superstructure based sensitive and selective nonenzymatic glucose detection.Sensors and Actuators B: Chemical, 2016, 233: 93–99 https://doi.org/10.1016/j.snb.2016.04.056
26
F, Nekouei S, Nekouei O, Jashnsaz et al.. Green approach for in-situ growth of highly-ordered 3D flower-like CuS hollow nanospheres decorated on nitrogen and sulfur co-doped graphene bionanocomposite with enhanced peroxidase-like catalytic activity performance for colorimetric biosensing of glucose.Materials Science and Engineering C, 2018, 90: 576–588 https://doi.org/10.1016/j.msec.2018.05.001
27
J, Zhu X, Peng W, Nie et al.. Hollow copper sulfide nanocubes as multifunctional nanozymes for colorimetric detection of dopamine and electrochemical detection of glucose.Biosensors & Bioelectronics, 2019, 141: 111450 https://doi.org/10.1016/j.bios.2019.111450
28
S, Zhai K, Jin M, Zhou et al.. A novel high performance flexible supercapacitor based on porous carbonized cotton/ZnO nanoparticle/CuS micro-sphere.Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 584: 124025 https://doi.org/10.1016/j.colsurfa.2019.124025
29
Z, Shalabayev M, Balaz N, Daneu et al.. Sulfur-mediated mechanochemical synthesis of spherical and needle-like copper sulfide nanocrystals with antibacterial activity.ACS Sustainable Chemistry & Engineering, 2019, 7(15): 12897–12909 https://doi.org/10.1021/acssuschemeng.9b01849
30
S W, Hsu C, Ngo W, Bryks et al.. Shape focusing during the anisotropic growth of CuS triangular nanoprisms.Chemistry of Materials, 2015, 27(14): 4957–4963 https://doi.org/10.1021/acs.chemmater.5b01223
31
J, Huang J, Zhou J, Zhuang et al.. Strong near-infrared absorbing and biocompatible CuS nanoparticles for rapid and efficient photothermal ablation of Gram-positive and -negative bacteria.ACS Applied Materials & Interfaces, 2017, 9(42): 36606–36614 https://doi.org/10.1021/acsami.7b11062
32
Y, Wang F, Jiang J, Chen et al.. In situ construction of CNT/CuS hybrids and their application in photodegradation for removing organic dyes.Nanomaterials, 2020, 10(1): 178 https://doi.org/10.3390/nano10010178
33
K, Yao C, Zhao N, Sun et al.. Freestanding CuS nanowalls: ionic liquid-assisted synthesis and prominent catalytic performance for the decomposition of ammonium perchlorate.CrystEngComm, 2017, 19(34): 5048–5057 https://doi.org/10.1039/C7CE01119A
34
S K, Nath P Kalita . Temperature dependent structural, optical and electrical properties of CuS nanorods in aloe vera matrix.Nano-Structures & Nano-Objects, 2021, 25: 100651 https://doi.org/10.1016/j.nanoso.2020.100651
35
X, Shuai W, Shen X, Li et al.. Cation exchange synthesis of CuS nanotubes composed of nanoparticles as low-cost counter electrodes for dye-sensitized solar cells.Materials Science and Engineering B, 2018, 227: 74–79 https://doi.org/10.1016/j.mseb.2017.10.008
36
Y, Qin X, Kong D, Lei et al.. Facial grinding method for synthesis of high-purity CuS nanosheets.Industrial & Engineering Chemistry Research, 2018, 57(8): 2759–2764 https://doi.org/10.1021/acs.iecr.7b04616
37
P, Gao Y, Zhang H Abedi . Hierarchical CuS doped with vanadium nanosheets with micro skein overall morphology as a high performance amperometric glucose sensor.Surfaces and Interfaces, 2020, 21: 100756 https://doi.org/10.1016/j.surfin.2020.100756
38
M M, Mezgebe A, Ju G, Wei et al.. Structure based optical properties and catalytic activities of hydrothermally prepared CuS nanostructures.Nanotechnology, 2019, 30(10): 105704 https://doi.org/10.1088/1361-6528/aaf758
39
A, Venkadesh S, Radhakrishnan J Mathiyarasu . Eco-friendly synthesis and morphology-dependent superior electrocatalytic properties of CuS nanostructures.Electrochimica Acta, 2017, 246: 544–552 https://doi.org/10.1016/j.electacta.2017.06.077
40
S, Iqbal A, Bahadur S, Anwer et al.. Shape and phase-controlled synthesis of specially designed 2D morphologies of L-cysteine surface capped covellite (CuS) and chalcocite (Cu2S) with excellent photocatalytic properties in the visible spectrum.Applied Surface Science, 2020, 526: 146691 https://doi.org/10.1016/j.apsusc.2020.146691
41
S, Li H, Zhang L, Xu et al.. Laser-induced construction of multi-branched CuS nanodendrites with excellent surface-enhanced Raman scattering spectroscopy in repeated applications.Optics Express, 2017, 25(14): 16204–16213 https://doi.org/10.1364/OE.25.016204
42
A, Shawky S, El-Sheikh A, Gaber et al.. Urchin-like CuS nanostructures: simple synthesis and structural optimization with enhanced photocatalytic activity under direct sunlight.Applied Nanoscience, 2020, 10(7): 2153–2164 https://doi.org/10.1007/s13204-020-01283-4
43
B, Shi W, Liu K, Zhu et al.. Synthesis of flower-like copper sulfides microspheres as electrode materials for sodium secondary batteries.Chemical Physics Letters, 2017, 677: 70–74 https://doi.org/10.1016/j.cplett.2017.03.051
44
Z, Hosseinpour A, Scarpellini S, Najafishirtari et al.. Morphology-dependent electrochemical properties of CuS hierarchical superstructures.ChemPhysChem, 2015, 16(16): 3418–3424 https://doi.org/10.1002/cphc.201500568
45
J, Jeevanandam A, Barhoum Y S, Chan et al.. Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations.Beilstein Journal of Nanotechnology, 2018, 9: 1050–1074 https://doi.org/10.3762/bjnano.9.98
46
N H Hong . Introduction to nanomaterials: basic properties, synthesis, and characterization. In: Nano-Sized Multifunctional Materials: Synthesis, Properties and Applications. Elsevier, 2019, 1‒19
47
M Y, Son J H, Choi Y C Kang . Electrochemical properties of bare nickel sulfide and nickel sulfide–carbon composites prepared by one-pot spray pyrolysis as anode materials for lithium secondary batteries.Journal of Power Sources, 2014, 251: 480–487 https://doi.org/10.1016/j.jpowsour.2013.10.093
48
Y, Sun Z, Yu Z, Chen et al.. One-dimensional channel to trigger high-performance sodium-ion battery via doping engineering.Nano Energy, 2021, 84: 105875 https://doi.org/10.1016/j.nanoen.2021.105875
49
T H, Gu N H, Kwon K G, Lee et al.. 2D inorganic nanosheets as versatile building blocks for hybrid electrode materials for supercapacitor.Coordination Chemistry Reviews, 2020, 421: 213439 https://doi.org/10.1016/j.ccr.2020.213439
50
R, Dong T, Zhang X Feng . Interface-assisted synthesis of 2D materials: trend and challenges.Chemical Reviews, 2018, 118(13): 6189–6235 https://doi.org/10.1021/acs.chemrev.8b00056
51
M, Naveed W, Younas Y, Zhu et al.. Template free and facile microwave-assisted synthesis method to prepare mesoporous copper sulfide nanosheets for high-performance hybrid supercapacitor.Electrochimica Acta, 2019, 319: 49–60 https://doi.org/10.1016/j.electacta.2019.06.169
52
M, Masar M, Urbanek P, Urbanek et al.. Synthesis, characterization and examination of photocatalytic performance of hexagonal covellite CuS nanoplates.Materials Chemistry and Physics, 2019, 237: 121823 https://doi.org/10.1016/j.matchemphys.2019.121823
53
T, Dou Y, Qin F, Zhang et al.. CuS nanosheet arrays for electrochemical CO2 reduction with surface reconstruction and the effect on selective formation of formate.ACS Applied Energy Materials, 2021, 4(5): 4376–4384 https://doi.org/10.1021/acsaem.0c03190
54
Z, Ying S, Zhao J, Yue et al.. 3D hierarchical CuS microflowers constructed on copper powders-filled nickel foam as advanced binder-free electrodes.Journal of Alloys and Compounds, 2020, 821: 153437 https://doi.org/10.1016/j.jallcom.2019.153437
55
Z, Wang X, Zhang Y, Zhang et al.. Chemical dealloying synthesis of CuS nanowire-on-nanoplate network as anode materials for Li-ion batteries.Metals, 2018, 8(4): 252 https://doi.org/10.3390/met8040252
56
X, Ding S, Lei C, Du et al.. Small-sized CuS nanoparticles/N, S co-doped rGO composites as the anode materials for high-performance lithium-ion batteries.Advanced Materials Interfaces, 2019, 6(6): 1900038 https://doi.org/10.1002/admi.201900038
57
Z, Hosseinpour Z, Arefinia S Hosseinpour . Morphology and phase control of hierarchical copper sulfide superstructures as efficient catalyst.Materials Science in Semiconductor Processing, 2019, 100: 48–55 https://doi.org/10.1016/j.mssp.2019.04.039
58
N, Qin W, Wei C, Huang et al.. An efficient strategy for the fabrication of CuS as a highly excellent and recyclable photocatalyst for the degradation of organic dyes.Catalysts, 2020, 10(1): 40 https://doi.org/10.3390/catal10010040
59
S I, Raj A Jaiswal . Nanoscale transformation in CuS Fenton-like catalyst for highly selective and enhanced dye degradation.Journal of Photochemistry and Photobiology A: Chemistry, 2021, 410: 113158 https://doi.org/10.1016/j.jphotochem.2021.113158
60
Y, Zhao Y, Zuo G, He et al.. Synthesis of graphene-based CdS@CuS core–shell nanorods by cation-exchange for efficient degradation of ciprofloxacin.Journal of Alloys and Compounds, 2021, 869: 159305 https://doi.org/10.1016/j.jallcom.2021.159305
61
