Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

邮发代号 80-974

2019 Impact Factor: 1.747

Frontiers of Materials Science  2023, Vol. 17 Issue (2): 230647   https://doi.org/10.1007/s11706-023-0647-7
  本期目录
Fabrication of glycidyl methacrylate-modified silk fibroin/poly(L-lactic acid-co-ε-caprolactone)–polyethylene glycol diacrylate hybrid 3D nanofibrous scaffolds for tissue engineering
Yongyong Fan1,2, Anlin Yin2, Yunhuan Li1,2, Qi Gu2, Yan Zhou2, Junlong Zhou2, Ruibo Zhao1(), Kuihua Zhang2()
1. Institute of Smart Biomaterials, School of Materials Science and Engineering and Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
2. College of Materials and Textile Engineering, Nanotechnology Research Institute, Jiaxing University, Jiaxing 314001, China
 全文: PDF(7431 KB)   HTML
Abstract

In order to provide a biomimetic natural extracellular matrix microenvironment with excellent mechanical capacity for tissue regeneration, a novel porous hybrid glycidyl methacrylate-modified silk fibroin/poly(L-lactic acid-co-ε-caprolactone)–polyethylene glycol diacrylate (SFMA/P(LLA-CL)–PEGDA) hybrid three-dimensional (3D) nanofibrous scaffolds was successfully fabricated through the combination of 3D nanofibrous platforms and divinyl PEGDA based photocrosslinking, and then further improved water resistance by ethanol vapor post-treatment. Scanning electron microscopy and micro-computed tomography results demonstrated significant PEGDA hydrogel-like matrices bonded nanofibers, which formed a 3D structure similar to that of “steel bar (nanofibers)cement (PEGDA)”, with proper pore size, high porosity, and high pore connectivity density. Meanwhile, the hybrid 3D nanofibrous scaffolds showed outstanding swelling properties as well as improved compressive and tensile properties. Furthermore, these hybrid 3D nanofibrous scaffolds could provide a biocompatible microenvironment, capable of inducing the materialcell hybrid and regulating human umbilical vein endothelial cells proliferation. They thus present significant potential in tissue regeneration.