B, Zhao G, Shao B, Fan et al.. Synthesis of flower-like CuS hollow microspheres based on nanoflakes self-assembly and their microwave absorption properties.Journal of Materials Chemistry A, 2015, 3(19): 10345–10352 https://doi.org/10.1039/C5TA00086F
62
D, Zhang Y, Cai Q, Liang et al.. Scalable, flexible, durable, and salt-tolerant CuS/bacterial cellulose gel membranes for efficient interfacial solar evaporation.ACS Sustainable Chemistry & Engineering, 2020, 8(24): 9017–9026 https://doi.org/10.1021/acssuschemeng.0c01707
63
J, Li M, Liu J, Jiang et al.. Morphology-controlled electrochemical sensing properties of CuS crystals for tartrazine and sunset yellow.Sensors and Actuators B: Chemical, 2019, 288: 552–563 https://doi.org/10.1016/j.snb.2019.03.028
64
C, Li P, He L, Jia et al.. Facile synthesis of 3D CuS micro-flowers grown on porous activated carbon derived from pomelo peel as electrode for high-performance supercapacitors.Electrochimica Acta, 2019, 299: 253–261 https://doi.org/10.1016/j.electacta.2019.01.004
65
S, Zhai K, Jin M, Zhou et al.. In-situ growth of flower-like CuS microsphere on carbonized cotton for high-performance flexible supercapacitor.Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 575: 75–83 https://doi.org/10.1016/j.colsurfa.2019.05.010
66
S I, El-Hout S G, Mohamed A, Gaber et al.. High electrochemical performance of rGO anchored CuS nanospheres for supercapacitor applications.Journal of Energy Storage, 2021, 34: 102001 https://doi.org/10.1016/j.est.2020.102001
67
H, Sabeeh M, Aadil S, Zulfiqar et al.. Hydrothermal synthesis of CuS nanochips and their nanohybrids with CNTs for electrochemical energy storage applications.Ceramics International, 2021, 47(10): 13613–13621 https://doi.org/10.1016/j.ceramint.2021.01.220
68
M, Muhyuddin M T, Ahsan I, Ali et al.. A new insight into solar paint concept: regeneration of CuS nanoparticles for paintable counter electrodes in QDSSCs.Applied Physics A: Materials Science & Processing, 2019, 125(10): 716 https://doi.org/10.1007/s00339-019-3009-7
69
Z, Tian Z, Qi Y, Yang et al.. Anchoring CuS nanoparticles on accordion-like Ti3C2 as high electrocatalytic activity counter electrodes for QDSSCs.Inorganic Chemistry Frontiers, 2020, 7(19): 3727–3734 https://doi.org/10.1039/D0QI00618A
70
G M, Neelgund A, Oki S, Bandara et al.. Photothermal effect and cytotoxicity of CuS nanoflowers deposited over folic acid conjugated nanographene oxide.Journal of Materials Chemistry B, 2021, 9(7): 1792–1803 https://doi.org/10.1039/D0TB02366C
71
A N, Nikam A, Pandey G, Fernandes et al.. Copper sulphide based heterogeneous nanoplatforms for multimodal therapy and imaging of cancer: recent advances and toxicological perspectives.Coordination Chemistry Reviews, 2020, 419: 213356 https://doi.org/10.1016/j.ccr.2020.213356
72
R S, Christy J T Kumaran . Phase transition in CuS nanoparticles.Journal of Non-Oxide Glasses, 2014, 6: 13–22
73
, Tarachand S, Hussain N P, Lalla et al.. Thermoelectric properties of Ag-doped CuS nanocomposites synthesized by a facile polyol method.Physical Chemistry Chemical Physics, 2018, 20(8): 5926–5935 https://doi.org/10.1039/C7CP07986A
74
K M, Rosso M Hochella . A UHV STM/STS and ab initio investigation of covellite {0 0 1} surfaces.Surface Science, 1999, 423(2–3): 364–374 https://doi.org/10.1016/S0039-6028(98)00941-8
75
K J, Wang G D, Li J X, Li et al.. Formation of single-crystalline CuS nanoplates vertically standing on flat substrate.Crystal Growth & Design, 2007, 7(11): 2265–2267 https://doi.org/10.1021/cg060640z
76
A L, Soares Santos E C, Dos A, Morales-García et al.. The stability and structural, electronic and topological properties of covellite (0 0 1) surfaces.ChemistrySelect, 2016, 1(11): 2730–2741 https://doi.org/10.1002/slct.201600422
77
R, Gaspari L, Manna A Cavalli . A theoretical investigation of the (0 0 0 1) covellite surfaces.The Journal of Chemical Physics, 2014, 141(4): 044702 https://doi.org/10.1063/1.4890374
78
A, Morales-García A L Jr, Soares Santos E C, Dos et al.. First-principles calculations and electron density topological analysis of covellite (CuS).The Journal of Physical Chemistry A, 2014, 118(31): 5823–5831 https://doi.org/10.1021/jp4114706
79
J, Li T, Jiu G H, Tao et al.. Manipulating surface ligands of copper sulfide nanocrystals: synthesis, characterization, and application to organic solar cells.Journal of Colloid and Interface Science, 2014, 419: 142–147 https://doi.org/10.1016/j.jcis.2013.12.057
80
B, Pejjai M, Reddivari T R R Kotte . Phase controllable synthesis of CuS nanoparticles by chemical co-precipitation method: effect of copper precursors on the properties of CuS.Materials Chemistry and Physics, 2020, 239: 122030 https://doi.org/10.1016/j.matchemphys.2019.122030
81
D, Ayodhya M, Venkatesham Kumari A, Santoshi et al.. Photocatalytic degradation of dye pollutants under solar, visible and UV lights using green synthesised CuS nanoparticles.Journal of Experimental Nanoscience, 2016, 11(6): 418–432 https://doi.org/10.1080/17458080.2015.1070312
82
H, Liang W, Shuang Y, Zhang et al.. Graphene-like multilayered CuS nanosheets assembled into flower-like microspheres and their electrocatalytic oxygen evolution properties.ChemElectroChem, 2018, 5(3): 494–500 https://doi.org/10.1002/celc.201701074
83
D, Ayodhya G Veerabhadram . Preparation, characterization, photocatalytic, sensing and antimicrobial studies of Calotropis gigantea leaf extract capped CuS NPs by a green approach.Journal of Inorganic and Organometallic Polymers and Materials, 2017, 27(S1): 215–230 https://doi.org/10.1007/s10904-017-0672-z
84
A M, Huerta-Flores L M, Torres-Martínez E, Moctezuma et al.. Green synthesis of earth-abundant metal sulfides (FeS2, CuS, and NiS2) and their use as visible-light active photocatalysts for H2 generation and dye removal.Journal of Materials Science: Materials in Electronics, 2018, 29(13): 11613–11626 https://doi.org/10.1007/s10854-018-9259-x
85
G, Ramalingam R, Vignesh C, Ragupathi et al.. Electrical and chemical stability of CuS nanofluids for conductivity of water soluble based nanocomposites.Surfaces and Interfaces, 2020, 19: 100475 https://doi.org/10.1016/j.surfin.2020.100475
86
C, Manjunatha R H, Krishna S Ashoka . Green synthesis of inorganic nanoparticles using microemulsion methods. In: Green Sustainable Process for Chemical and Environmental Engineering and Science. Elsevier, 2021, 41‒67
87
Z, Yang S, Zhang X, Zheng et al.. Controllable synthesis of copper sulfide for nonenzymatic hydrazine sensing.Sensors and Actuators B: Chemical, 2018, 255: 2643–2651 https://doi.org/10.1016/j.snb.2017.09.075
88
M, Saranya C, Santhosh R, Ramachandran et al.. Hydrothermal growth of CuS nanostructures and its photocatalytic properties.Powder Technology, 2014, 252: 25–32 https://doi.org/10.1016/j.powtec.2013.10.031
89
S, Yadav P Bajpai . Synthesis of copper sulfide nanoparticles: pH dependent phase stabilization.Nano-Structures & Nano-Objects, 2017, 10: 151–158 https://doi.org/10.1016/j.nanoso.2017.03.009
C F, Mu Q Z, Yao X F, Qu et al.. Controlled synthesis of various hierarchical nanostructures of copper sulfide by a facile microwave irradiation method.Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 371(1–3): 14–21 https://doi.org/10.1016/j.colsurfa.2010.08.049
92
G O, Siqueira T, Matencio Silva H V, da et al.. Temperature and time dependence on ZnS microstructure and phases obtained through hydrothermal decomposition of diethyldithiocarbamate complexes.Physical Chemistry Chemical Physics, 2013, 15(18): 6796–6803 https://doi.org/10.1039/c3cp50549a
93
K, Krishnamoorthy G K, Veerasubramani S J Kim . Hydrothermal synthesis, characterization and electrochemical properties of cobalt sulfide nanoparticles.Materials Science in Semiconductor Processing, 2015, 40: 781–786 https://doi.org/10.1016/j.mssp.2015.06.070
94
Z, Fereshteh M Salavati-Niasari . Effect of ligand on particle size and morphology of nanostructures synthesized by thermal decomposition of coordination compounds.Advances in Colloid and Interface Science, 2017, 243: 86–104 https://doi.org/10.1016/j.cis.2017.03.001
95
M Yoshimura . Importance of soft solution processing for advanced inorganic materials.Journal of Materials Research, 1998, 13(4): 796–802 https://doi.org/10.1557/JMR.1998.0101
96
S, Yang P Y, Zavalij M S Whittingham . Hydrothermal synthesis of lithium iron phosphate cathodes.Electrochemistry Communications, 2001, 3(9): 505–508 https://doi.org/10.1016/S1388-2481(01)00200-4
97
F, Li J, Wu Q, Qin et al.. Controllable synthesis, optical and photocatalytic properties of CuS nanomaterials with hierarchical structures.Powder Technology, 2010, 198(2): 267–274 https://doi.org/10.1016/j.powtec.2009.11.018
98
Z, Cheng S, Wang D, Si et al.. Controlled synthesis of copper sulfide 3D nanoarchitectures through a facile hydrothermal route.Journal of Alloys and Compounds, 2010, 492(1–2): L44–L49 https://doi.org/10.1016/j.jallcom.2009.11.132
99
T, Thongtem C, Pilapong S Thongtem . Large-scale synthesis of CuS hexaplates in mixed solvents using a solvothermal method.Materials Letters, 2010, 64(2): 111–114 https://doi.org/10.1016/j.matlet.2009.10.004
100
V, Rajendran J Gajendiran . Nonionic surfactant poly (ethane 1, 2-diol)-400 assisted solvothermal synthesis of copper monosulfide (CuS) nanoplates and their structural, topographical, optical and luminescent properties.Materials Science in Semiconductor Processing, 2015, 36: 92–95 https://doi.org/10.1016/j.mssp.2015.03.041
101
S, Shahi S, Saeednia P, Iranmanesh et al.. Influence of synthesis parameters on the optical and photocatalytic properties of solvo/hydrothermal CuS and ZnS nanoparticles.Luminescence, 2021, 36(1): 180–191 https://doi.org/10.1002/bio.3933
102
M A, Dheyab A A, Aziz P M, Khaniabadi et al.. Distinct advantages of using sonochemical over laser ablation methods for a rapid-high quality gold nanoparticles production.Materials Research Express, 2021, 8(1): 015009 https://doi.org/10.1088/2053-1591/abd5a4
103
S, Asgharzadehahmadi A A A, Raman R, Parthasarathy et al.. Sonochemical reactors: review on features, advantages and limitations.Renewable & Sustainable Energy Reviews, 2016, 63: 302–314 https://doi.org/10.1016/j.rser.2016.05.030
104
K S, Suslick S-B, Choe A A, Cichowlas et al.. Sonochemical synthesis of amorphous iron.Nature, 1991, 353: 414–416 https://doi.org/10.1038/353414a0
105
M, Kristl N, Hojnik S, Gyergyek et al.. Sonochemical preparation of copper sulfides with different phases in aqueous solutions.Materials Research Bulletin, 2013, 48(3): 1184–1188 https://doi.org/10.1016/j.materresbull.2012.12.020
106
A, Phuruangrat T, Thongtem S Thongtem . Characterization of copper sulfide hexananoplates, and nanoparticles synthesized by a sonochemical method.Chalcogenide Letters, 2011, 8: 291–295
107
C, Deng X, Ge H, Hu et al.. Template-free and green sonochemical synthesis of hierarchically structured CuS hollow microspheres displaying excellent Fenton-like catalytic activities.CrystEngComm, 2014, 16(13): 2738–2745 https://doi.org/10.1039/C3CE42376J
108
S Esposito . “Traditional” sol–gel chemistry as a powerful tool for the preparation of supported metal and metal oxide catalysts.Materials, 2019, 12(4): 668 https://doi.org/10.3390/ma12040668
109
M, Parashar V K, Shukla R Singh . Metal oxides nanoparticles via sol–gel method: a review on synthesis, characterization and applications.Journal of Materials Science: Materials in Electronics, 2020, 31(5): 3729–3749 https://doi.org/10.1007/s10854-020-02994-8
110
S, Riyaz A, Parveen A Azam . Microstructural and optical properties of CuS nanoparticles prepared by sol–gel route.Perspectives in Science, 2016, 8: 632–635 https://doi.org/10.1016/j.pisc.2016.06.041
111
J, Ha J, Oh H, Choi et al.. Photoelectrochemical properties of Ni-doped CuO nanorods grown using the modified chemical bath deposition method.Journal of Industrial and Engineering Chemistry, 2018, 58: 38–44 https://doi.org/10.1016/j.jiec.2017.09.004
112
A, Patil A, Lokhande N, Chodankar et al.. Interior design engineering of CuS architecture alteration with rise in reaction bath temperature for high performance symmetric flexible solid state supercapacitor.Journal of Industrial and Engineering Chemistry, 2017, 46: 91–102 https://doi.org/10.1016/j.jiec.2016.10.019
113
I K, Durga S S, Rao A E, Reddy et al.. Achieving copper sulfide leaf like nanostructure electrode for high performance supercapacitor and quantum-dot sensitized solar cells.Applied Surface Science, 2018, 435: 666–675 https://doi.org/10.1016/j.apsusc.2017.11.171
114
Y J, Zhu F Chen . Microwave-assisted preparation of inorganic nanostructures in liquid phase.Chemical Reviews, 2014, 114(12): 6462–6555 https://doi.org/10.1021/cr400366s
115
T, Thongtem A, Phuruangrat S Thongtem . Characterization of copper sulfide nanostructured spheres and nanotubes synthesized by microwave-assisted solvothermal method.Materials Letters, 2010, 64(2): 136–139 https://doi.org/10.1016/j.matlet.2009.10.021
116
M, Nafees S, Ali S, Idrees et al.. A simple microwave assists aqueous route to synthesis CuS nanoparticles and further aggregation to spherical shape.Applied Nanoscience, 2013, 3(2): 119–124 https://doi.org/10.1007/s13204-012-0113-9
117
H, Hu J, Wang C, Deng et al.. Microwave-assisted controllable synthesis of hierarchical CuS nanospheres displaying fast and efficient photocatalytic activities.Journal of Materials Science, 2018, 53(20): 14250–14261 https://doi.org/10.1007/s10853-018-2669-6
118
A, Pirogov O Shpigun . Application of microemulsions in liquid chromatography and electrokinetic methods of analysis: advantages and disadvantages of the approach.Journal of Analytical Chemistry, 2020, 75(2): 139–147 https://doi.org/10.1134/S1061934820020148
119
M A López-Quintela . Synthesis of nanomaterials in microemulsions: formation mechanisms and growth control.Current Opinion in Colloid & Interface Science, 2003, 8(2): 137–144 https://doi.org/10.1016/S1359-0294(03)00019-0
120
W, Li P, Xu H, Zhou et al.. Advanced functional nanomaterials with microemulsion phase.Science China: Technological Sciences, 2012, 55(2): 387–416 https://doi.org/10.1007/s11431-011-4687-3
121
D, Jiang W, Hu H, Wang et al.. Microemulsion template synthesis of copper sulfide hollow spheres at room temperature.Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 384(1–3): 228–232 https://doi.org/10.1016/j.colsurfa.2011.03.053
122
S, Iqbal A, Bahadur S, Anwer et al.. Designing novel morphologies of L-cysteine surface capped 2D covellite (CuS) nanoplates to study the effect of CuS morphologies on dye degradation rate under visible light.CrystEngComm, 2020, 22(24): 4162–4173 https://doi.org/10.1039/D0CE00421A
123
G, Kalimuldina A, Nurpeissova A, Adylkhanova et al.. Morphology and dimension variations of copper sulfide for high-performance electrode in rechargeable batteries: a review.ACS Applied Energy Materials, 2020, 3(12): 11480–11499 https://doi.org/10.1021/acsaem.0c01686
124
G R, Chaudhary P, Bansal S Mehta . Recyclable CuS quantum dots as heterogeneous catalyst for Biginelli reaction under solvent free conditions.Chemical Engineering Journal, 2014, 243: 217–224 https://doi.org/10.1016/j.cej.2014.01.012
125
K A, Mary N, Unnikrishnan R Philip . Role of surface states and defects in the ultrafast nonlinear optical properties of CuS quantum dots.APL Materials, 2014, 2(7): 076104 https://doi.org/10.1063/1.4886276
126
S, Li Z H, Ge B P, Zhang et al.. Mechanochemically synthesized sub-5 nm sized CuS quantum dots with high visible-light-driven photocatalytic activity.Applied Surface Science, 2016, 384: 272–278 https://doi.org/10.1016/j.apsusc.2016.05.034
127
P, Bansal G R, Chaudhary N, Kaur et al.. An efficient and green synthesis of xanthene derivatives using CuS quantum dots as a heterogeneous and reusable catalyst under solvent free conditions.RSC Advances, 2015, 5(11): 8205–8209 https://doi.org/10.1039/C4RA15045G
128
Y X, Wen M, Qing S L, Chen et al.. Y-type DNA structure stabilized p-type CuS quantum dots to quench photocurrent of ternary heterostructure for sensitive photoelectrochemical detection of miRNA.Sensors and Actuators B: Chemical, 2021, 329: 129257 https://doi.org/10.1016/j.snb.2020.129257
129
X, Li X, He C, Shi et al.. Synthesis of one-dimensional copper sulfide nanorods as high-performance anode in lithium ion batteries.ChemSusChem, 2014, 7(12): 3328–3333 https://doi.org/10.1002/cssc.201402862
130
J, Huang Y, Wang C, Gu et al.. Large scale synthesis of uniform CuS nanotubes by a sacrificial templating method and their application as an efficient photocatalyst.Materials Letters, 2013, 99: 31–34 https://doi.org/10.1016/j.matlet.2012.12.038
131
D, Pal G, Singh Y C, Goswami et al.. Synthesis of randomly oriented self assembled CuS nanorods by co-precipitation route.Journal of Materials Science: Materials in Electronics, 2019, 30(16): 15700–15704 https://doi.org/10.1007/s10854-019-01953-2
132
M, Darouie S, Afshar K, Zare et al.. Investigation of different factors towards synthesis of CuS spherical nanoparticles.Journal of Experimental Nanoscience, 2013, 8(4): 451–461 https://doi.org/10.1080/17458080.2011.593563
133
S, Radhakrishnan H Y, Kim B S Kim . Expeditious and eco-friendly fabrication of highly uniform microflower superstructures and their applications in highly durable methanol oxidation and high-performance supercapacitors.Journal of Materials Chemistry A, 2016, 4(31): 12253–12262 https://doi.org/10.1039/C6TA04888A
134
J, Zou J, Jiang L, Huang et al.. Synthesis, characterization and electrocatalytic activity of copper sulfide nanocrystals with different morphologies.Solid State Sciences, 2011, 13(6): 1261–1267 https://doi.org/10.1016/j.solidstatesciences.2011.03.019
135
J, Fang P, Zhang H, Chang et al.. Hydrothermal synthesis of nanostructured CuS for broadband efficient optical absorption and high-performance photo-thermal conversion.Solar Energy Materials and Solar Cells, 2018, 185: 456–463 https://doi.org/10.1016/j.solmat.2018.05.060