Key wordshybrid 3D nanofibrous scaffold    silk fibroin    tissue engineering    human umbilical vein endothelial cell
收稿日期: 2023-02-08      出版日期: 2023-05-26
Corresponding Author(s): Ruibo Zhao,Kuihua Zhang   
 引用本文:   
. [J]. Frontiers of Materials Science, 2023, 17(2): 230647.
Yongyong Fan, Anlin Yin, Yunhuan Li, Qi Gu, Yan Zhou, Junlong Zhou, Ruibo Zhao, Kuihua Zhang. Fabrication of glycidyl methacrylate-modified silk fibroin/poly(L-lactic acid-co-ε-caprolactone)–polyethylene glycol diacrylate hybrid 3D nanofibrous scaffolds for tissue engineering. Front. Mater. Sci., 2023, 17(2): 230647.
 链接本文:  
https://academic.hep.com.cn/foms/CN/10.1007/s11706-023-0647-7
https://academic.hep.com.cn/foms/CN/Y2023/V17/I2/230647
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
Fig.9  
Fig.10  
1 H, Zhong J, Huang J, Wu et al.. Electrospinning nanofibers to 1D, 2D, and 3D scaffolds and their biomedical applications.Nano Research, 2022, 15(2): 787–804
https://doi.org/10.1007/s12274-021-3593-7
2 Q, Yao K E, Fuglsby X, Zheng et al.. Nanoclay-functionalized 3D nanofibrous scaffolds promote bone regeneration.Journal of Materials Chemistry B: Materials for Biology and Medicine, 2020, 8(17): 3842–3851
https://doi.org/10.1039/C9TB02814E pmid: 32219244
3 X R, Xie Y J, Chen X Y, Wang et al.. Electrospinning nanofiber scaffolds for soft and hard tissue regeneration.Journal of Materials Science and Technology, 2020, 59: 243–261
https://doi.org/10.1016/j.jmst.2020.04.037
4 M W, Laschke M D Menger . Prevascularization in tissue engineering: current concepts and future directions.Biotechnology Advances, 2016, 34(2): 112–121
https://doi.org/10.1016/j.biotechadv.2015.12.004 pmid: 26674312
5 D, Pan S E, Mackinnon M D Wood . Advances in the repair of segmental nerve injuries and trends in reconstruction.Muscle & Nerve, 2020, 61(6): 726–739
https://doi.org/10.1002/mus.26797 pmid: 31883129
6 M J, Rodriguez J, Brown J, Giordano et al.. Silk based bioinks for soft tissue reconstruction using 3-dimensional (3D) printing with in vitro and in vivo assessments.Biomaterials, 2017, 117: 105–115
https://doi.org/10.1016/j.biomaterials.2016.11.046 pmid: 27940389
7 D, Chouhan N, Dey N, Bhardwaj et al.. Emerging and innovative approaches for wound healing and skin regeneration: current status and advances.Biomaterials, 2019, 216: 119267
https://doi.org/10.1016/j.biomaterials.2019.119267 pmid: 31247480
8 S H, Kim Y K, Yeon J M, Lee et al.. Precisely printable and biocompatible silk fibroin bioink for digital light processing 3D printing.Nature Communications, 2018, 9(1): 1620
https://doi.org/10.1038/s41467-018-03759-y pmid: 29693652
9 L, Fan J L, Li Z, Cai et al.. Creating biomimetic anisotropic architectures with co-aligned nanofibers and macrochannels by manipulating ice crystallization.ACS Nano, 2018, 12(6): 5780–5790
https://doi.org/10.1021/acsnano.8b01648 pmid: 29846058
10 M, Lin W, Xie X, Cheng et al.. Fabrication of silk fibroin film enhanced by acid hydrolyzed silk fibroin nanowhiskers to improve bacterial inhibition and biocompatibility efficacy.Journal of Biomaterials Science: Polymer Edition, 2022, 33(10): 1308–1323
https://doi.org/10.1080/09205063.2022.2051694 pmid: 35260043
11 N, Lin B Zuo . Silk sericin/fibroin electrospinning dressings: a method for preparing a dressing material with high moisture vapor transmission rate.Journal of Biomaterials Science: Polymer Edition, 2021, 32(15): 1983–1997
https://doi.org/10.1080/09205063.2021.1952383 pmid: 34228588
12 C, Wang Y, Jia W, Yang et al.. Silk fibroin enhances peripheral nerve regeneration by improving vascularization within nerve conduits.Journal of Biomedical Materials Research Part A, 2018, 106(7): 2070–2077
https://doi.org/10.1002/jbm.a.36390 pmid: 29575774
13 K, Zhang Y, Qian H, Wang et al.. Genipin-crosslinked silk fibroin/hydroxybutyl chitosan nanofibrous scaffolds for tissue-engineering application.Journal of Biomedical Materials Research Part A, 2010, 95A(3): 870–881
https://doi.org/10.1002/jbm.a.32895 pmid: 20824649
14 Y, Chen X, Dong M, Shafiq et al.. Recent advancements on three-dimensional electrospun nanofiber scaffolds for tissue engineering.Advanced Fiber Materials, 2022, 4(5): 959–986
https://doi.org/10.1007/s42765-022-00170-7
15 M, Qasim D S, Chae N Y Lee . Advancements and frontiers in nano-based 3D and 4D scaffolds for bone and cartilage tissue engineering.International Journal of Nanomedicine, 2019, 14: 4333–4351
https://doi.org/10.2147/IJN.S209431 pmid: 31354264
16 W M, Chen Y, Xu Y Q, Liu et al.. Three-dimensional printed electrospun fiber-based scaffold for cartilage regeneration.Materials & Design, 2019, 179: 107886