136
S, Li Z, Zhang L, Yan et al.. Fast synthesis of CuS and Cu9S5 microcrystal using subcritical and supercritical methanol and their application in photocatalytic degradation of dye in water.Journal of Supercritical Fluids, 2017, 123: 11–17 https://doi.org/10.1016/j.supflu.2016.12.014
137
R, Singhal D, Thorne P K, LeMaire et al.. Synthesis and characterization of CuS, CuS/graphene oxide nanocomposite for supercapacitor applications.AIP Advances, 2020, 10(3): 035307 https://doi.org/10.1063/1.5132713
138
P H, Camargo T S, Rodrigues Silva A G, da , et al.. Controlled synthesis: nucleation and growth in solution. In: Metallic Nanostructures. Springer, 2015, 49‒74
139
Z, Yang Z, Wu J, Liu et al.. Platelet-like CuS impregnated with twin crystal structures for high performance sodium-ion storage.Journal of Materials Chemistry A, 2020, 8(16): 8049–8057 https://doi.org/10.1039/D0TA00763C
140
M, Saranya R, Ramachandran E J J, Samuel et al.. Enhanced visible light photocatalytic reduction of organic pollutant and electrochemical properties of CuS catalyst.Powder Technology, 2015, 279: 209–220 https://doi.org/10.1016/j.powtec.2015.03.041
C, Nithya G Thiyagaraj . Morphology oriented CuS nanostructures: superior K-ion storage using surface enhanced pseudocapacitive effects.Sustainable Energy & Fuels, 2020, 4(7): 3574–3587 https://doi.org/10.1039/D0SE00469C
143
X H, Guan P, Qu X, Guan et al.. Hydrothermal synthesis of hierarchical CuS/ZnS nanocomposites and their photocatalytic and microwave absorption properties.RSC Advances, 2014, 4(30): 15579–15585 https://doi.org/10.1039/C4RA00659C
144
J, Kundu D Pradhan . Controlled synthesis and catalytic activity of copper sulfide nanostructured assemblies with different morphologies.ACS Applied Materials & Interfaces, 2014, 6(3): 1823–1834 https://doi.org/10.1021/am404829g
145
Sh, Sohrabnezhad M A, Zanjanchi S, Hosseingholizadeh et al.. Facile and low temperature route to synthesis of CuS nanostructure in mesoporous material by solvothermal method.Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2014, 123: 142–150 https://doi.org/10.1016/j.saa.2013.12.050
146
J, Tauc R, Grigorovici A Vancu . Optical properties and electronic structure of amorphous germanium.physica status solidi (b), 1966, 15(2): 627–637 https://doi.org/10.1002/pssb.19660150224
147
Y, Zhao H, Pan Y, Lou et al.. Plasmonic Cu2−xS nanocrystals: optical and structural properties of copper-deficient copper(I) sulfides.Journal of the American Chemical Society, 2009, 131(12): 4253–4261 https://doi.org/10.1021/ja805655b
148
U, Shamraiz R A, Hussain A Badshah . Fabrication and applications of copper sulfide (CuS) nanostructures.Journal of Solid State Chemistry, 2016, 238: 25–40 https://doi.org/10.1016/j.jssc.2016.02.046
149
K, Mageshwari S S, Mali T, Hemalatha et al.. Low temperature growth of CuS nanoparticles by reflux condensation method.Progress in Solid State Chemistry, 2011, 39(3–4): 108–113 https://doi.org/10.1016/j.progsolidstchem.2011.10.003
150
N, Mukherjee A, Sinha G G, Khan et al.. A study on the structural and mechanical properties of nanocrystalline CuS thin films grown by chemical bath deposition technique.Materials Research Bulletin, 2011, 46(1): 6–11 https://doi.org/10.1016/j.materresbull.2010.10.004
151
M, Taunk S Chand . Chemical synthesis and charge transport mechanism in solution processed flexible polypyrrole films.Materials Science in Semiconductor Processing, 2015, 39: 659–664 https://doi.org/10.1016/j.mssp.2015.06.015
152
M, Dhanasekar G, Bakiyaraj K Rammurthi . Structural, morphological, optical and electrical properties of copper sulphide nano crystalline thin films prepared by chemical bath deposition method. International Journal of ChemTech Research, 2014–2015, 7(3): 2014–2015
153
N, Singh M Taunk . In-situ chemical synthesis, microstructural, morphological and charge transport studies of polypyrrole‒CuS hybrid nanocomposites.Journal of Inorganic and Organometallic Polymers and Materials, 2021, 31(1): 437–445 https://doi.org/10.1007/s10904-020-01747-8
154
M T Ramesan . Synthesis, characterization, and conductivity studies of polypyrrole/copper sulfide nanocomposites.Journal of Applied Polymer Science, 2013, 128(3): 1540–1546 https://doi.org/10.1002/app.38304
155
M T Ramesan . In situ synthesis, characterization and conductivity of copper sulphide/polypyrrole/polyvinyl alcohol blend nanocomposite.Polymer-Plastics Technology and Engineering, 2012, 51(12): 1223–1229 https://doi.org/10.1080/03602559.2012.696766
156
S, Iqbal N A, Shaid M M, Sajid et al.. Extensive evaluation of changes in structural, chemical and thermal properties of copper sulfide nanoparticles at different calcination temperature.Journal of Crystal Growth, 2020, 547: 125823 https://doi.org/10.1016/j.jcrysgro.2020.125823
157
J, Madarász M, Krunks L, Niinistö et al.. Thermally evolved gases from thiourea complexes of CuCl in air.Journal of Thermal Analysis and Calorimetry, 2015, 120(1): 189–199 https://doi.org/10.1007/s10973-015-4481-8
158
Y, Liu G, Zhu J, Yang et al.. Phase purification of Cu–S system towards Cu1.8S and its catalytic properties for a clock reaction.RSC Advances, 2015, 5(125): 103458–103464 https://doi.org/10.1039/C5RA17652B
159
R, Mulla M H K Rabinal . Copper sulfides: earth-abundant and low-cost thermoelectric materials.Energy Technology, 2019, 7(7): 1800850 https://doi.org/10.1002/ente.201800850
160
P, Maneesha A, Paulson N A M, Sabeer et al.. Thermo electric measurement of nanocrystalline cobalt doped copper sulfide for energy generation.Materials Letters, 2018, 225: 57–61 https://doi.org/10.1016/j.matlet.2018.04.075
161
G, Dennler R, Chmielowski S, Jacob et al.. Are binary copper sulfides/selenides really new and promising thermoelectric materials?.Advanced Energy Materials, 2014, 4(9): 1301581 https://doi.org/10.1002/aenm.201301581
162
R, Mulla M K Rabinal . Large-scale synthesis of copper sulfide by using elemental sources via simple chemical route.Ultrasonics Sonochemistry, 2017, 39: 528–533 https://doi.org/10.1016/j.ultsonch.2017.05.027
163
C, Yang H F, Wang Q Xu . Recent advances in two-dimensional materials for electrochemical energy storage and conversion.Chemical Research in Chinese Universities, 2020, 36(1): 10–23 https://doi.org/10.1007/s40242-020-9068-7
164
S, Iqbal S Ahmad . Recent development in hybrid conducting polymers: synthesis, applications and future prospects.Journal of Industrial and Engineering Chemistry, 2018, 60: 53–84 https://doi.org/10.1016/j.jiec.2017.09.038
165
S, Kumar G, Saeed L, Zhu et al.. 0D to 3D carbon-based networks combined with pseudocapacitive electrode material for high energy density supercapacitor: a review.Chemical Engineering Journal, 2021, 403: 126352 https://doi.org/10.1016/j.cej.2020.126352
166
S E, Moosavifard M F, El-Kady M S, Rahmanifar et al.. Designing 3D highly ordered nanoporous CuO electrodes for high-performance asymmetric supercapacitors.ACS Applied Materials & Interfaces, 2015, 7(8): 4851–4860 https://doi.org/10.1021/am508816t
167
Y, Chen J, Li Z, Lei et al.. Hollow CuS nanoboxes as Li-free cathode for high-rate and long-life lithium metal batteries.Advanced Energy Materials, 2020, 10(7): 1903401 https://doi.org/10.1002/aenm.201903401
168
Y, Quan G, Wang L, Lu et al.. High-performance pseudo-capacitor energy storage device based on a hollow-structured copper sulfide nanoflower and carbon quantum dot nanocomposite.Electrochimica Acta, 2020, 353: 136606 https://doi.org/10.1016/j.electacta.2020.136606
169
K J, Huang J Z, Zhang Y Fan . One-step solvothermal synthesis of different morphologies CuS nanosheets compared as supercapacitor electrode materials.Journal of Alloys and Compounds, 2015, 625: 158–163 https://doi.org/10.1016/j.jallcom.2014.11.137
170
Y K, Hsu Y C, Chen Y G Lin . Synthesis of copper sulfide nanowire arrays for high-performance supercapacitors.Electrochimica Acta, 2014, 139: 401–407 https://doi.org/10.1016/j.electacta.2014.06.138
171
W, Fu W, Han H, Zha et al.. Nanostructured CuS networks composed of interconnected nanoparticles for asymmetric supercapacitors.Physical Chemistry Chemical Physics, 2016, 18(35): 24471–24476 https://doi.org/10.1039/C6CP02228F
172
J, Guo X, Zhang Y, Sun et al.. Double-shell CuS nanocages as advanced supercapacitor electrode materials.Journal of Power Sources, 2017, 355: 31–35 https://doi.org/10.1016/j.jpowsour.2017.04.052
173
W, Xu Y, Liang Y, Su et al.. Synthesis and properties of morphology controllable copper sulphide nanosheets for supercapacitor application.Electrochimica Acta, 2016, 211: 891–899 https://doi.org/10.1016/j.electacta.2016.06.118
174
K V G, Raghavendra C V M, Gopi R, Vinodh et al.. One-step facile synthesis of dense cloud-like tiny bundled nanoparticles of CuS nanostructures as an efficient electrode material for high-performance supercapacitors.Journal of Energy Storage, 2020, 27: 101148 https://doi.org/10.1016/j.est.2019.101148
175
K, Krishnamoorthy G K, Veerasubramani A N, Rao et al.. One-pot hydrothermal synthesis, characterization and electrochemical properties of CuS nanoparticles towards supercapacitor applications.Materials Research Express, 2014, 1(3): 035006 https://doi.org/10.1088/2053-1591/1/3/035006
176
H, Heydari S E, Moosavifard S, Elyasi et al.. Nanoporous CuS nano-hollow spheres as advanced material for high-performance supercapacitors.Applied Surface Science, 2017, 394: 425–430 https://doi.org/10.1016/j.apsusc.2016.10.138
177
N S, Muthu S D, Samikannu M Gopalan . Influence of thiourea concentration on the CuS nanostructures and identification of the most suited electrolyte for high energy density supercapacitor.Ionics, 2019, 25(9): 4409–4423 https://doi.org/10.1007/s11581-019-03002-8
178
Y, Liu Z, Zhou S, Zhang et al.. Controllable synthesis of CuS hollow microflowers hierarchical structures for asymmetric supercapacitors.Applied Surface Science, 2018, 442: 711–719 https://doi.org/10.1016/j.apsusc.2018.02.220
179
Z, Pan F, Cao X, Hu et al.. A facile method for synthesizing CuS decorated Ti3C2 MXene with enhanced performance for asymmetric supercapacitors.Journal of Materials Chemistry A, 2019, 7(15): 8984–8992 https://doi.org/10.1039/C9TA00085B
180
Z, Tian H, Dou B, Zhang et al.. Three-dimensional graphene combined with hierarchical CuS for the design of flexible solid-state supercapacitors.Electrochimica Acta, 2017, 237: 109–118 https://doi.org/10.1016/j.electacta.2017.03.207
181
S, Ravi C V, Gopi H J Kim . Enhanced electrochemical capacitance of polyimidazole coated covellite CuS dispersed CNT composite materials for application in supercapacitors.Dalton Transactions, 2016, 45(31): 12362–12371 https://doi.org/10.1039/C6DT01664B
182
G, Wang M, Zhang L, Lu et al.. One-pot synthesis of CuS nanoflower-decorated active carbon layer for high-performance asymmetric supercapacitors.ChemNanoMat, 2018, 4(9): 964–971 https://doi.org/10.1002/cnma.201800179
K, Jin M, Zhou H, Zhao et al.. Electrodeposited CuS nanosheets on carbonized cotton fabric as flexible supercapacitor electrode for high energy storage.Electrochimica Acta, 2019, 295: 668–676 https://doi.org/10.1016/j.electacta.2018.10.182
185
P, Himasree I K, Durga T, Krishna et al.. One-step hydrothermal synthesis of CuS@MnS on Ni foam for high performance supercapacitor electrode material.Electrochimica Acta, 2019, 305: 467–473 https://doi.org/10.1016/j.electacta.2019.03.041
186
S I, El-Hout S G, Mohamed A, Gaber et al.. High electrochemical performance of rGO anchored CuS nanospheres for supercapacitor applications.Journal of Energy Storage, 2021, 34: 102001 https://doi.org/10.1016/j.est.2020.102001
187
X Y, Yu L, Yu X W Lou . Metal sulfide hollow nanostructures for electrochemical energy storage.Advanced Energy Materials, 2016, 6(3): 1501333 https://doi.org/10.1002/aenm.201501333
188
J S, Nam J H, Lee S M, Hwang et al.. New insights into the phase evolution in CuS during lithiation and delithiation processes.Journal of Materials Chemistry A, 2019, 7(19): 11699–11708 https://doi.org/10.1039/C9TA03008E
189
K, Jian Z, Chen X Meng . CuS and Cu2S as cathode materials for lithium batteries: a review.ChemElectroChem, 2019, 6(11): 2825–2840 https://doi.org/10.1002/celc.201900066
190
Y, Du Z, Yin J, Zhu et al.. A general method for the large-scale synthesis of uniform ultrathin metal sulphide nanocrystals.Nature Communications, 2012, 3(1): 1177 https://doi.org/10.1038/ncomms2181
191
S, Goriparti E, Miele Angelis F, De et al.. Review on recent progress of nanostructured anode materials for Li-ion batteries.Journal of Power Sources, 2014, 257: 421–443 https://doi.org/10.1016/j.jpowsour.2013.11.103
192
K, He Z, Yao S, Hwang et al.. Kinetically-driven phase transformation during lithiation in copper sulfide nanoflakes.Nano Letters, 2017, 17(9): 5726–5733 https://doi.org/10.1021/acs.nanolett.7b02694
193
G Y, Chen Z Y, Wei B, Jin et al.. Hydrothermal synthesis of copper sulfide with novel hierarchical structures and its application in lithium-ion batteries.Applied Surface Science, 2013, 277: 268–271 https://doi.org/10.1016/j.apsusc.2013.04.041
194
J, Long T, Han M, Zhu et al.. A matryoshka-like CuS@void@Co3O4 double microcube-locked sulfur as cathode for high-performance lithium–sulfur batteries.Ceramics International, 2021, 47(18): 25769–25776 https://doi.org/10.1016/j.ceramint.2021.05.304
195
H, Liu Y, He H, Zhang et al.. Lowering the voltage-hysteresis of CuS anode for Li-ion batteries via constructing heterostructure.Chemical Engineering Journal, 2021, 425: 130548 https://doi.org/10.1016/j.cej.2021.130548
W, Li A, Furlan K H, Hendriks et al.. Efficient tandem and triple-junction polymer solar cells.Journal of the American Chemical Society, 2013, 135(15): 5529–5532 https://doi.org/10.1021/ja401434x
198
W, Han G, Ren J, Liu et al.. Recent progress of inverted perovskite solar cells with a modified PEDOT:PSS hole transport layer.ACS Applied Materials & Interfaces, 2020, 12(44): 49297–49322 https://doi.org/10.1021/acsami.0c13576
199
Z, Du Z, Pan F, Fabregat-Santiago et al.. Carbon counter-electrode-based quantum-dot-sensitized solar cells with certified efficiency exceeding 11%.The Journal of Physical Chemistry Letters, 2016, 7(16): 3103–3111 https://doi.org/10.1021/acs.jpclett.6b01356
200
H, Song Y, Lin Z, Zhang et al.. Improving the efficiency of quantum dot sensitized solar cells beyond 15% via secondary deposition.Journal of the American Chemical Society, 2021, 143(12): 4790–4800 https://doi.org/10.1021/jacs.1c01214
J, Tan Y, Shen Z, Zhang et al.. Highly-efficient quantum dot-sensitized solar cells based on Sn doped ZnO and CuS electrodes.Journal of Materials Science: Materials in Electronics, 2015, 26(4): 2145–2150 https://doi.org/10.1007/s10854-014-2660-1
203
C D, Sunesh C V, Gopi M P A, Muthalif et al.. Improving the efficiency of quantum-dot-sensitized solar cells by optimizing the growth time of the CuS counter electrode.Applied Surface Science, 2017, 416: 446–453 https://doi.org/10.1016/j.apsusc.2017.04.200
204
H J, Kim L, Myung-Sik C V, Gopi et al.. Cost-effective and morphology controllable PVP based highly efficient CuS counter electrodes for high-efficiency quantum dot-sensitized solar cells.Dalton Transactions, 2015, 44(25): 11340–11351 https://doi.org/10.1039/C5DT01412C
205
M P A, Muthalif C D, Sunesh Y Choe . Improved photovoltaic performance of quantum dot-sensitized solar cells based on highly electrocatalytic Ca-doped CuS counter electrodes.Journal of Photochemistry and Photobiology A: Chemistry, 2018, 358: 177–185 https://doi.org/10.1016/j.jphotochem.2018.03.013
206
C V M, Gopi S, Sambasivam R, Vinodh et al.. Nanostructured Ni-doped CuS thin film as an efficient counter electrode material for high-performance quantum dot-sensitized solar cells.Journal of Materials Science: Materials in Electronics, 2020, 31(2): 975–982 https://doi.org/10.1007/s10854-019-02608-y
207
S S, Rao I K, Durga T S, Kang et al.. Enhancing the photovoltaic performance and stability of QDSSCs using surface reinforced Pt nanostructures with controllable morphology and superior electrocatalysis via cost-effective chemical bath deposition.Dalton Transactions, 2016, 45(8): 3450–3463 https://doi.org/10.1039/C5DT04887G
208
L, Wen Q, Chen L, Zhou et al.. Cu1.8S@CuS composite material improved the photoelectric efficiency of cadmium-series QDSSCs.Optical Materials, 2020, 108: 110172 https://doi.org/10.1016/j.optmat.2020.110172
209
M, Zervos E, Vasile E, Vasile et al.. Current transport properties of CuS/Sn: In2O3 versus CuS/SnO2 nanowires and negative differential resistance in quantum dot sensitized solar cells.The Journal of Physical Chemistry C, 2016, 120(1): 11–20 https://doi.org/10.1021/acs.jpcc.5b08306
210
S D, Sung I, Lim P, Kang et al.. Design and development of highly efficient PbS quantum dot-sensitized solar cells working in an aqueous polysulfide electrolyte.Chemical Communications, 2013, 49(54): 6054–6056 https://doi.org/10.1039/c3cc40754c
211
C K, Kamaja R R, Devarapalli M V Shelke . One-step synthesis of a MoS2‒CuS composite with high electrochemical activity as an effective counter electrode for CdS/CdSe sensitized solar cells.ChemElectroChem, 2017, 4(8): 1984–1989 https://doi.org/10.1002/celc.201700231
212
L, Li P, Zhu S, Peng et al.. Controlled growth of CuS on electrospun carbon nanofibers as an efficient counter electrode for quantum dot-sensitized solar cells.The Journal of Physical Chemistry C, 2014, 118(30): 16526–16535 https://doi.org/10.1021/jp4117529
213
Y, Zhu H, Cui S, Jia et al.. 3D graphene frameworks with uniformly dispersed CuS as an efficient catalytic electrode for quantum dot-sensitized solar cells.Electrochimica Acta, 2016, 208: 288–295 https://doi.org/10.1016/j.electacta.2016.05.052
214
H J, Kim S M, Suh S S, Rao et al.. Investigation on novel CuS/NiS composite counter electrode for hindering charge recombination in quantum dot sensitized solar cells.Journal of Electroanalytical Chemistry, 2016, 777: 123–132 https://doi.org/10.1016/j.jelechem.2016.07.037
215
L, Givalou M, Antoniadou D, Perganti et al.. Electrodeposited cobalt‒copper sulfide counter electrodes for highly efficient quantum dot sensitized solar cells.Electrochimica Acta, 2016, 210: 630–638 https://doi.org/10.1016/j.electacta.2016.05.191
216
M, Eskandari R, Ghahary M, Shokri et al.. Zinc oxide/copper sulfide nanorods as a highly catalytic counter electrode material for quantum dot sensitized solar cells.RSC Advances, 2016, 6(57): 51894–51899 https://doi.org/10.1039/C6RA11034G
217
X, Song J, Wang X, Liu et al.. Microwave-assisted hydrothermal synthesis of CuS nanoplate films on conductive substrates as efficient counter electrodes for liquid-junction quantum dot-sensitized solar cells.Journal of the Electrochemical Society, 2017, 164(4): H215–H224 https://doi.org/10.1149/2.1411704jes
218
F, Wang H, Dong J, Pan et al.. One-step electrochemical deposition of hierarchical CuS nanostructures on conductive substrates as robust, high-performance counter electrodes for quantum-dot-sensitized solar cells.The Journal of Physical Chemistry C, 2014, 118(34): 19589–19598 https://doi.org/10.1021/jp505737u
219
M P A, Muthalif Y Choe . Surface modification of CuS counter electrodes by hydrohalic acid treatment for improving interfacial charge transfer in quantum-dot-sensitized solar cells.Journal of Colloid and Interface Science, 2021, 595: 15–24 https://doi.org/10.1016/j.jcis.2021.03.113
220
F, Xi H, Liu W, Li et al.. Fabricating CuS counter electrode for quantum dots-sensitized solar cells via electro-deposition and sulfurization of Cu2O.Electrochimica Acta, 2015, 178: 329–335 https://doi.org/10.1016/j.electacta.2015.08.020
221
C J, Raj K, Prabakar A D, Savariraj et al.. Surface reinforced platinum counter electrode for quantum dots sensitized solar cells.Electrochimica Acta, 2013, 103: 231–236 https://doi.org/10.1016/j.electacta.2013.04.016
222
M A, Agoro J Z, Mbese E L, Meyer et al.. Electrochemical signature of CuS photosensitizers thermalized from alkyldithiocarbamato Cu(II) molecular precursors for quantum dots sensitized solar cells.Materials Letters, 2021, 285: 129191 https://doi.org/10.1016/j.matlet.2020.129191
223
W, Zheng S Zhang . Three-dimensional graphitic C3N4/CuS composite as the low-cost and high performance counter electrodes in QDSCs.Journal of Alloys and Compounds, 2021, 862: 158706 https://doi.org/10.1016/j.jallcom.2021.158706
224
Z, Song H, Lei B, Li et al.. Enhanced field emission from in situ synthesized 2D copper sulfide nanoflakes at low temperature by using a novel controllable solvothermal preferred edge growth route.Physical Chemistry Chemical Physics, 2015, 17(17): 11790–11795 https://doi.org/10.1039/C5CP00493D
225
X F, Su J B, Chen R M, He et al.. The preparation of oxygen-deficient ZnO nanorod arrays and their enhanced field emission.Materials Science in Semiconductor Processing, 2017, 67: 55–61 https://doi.org/10.1016/j.mssp.2017.05.012
226
R M, He J B, Chen B J, Qi et al.. Enhanced field emission properties of the copper sulfide nanowalls with optimized 3-D morphology.Physica E: Low-Dimensional Systems and Nanostructures, 2018, 103: 227–233 https://doi.org/10.1016/j.physe.2018.04.027
227
R P, Antony T, Mathews K, Panda et al.. Enhanced field emission properties of electrochemically synthesized self-aligned nitrogen-doped TiO2 nanotube array thin films.The Journal of Physical Chemistry C, 2012, 116(31): 16740–16746 https://doi.org/10.1021/jp302578b
228
Y, Li W, Qi Y, Li et al.. Modeling the size-dependent solid–solid phase transition temperature of Cu2S nanosolids.The Journal of Physical Chemistry C, 2012, 116(17): 9800–9804 https://doi.org/10.1021/jp3003307
229
R, Sawafta T Shahwan . A comparative study of the removal of methylene blue by iron nanoparticles from water and water‒ethanol solutions.Journal of Molecular Liquids, 2019, 273: 274–281 https://doi.org/10.1016/j.molliq.2018.10.010
230
W, Xu S, Zhu Y, Liang et al.. Nanoporous CuS with excellent photocatalytic property.Scientific Reports, 2015, 5(1): 18125 https://doi.org/10.1038/srep18125
231
N, Nasseh L, Taghavi B, Barikbin et al.. Synthesis and characterizations of a novel FeNi3/SiO2/CuS magnetic nanocomposite for photocatalytic degradation of tetracycline in simulated wastewater.Journal of Cleaner Production, 2018, 179: 42–54 https://doi.org/10.1016/j.jclepro.2018.01.052
232
L, Yang X, Guan G S, Wang et al.. Synthesis of ZnS/CuS nanospheres loaded on reduced graphene oxide as high-performance photocatalysts under simulated sunlight irradiation.New Journal of Chemistry, 2017, 41(13): 5732–5744 https://doi.org/10.1039/C7NJ00801E
233
G, Wang A Fakhri . Preparation of CuS/polyvinyl alcohol‒chitosan nanocomposites with photocatalysis activity and antibacterial behavior against G+/G− bacteria.International Journal of Biological Macromolecules, 2020, 155: 36–41 https://doi.org/10.1016/j.ijbiomac.2020.03.077
234
S, Yu J, Liu Y, Zhou et al.. Effect of synthesis method on the nanostructure and solar-driven photocatalytic properties of TiO2‒CuS composites.ACS Sustainable Chemistry & Engineering, 2017, 5(2): 1347–1357 https://doi.org/10.1021/acssuschemeng.6b01769
235
P, Borthakur P K, Boruah G, Darabdhara et al.. Microwave assisted synthesis of CuS-reduced graphene oxide nanocomposite with efficient photocatalytic activity towards azo dye degradation.Journal of Environmental Chemical Engineering, 2016, 4(4): 4600–4611 https://doi.org/10.1016/j.jece.2016.10.023
236
P, Borthakur M R, Das S, Szunerits et al.. CuS decorated functionalized reduced graphene oxide: a dual responsive nanozyme for selective detection and photoreduction of Cr(VI) in an aqueous medium.ACS Sustainable Chemistry & Engineering, 2019, 7(19): 16131–16143 https://doi.org/10.1021/acssuschemeng.9b03043
237
S, Adhikari D, Sarkar G Madras . Hierarchical design of CuS architectures for visible light photocatalysis of 4-chlorophenol.ACS Omega, 2017, 2(7): 4009–4021 https://doi.org/10.1021/acsomega.7b00669
238
X, Wang L, Li Z, Fu et al.. Carbon quantum dots decorated CuS nanocomposite for effective degradation of methylene blue and antibacterial performance.Journal of Molecular Liquids, 2018, 268: 578–586 https://doi.org/10.1016/j.molliq.2018.07.086
239
R, Mohamed A Shawky . CNT supported Mn-doped ZnO nanoparticles: simple synthesis and improved photocatalytic activity for degradation of malachite green dye under visible light.Applied Nanoscience, 2018, 8(5): 1179–1188 https://doi.org/10.1007/s13204-018-0742-8
240
R, Mohamed I, Mkhalid A Shawky . Facile synthesis of Pt–In2O3/BiVO4 nanospheres with improved visible-light photocatalytic activity.Journal of Alloys and Compounds, 2019, 775: 542–548 https://doi.org/10.1016/j.jallcom.2018.10.181
241
X, You X, Geng X, Liu et al.. A comparative study of the photocatalytic properties of CuS nanotubes and nanoparticles by hydrothermal method.Indian Journal of Chemistry Section A: Inorganic Bio-Inorganic Physical Theoretical & Analytical Chemistry, 2017, 56(1): 57–62
242
M, Wang F, Xie W, Li et al.. Preparation of various kinds of copper sulfides in a facile way and the enhanced catalytic activity by visible light.Journal of Materials Chemistry A, 2013, 1(30): 8616–8621 https://doi.org/10.1039/c3ta11739a
243
Z, Cheng S, Wang Q, Wang et al.. A facile solution chemical route to self-assembly of CuS ball-flowers and their application as an efficient photocatalyst.CrystEngComm, 2010, 12(1): 144–149 https://doi.org/10.1039/B914902C
244
X, Meng G, Tian Y, Chen et al.. Hierarchical CuS hollow nanospheres and their structure-enhanced visible light photocatalytic properties.CrystEngComm, 2013, 15(25): 5144–5149 https://doi.org/10.1039/c3ce40195b
245
C, Nethravathi R N, R J T, Rajamathi et al.. Microwave-assisted synthesis of porous aggregates of CuS nanoparticles for sunlight photocatalysis.ACS Omega, 2019, 4(3): 4825–4831 https://doi.org/10.1021/acsomega.8b03288
246
X, Deng C, Wang H, Yang et al.. One-pot hydrothermal synthesis of CdS decorated CuS microflower-like structures for enhanced photocatalytic properties.Scientific Reports, 2017, 7(1): 3877 https://doi.org/10.1038/s41598-017-04270-y
247
Q, Chen S, Wu Y Xin . Synthesis of Au–CuS–TiO2 nanobelts photocatalyst for efficient photocatalytic degradation of antibiotic oxytetracycline.Chemical Engineering Journal, 2016, 302: 377–387 https://doi.org/10.1016/j.cej.2016.05.076
248
S, Harish J, Archana M, Navaneethan et al.. Synergetic effect of CuS@ZnS nanostructures on photocatalytic degradation of organic pollutant under visible light irradiation.RSC Advances, 2017, 7(55): 34366–34375 https://doi.org/10.1039/C7RA04250G
249
S I, El-Hout S M, El-Sheikh A, Gaber et al.. Highly efficient sunlight-driven photocatalytic degradation of malachite green dye over reduced graphene oxide-supported CuS nanoparticles.Journal of Alloys and Compounds, 2020, 849: 156573 https://doi.org/10.1016/j.jallcom.2020.156573
250
X S, Hu Y, Shen L H, Xu et al.. Preparation of flower-like CuS by solvothermal method and its photodegradation and UV protection.Journal of Alloys and Compounds, 2016, 674: 289–294 https://doi.org/10.1016/j.jallcom.2016.03.047
251
X S, Hu Y, Shen L S, Lu et al.. Synthesis of flower-like CuS for photodegradation of dye wastewater.Journal of Nanoscience and Nanotechnology, 2017, 17(8): 5335–5341 https://doi.org/10.1166/jnn.2017.13794
252
J H, Yoo M, Ji J H, Kim et al.. Facile synthesis of hierarchical CuS microspheres with high visible-light-driven photocatalytic activity.Journal of Photochemistry and Photobiology A: Chemistry, 2020, 401: 112782 https://doi.org/10.1016/j.jphotochem.2020.112782
253
M, Hu H, Tian J He . Unprecedented selectivity and rapid uptake of CuS nanostructures toward Hg(II) ions.ACS Applied Materials & Interfaces, 2019, 11(21): 19200–19206 https://doi.org/10.1021/acsami.9b04641
254
J, Guo H, Tian J He . Integration of CuS nanoparticles and cellulose fibers towards fast, selective and efficient capture and separation of mercury ions.Chemical Engineering Journal, 2021, 408: 127336 https://doi.org/10.1016/j.cej.2020.127336
255
X, Zhang M, Liu Z, Kang et al.. NIR-triggered photocatalytic/photothermal/photodynamic water remediation using eggshell-derived CaCO3/CuS nanocomposites.Chemical Engineering Journal, 2020, 388: 124304 https://doi.org/10.1016/j.cej.2020.124304
256
M, Chandra K, Bhunia D Pradhan . Controlled synthesis of CuS/TiO2 heterostructured nanocomposites for enhanced photocatalytic hydrogen generation through water splitting.Inorganic Chemistry, 2018, 57(8): 4524–4533 https://doi.org/10.1021/acs.inorgchem.8b00283
257
R M, Gunnagol M H K Rabinal . TiO2/rGO/CuS nanocomposites for efficient photocatalytic degradation of rhodamine-B dye.ChemistrySelect, 2019, 4(20): 6167–6176 https://doi.org/10.1002/slct.201901041
258
Z, Li B Zeng . CdS nanoparticle-decorated CuS microflower‒2D graphene hybrids and their enhanced photocatalytic performance.Chalcogenide Letters, 2021, 18(1): 39–46 https://doi.org/10.15251/CL.2021.181.39
259
Y, Liu M, Li Q, Zhang et al.. One-step synthesis of a WO3‒CuS nanosheet heterojunction with enhanced photocatalytic performance for methylene blue degradation and Cr(VI) reduction.Journal of Chemical Technology and Biotechnology, 2020, 95(3): 665–674 https://doi.org/10.1002/jctb.6247
260
F, Zhang H Q, Zhuang W, Zhang et al.. Noble-metal-free CuS/CdS photocatalyst for efficient visible-light-driven photocatalytic H2 production from water.Catalysis Today, 2019, 330: 203–208 https://doi.org/10.1016/j.cattod.2018.03.060
261
Y P, Bhoi B Mishra . Photocatalytic degradation of alachlor using type-II CuS/BiFeO3 heterojunctions as novel photocatalyst under visible light irradiation.Chemical Engineering Journal, 2018, 344: 391–401 https://doi.org/10.1016/j.cej.2018.03.094
262
M, Kamranifar A, Allahresani A Naghizadeh . Synthesis and characterizations of a novel CoFe2O4@CuS magnetic nanocomposite and investigation of its efficiency for photocatalytic degradation of penicillin G antibiotic in simulated wastewater.Journal of Hazardous Materials, 2019, 366: 545–555 https://doi.org/10.1016/j.jhazmat.2018.12.046
263
L, Zhou S, Dai S, Xu et al.. Piezoelectric effect synergistically enhances the performance of Ti32-oxo-cluster/BaTiO3/CuS pn heterojunction photocatalytic degradation of pollutants.Applied Catalysis B: Environmental, 2021, 291: 120019 https://doi.org/10.1016/j.apcatb.2021.120019
264
C, Lai M, Zhang B, Li et al.. Fabrication of CuS/BiVO4 (0 4 0) binary heterojunction photocatalysts with enhanced photocatalytic activity for ciprofloxacin degradation and mechanism insight.Chemical Engineering Journal, 2019, 358: 891–902 https://doi.org/10.1016/j.cej.2018.10.072
265
N, Nasseh B, Barikbin L Taghavi . Photocatalytic degradation of tetracycline hydrochloride by FeNi3/SiO2/CuS magnetic nanocomposite under simulated solar irradiation: efficiency, stability, kinetic and pathway study.Environmental Technology & Innovation, 2020, 20: 101035 https://doi.org/10.1016/j.eti.2020.101035
266
D A, Reddy E H, Kim M, Gopannagari et al.. Enhanced photocatalytic hydrogen evolution by integrating dual co-catalysts on heterophase CdS nano-junctions.ACS Sustainable Chemistry & Engineering, 2018, 6(10): 12835–12844 https://doi.org/10.1021/acssuschemeng.8b02098
267
Q, Chen M, Zhang J, Li et al.. Construction of immobilized 0D/1D heterostructure photocatalyst Au/CuS/CdS/TiO2 NBs with enhanced photocatalytic activity towards moxifloxacin degradation.Chemical Engineering Journal, 2020, 389: 124476 https://doi.org/10.1016/j.cej.2020.124476
268
W C, Lee K B, Kim N G, Gurudatt et al.. Comparison of enzymatic and non-enzymatic glucose sensors based on hierarchical Au‒Ni alloy with conductive polymer.Biosensors & Bioelectronics, 2019, 130: 48–54 https://doi.org/10.1016/j.bios.2019.01.028
269
C, Wei X, Zou Q, Liu et al.. A highly sensitive non-enzymatic glucose sensor based on CuS nanosheets modified Cu2O/CuO nanowire arrays.Electrochimica Acta, 2020, 334: 135630 https://doi.org/10.1016/j.electacta.2020.135630
270
A K, Dutta S, Das P K, Samanta et al.. Non-enzymatic amperometric sensing of hydrogen peroxide at a CuS modified electrode for the determination of urine H2O2.Electrochimica Acta, 2014, 144: 282–287 https://doi.org/10.1016/j.electacta.2014.08.051
271
W B, Kim S H, Lee M, Cho et al.. Facile and cost-effective CuS dendrite electrode for non-enzymatic glucose sensor.Sensors and Actuators B: Chemical, 2017, 249: 161–167 https://doi.org/10.1016/j.snb.2017.04.089
272
A, Swaidan P, Borthakur P K, Boruah et al.. A facile preparation of CuS‒BSA nanocomposite as enzyme mimics: application for selective and sensitive sensing of Cr(VI) ions.Sensors and Actuators B: Chemical, 2019, 294: 253–262 https://doi.org/10.1016/j.snb.2019.05.052
273
Y, Li Z, Kang L, Kong et al.. MXene‒Ti3C2/CuS nanocomposites: enhanced peroxidase-like activity and sensitive colorimetric cholesterol detection.Materials Science and Engineering C, 2019, 104: 110000 https://doi.org/10.1016/j.msec.2019.110000
274
Y, Zhang Y N, Wang X T, Sun et al.. Boron nitride nanosheet/CuS nanocomposites as mimetic peroxidase for sensitive colorimetric detection of cholesterol.Sensors and Actuators B: Chemical, 2017, 246: 118–126 https://doi.org/10.1016/j.snb.2017.02.059
275
J, Xu J, Zhang C, Yao et al.. Synthesis of novel highly porous CuS golf balls by hydrothermal method and their application in ammonia gas sensing.Journal of the Chilean Chemical Society, 2013, 58(2): 1722–1724 https://doi.org/10.4067/S0717-97072013000200017
276
G, Cui L, Wang L, Li et al.. Synthesis of CuS nanoparticles decorated Ti3C2Tx MXene with enhanced microwave absorption performance.Progress in Natural Science: Materials International, 2020, 30(3): 343–351 https://doi.org/10.1016/j.pnsc.2020.06.001
277
X, Sun M, Sui G, Cui et al.. Fe3O4 nanoparticles decorated on a CuS platelet-based sphere: a popcorn chicken-like heterostructure as an ideal material against electromagnetic pollution.RSC Advances, 2018, 8(31): 17489–17496 https://doi.org/10.1039/C8RA03015D
278
Y, Wang X, Gao X, Wu et al.. Hierarchical ZnFe2O4@RGO@CuS composite: strong absorption and wide-frequency absorption properties.Ceramics International, 2018, 44(8): 9816–9822 https://doi.org/10.1016/j.ceramint.2018.02.220
279
J, Yang D, Dai X, Lou et al.. Supramolecular nanomaterials based on hollow mesoporous drug carriers and macrocycle-capped CuS nanogates for synergistic chemo-photothermal therapy.Theranostics, 2020, 10(2): 615–629 https://doi.org/10.7150/thno.40066
280
H, Shi R, Yan L, Wu et al.. Tumor-targeting CuS nanoparticles for multimodal imaging and guided photothermal therapy of lymph node metastasis.Acta Biomaterialia, 2018, 72: 256–265 https://doi.org/10.1016/j.actbio.2018.03.035
281
M, Xu G, Yang H, Bi et al.. Combination of CuS and g-C3N4 QDs on upconversion nanoparticles for targeted photothermal and photodynamic cancer therapy.Chemical Engineering Journal, 2019, 360: 866–878 https://doi.org/10.1016/j.cej.2018.12.052
282
S, Goel F, Chen W Cai . Synthesis and biomedical applications of copper sulfide nanoparticles: from sensors to theranostics.Small, 2014, 10(4): 631–645 https://doi.org/10.1002/smll.201301174
283
Q, Feng Y, Zhang W, Zhang et al.. Tumor-targeted and multi-stimuli responsive drug delivery system for near-infrared light induced chemo-phototherapy and photoacoustic tomography.Acta Biomaterialia, 2016, 38: 129–142 https://doi.org/10.1016/j.actbio.2016.04.024
284
L, Hou X, Shan L, Hao et al.. Copper sulfide nanoparticle-based localized drug delivery system as an effective cancer synergistic treatment and theranostic platform.Acta Biomaterialia, 2017, 54: 307–320 https://doi.org/10.1016/j.actbio.2017.03.005
285
Q, Jia D, Li Q, Zhang et al.. Biomineralization synthesis of HBc‒CuS nanoparticles for near-infrared light-guided photothermal therapy.Journal of Materials Science, 2019, 54(20): 13255–13264 https://doi.org/10.1007/s10853-019-03613-6
286
S, Ramadan L, Guo Y, Li et al.. Hollow copper sulfide nanoparticle-mediated transdermal drug delivery.Small, 2012, 8(20): 3143–3150 https://doi.org/10.1002/smll.201200783
287
K, Dong Z, Liu Z, Li et al.. Hydrophobic anticancer drug delivery by a 980 nm laser-driven photothermal vehicle for efficient synergistic therapy of cancer cells in vivo.Advanced Materials, 2013, 25(32): 4452–4458 https://doi.org/10.1002/adma.201301232
288
W, Ji N, Li D, Chen et al.. A hollow porous magnetic nanocarrier for efficient near-infrared light- and pH-controlled drug release.RSC Advances, 2014, 4(92): 51055–51061 https://doi.org/10.1039/C4RA07573K
289
X, Deng K, Li X, Cai et al.. A hollow-structured CuS@Cu2S@Au nanohybrid: synergistically enhanced photothermal efficiency and photoswitchable targeting effect for cancer theranostics.Advanced Materials, 2017, 29(36): 1701266 https://doi.org/10.1002/adma.201701266
M R, Younis R B, An Y C, Yin et al.. Plasmonic nanohybrid with high photothermal conversion efficiency for simultaneously effective antibacterial/anticancer photothermal therapy.ACS Applied Bio Materials, 2019, 2(9): 3942–3953 https://doi.org/10.1021/acsabm.9b00521
292
L, Guo Y, Li Z, Xiao , et al.. Photothermal properties of hollow gold nanostructures for cancer theranostics. In: Handbook of Nanomaterials Properties. Springer, 2014, 1199‒1226
293
S, Wang Y, Zhao Y Xu . Recent advances in applications of multimodal ultrasound-guided photoacoustic imaging technology.Visual Computing for Industry, Biomedicine, and Art, 2020, 3(1): 24 https://doi.org/10.1186/s42492-020-00061-x
294
L, Guo I, Panderi D D, Yan et al.. A comparative study of hollow copper sulfide nanoparticles and hollow gold nanospheres on degradability and toxicity.ACS Nano, 2013, 7(10): 8780–8793 https://doi.org/10.1021/nn403202w
295
Q, Xiao X, Zheng W, Bu et al.. A core/satellite multifunctional nanotheranostic for in vivo imaging and tumor eradication by radiation/photothermal synergistic therapy.Journal of the American Chemical Society, 2013, 135(35): 13041–13048 https://doi.org/10.1021/ja404985w
296
Z, Zha S, Wang S, Zhang et al.. Targeted delivery of CuS nanoparticles through ultrasound image-guided microbubble destruction for efficient photothermal therapy.Nanoscale, 2013, 5(8): 3216–3219 https://doi.org/10.1039/c3nr00541k
297
Y, Li W, Lu Q, Huang et al.. Copper sulfide nanoparticles for photothermal ablation of tumor cells.Nanomedicine, 2010, 5(8): 1161–1171 https://doi.org/10.2217/nnm.10.85
298
Z, Wang W, Yu N, Yu et al.. Construction of CuS@Fe-MOF nanoplatforms for MRI-guided synergistic photothermal-chemo therapy of tumors.Chemical Engineering Journal, 2020, 400: 125877 https://doi.org/10.1016/j.cej.2020.125877
299
Y, Li G, Bai S, Zeng et al.. Theranostic carbon dots with innovative NIR-II emission for in vivo renal-excreted optical imaging and photothermal therapy.ACS Applied Materials & Interfaces, 2019, 11(5): 4737–4744 https://doi.org/10.1021/acsami.8b14877
300
L, Zhou F, Chen Z, Hou et al.. Injectable self-healing CuS nanoparticle complex hydrogels with antibacterial, anti-cancer, and wound healing properties.Chemical Engineering Journal, 2021, 409: 128224 https://doi.org/10.1016/j.cej.2020.128224
301
M, Arshad Z, Wang J A, Nasir et al.. Single source precursor synthesized CuS nanoparticles for NIR phototherapy of cancer and photodegradation of organic carcinogen.Journal of Photochemistry and Photobiology B: Biology, 2021, 214: 112084 https://doi.org/10.1016/j.jphotobiol.2020.112084
302
X, Bu D, Zhou J, Li et al.. Copper sulfide self-assembly architectures with improved photothermal performance.Langmuir, 2014, 30(5): 1416–1423 https://doi.org/10.1021/la404009d
303
D, Wang Q, Li Z, Xing et al.. Copper sulfide nanoplates as nanosensors for fast, sensitive and selective detection of DNA.Talanta, 2018, 178: 905–909 https://doi.org/10.1016/j.talanta.2017.10.039
304
S S, Kelkar T M Reineke . Theranostics: combining imaging and therapy.Bioconjugate Chemistry, 2011, 22(10): 1879–1903 https://doi.org/10.1021/bc200151q
305
R, Liu L, Jing D, Peng et al.. Manganese(II) chelate functionalized copper sulfide nanoparticles for efficient magnetic resonance/photoacoustic dual-modal imaging guided photothermal therapy.Theranostics, 2015, 5(10): 1144–1153 https://doi.org/10.7150/thno.11754
306
Y, Wang G, Yang Y, Wang et al.. Multiple imaging and excellent anticancer efficiency of an upconverting nanocarrier mediated by single near infrared light.Nanoscale, 2017, 9(14): 4759–4769 https://doi.org/10.1039/C6NR09030C
307
D Y, Santiesteban D S, Dumani D, Profili et al.. Copper sulfide perfluorocarbon nanodroplets as clinically relevant photoacoustic/ultrasound imaging agents.Nano Letters, 2017, 17(10): 5984–5989 https://doi.org/10.1021/acs.nanolett.7b02105
308
M, Zhou J, Zhao M, Tian et al.. Radio-photothermal therapy mediated by a single compartment nanoplatform depletes tumor initiating cells and reduces lung metastasis in the orthotopic 4T1 breast tumor model.Nanoscale, 2015, 7(46): 19438–19447 https://doi.org/10.1039/C5NR04587H
309
L, Han Y, Zhang X W, Chen et al.. Protein-modified hollow copper sulfide nanoparticles carrying indocyanine green for photothermal and photodynamic therapy.Journal of Materials Chemistry B, 2016, 4(1): 105–112 https://doi.org/10.1039/C5TB02002F
310
S, Wang A, Riedinger H, Li et al.. Plasmonic copper sulfide nanocrystals exhibiting near-infrared photothermal and photodynamic therapeutic effects.ACS Nano, 2015, 9(2): 1788–1800 https://doi.org/10.1021/nn506687t
311
X, Wu Y, Suo H, Shi et al.. Deep-tissue photothermal therapy using laser illumination at NIR-IIa window.Nano-Micro Letters, 2020, 12(1): 38 https://doi.org/10.1007/s40820-020-0378-6
312
Y, Zhao B Q, Chen R K, Kankala et al.. Recent advances in combination of copper chalcogenide-based photothermal and reactive oxygen species-related therapies.ACS Biomaterials Science & Engineering, 2020, 6(9): 4799–4815 https://doi.org/10.1021/acsbiomaterials.0c00830
313
C, Zhang D, Li X Shi . Hybrid nanogels for photoacoustic imaging and photothermal therapy. In: Choi S K, ed. Photonanotechnology for Therapeutics and Imaging. Elsevier, 2020, 23‒43
314
A, Curcio A K A, Silva S, Cabana et al.. Iron oxide nanoflowers@CuS hybrids for cancer tri-therapy: interplay of photothermal therapy, magnetic hyperthermia and photodynamic therapy.Theranostics, 2019, 9(5): 1288–1302 https://doi.org/10.7150/thno.30238
315
Z, Chu Z, Wang L, Chen et al.. Combining magnetic resonance imaging with photothermal therapy of CuS@BSA nanoparticles for cancer theranostics.ACS Applied Nano Materials, 2018, 1(5): 2332–2340 https://doi.org/10.1021/acsanm.8b00410
316
D, Li T, Zhang C, Min et al.. Biodegradable theranostic nanoplatforms of albumin-biomineralized nanocomposites modified hollow mesoporous organosilica for photoacoustic imaging guided tumor synergistic therapy.Chemical Engineering Journal, 2020, 388: 124253 https://doi.org/10.1016/j.cej.2020.124253
317
P, Kumar R, Nagarajan R Sarangi . Quantitative X-ray absorption and emission spectroscopies: electronic structure elucidation of Cu2S and CuS.Journal of Materials Chemistry C, 2013, 1(13): 2448–2454 https://doi.org/10.1039/c3tc00639e
318
W, Liang M H Whangbo . Conductivity anisotropy and structural phase transition in covellite CuS.Solid State Communications, 1993, 85(5): 405–408 https://doi.org/10.1016/0038-1098(93)90689-K
319
H, Fjellvåg F, Grønvold S, Stølen et al.. Low-temperature structural distortion in CuS.Zeitschrift für Kristallographie - Crystalline Materials, 1988, 184(1–2): 111–121 https://doi.org/10.1524/zkri.1988.184.1-2.111
320
N L, Pacioni V, Filippenko N, Presseau et al.. Oxidation of copper nanoparticles in water: mechanistic insights revealed by oxygen uptake and spectroscopic methods.Dalton Transactions, 2013, 42(16): 5832–5838 https://doi.org/10.1039/c3dt32836h
321
H, Liu Y, Zhou S A, Kulinich et al.. Scalable synthesis of hollow Cu2O nanocubes with unique optical properties via a simple hydrolysis-based approach.Journal of Materials Chemistry A, 2013, 1(2): 302–307 https://doi.org/10.1039/C2TA00138A
322
X, Xu L, Li H, Chen et al.. Constructing heterostructured FeS2/CuS nanospheres as high rate performance lithium ion battery anodes.Inorganic Chemistry Frontiers, 2020, 7(9): 1900–1908 https://doi.org/10.1039/C9QI01674K
323
Q, Gao X, Wu T Huang . Novel energy efficient window coatings based on In doped CuS nanocrystals with enhanced NIR shielding performance.Solar Energy, 2021, 220: 1–7 https://doi.org/10.1016/j.solener.2021.02.045
324
K, Poudel M, Gautam S G, Jin et al.. Copper sulfide: an emerging adaptable nanoplatform in cancer theranostics.International Journal of Pharmaceutics, 2019, 562: 135–150 https://doi.org/10.1016/j.ijpharm.2019.03.043