https://doi.org/10.1016/j.matdes.2019.107886
17 Abel S, Bongiovanni Ballarin F, Montini G A Abraham . Combination of electrospinning with other techniques for the fabrication of 3D polymeric and composite nanofibrous scaffolds with improved cellular interactions.Nanotechnology, 2020, 31(17): 172002
https://doi.org/10.1088/1361-6528/ab6ab4 pmid: 31931493
18 A, Koyyada P Orsu . Recent advancements and associated challenges of scaffold fabrication techniques in tissue engineering applications.Regenerative Engineering and Translational Medicine, 2021, 7(2): 147–159
https://doi.org/10.1007/s40883-020-00166-y
19 C M, Juran M F, Dolwick P S McFetridge . Engineered microporosity: enhancing the early regenerative potential of decellularized temporomandibular joint discs.Tissue Engineering Part A, 2015, 21(3–4): 829–839
https://doi.org/10.1089/ten.tea.2014.0250 pmid: 25319941
20 J, Zhang A, Zhou A, Deng et al.. Pore architecture and cell viability on freeze dried 3D recombinant human collagen-peptide (RHC)-chitosan scaffolds.Materials Science and Engineering C, 2015, 49: 174–182
https://doi.org/10.1016/j.msec.2014.12.076 pmid: 25686937
21 S I, Somo B, Akar E S, Bayrak et al.. Pore interconnectivity influences growth factor-mediated vascularization in sphere-templated hydrogels.Tissue Engineering Part C: Methods, 2015, 21(8): 773–785
https://doi.org/10.1089/ten.tec.2014.0454 pmid: 25603533
22 G, Jin R, He B, Sha et al.. Electrospun three-dimensional aligned nanofibrous scaffolds for tissue engineering.Materials Science and Engineering C, 2018, 92: 995–1005
https://doi.org/10.1016/j.msec.2018.06.065 pmid: 30184829
23 A, Keirouz M, Chung J, Kwon et al.. 2D and 3D electrospinning technologies for the fabrication of nanofibrous scaffolds for skin tissue engineering: a review.Wiley Interdisciplinary Reviews - Nanomedicine and Nanobiotechnology, 2020, 12(4): e01626
https://doi.org/10.1002/wnan.1626 pmid: 32166881
24 J, Wang Y, Cheng H, Wang et al.. Biomimetic and hierarchical nerve conduits from multifunctional nanofibers for guided peripheral nerve regeneration.Acta Biomaterialia, 2020, 117: 180–191
https://doi.org/10.1016/j.actbio.2020.09.037 pmid: 33007489
25 T, Xu J M, Miszuk Y, Zhao et al.. Electrospun polycaprolactone 3D nanofibrous scaffold with interconnected and hierarchically structured pores for bone tissue engineering.Advanced Healthcare Materials, 2015, 4(15): 2238–2246
https://doi.org/10.1002/adhm.201500345 pmid: 26332611
26 B, Sun Z, Zhou T, Wu et al.. Development of nanofiber sponges-containing nerve guidance conduit for peripheral nerve regeneration in vivo.ACS Applied Materials & Interfaces, 2017, 9(32): 26684–26696
https://doi.org/10.1021/acsami.7b06707 pmid: 28718615
27 J, Shen J, Wang X, Liu et al.. In situ prevascularization strategy with three-dimensional porous conduits for neural tissue engineering.ACS Applied Materials & Interfaces, 2021, 13(43): 50785–50801
https://doi.org/10.1021/acsami.1c16138 pmid: 34664947
28 F, Doustdar A, Olad M Ghorbani . Effect of glutaraldehyde and calcium chloride as different crosslinking agents on the characteristics of chitosan/cellulose nanocrystals scaffold.International Journal of Biological Macromolecules, 2022, 208: 912–924
https://doi.org/10.1016/j.ijbiomac.2022.03.193 pmid: 35367272
29 X, Yu T, Zhang Y Li . 3D printing and bioprinting nerve conduits for neural tissue engineering.Polymers, 2020, 12(8): 1637
https://doi.org/10.3390/polym12081637 pmid: 32717878
30 J, Liu B, Zhang L, Li et al.. Additive-lathe 3D bioprinting of bilayered nerve conduits incorporated with supportive cells.Bioactive Materials, 2021, 6(1): 219–229
https://doi.org/10.1016/j.bioactmat.2020.08.010 pmid: 32913930
31 W, Zhu K R, Tringale S A, Woller et al.. Rapid continuous 3D printing of customizable peripheral nerve guidance conduits.Materials Today, 2018, 21(9): 951–959
https://doi.org/10.1016/j.mattod.2018.04.001 pmid: 31156331
32 X, Zhou A, Yin J, Sheng et al.. In situ deposition of nano Cu2O on electrospun chitosan nanofibrous scaffolds and their antimicrobial properties.International Journal of Biological Macromolecules, 2021, 191: 600–607
https://doi.org/10.1016/j.ijbiomac.2021.09.121 pmid: 34582906
33 Y, Chen W, Xu M, Shafiq et al.. Chondroitin sulfate cross-linked three-dimensional tailored electrospun scaffolds for cartilage regeneration.Biomaterials Advance, 2022, 134: 112643
https://doi.org/10.1016/j.msec.2022.112643 pmid: 35581067
34 X, Chen Z, Shao N S, Marinkovic et al.. Conformation transition kinetics of regenerated Bombyx mori silk fibroin membrane monitored by time-resolved FTIR spectroscopy.Biophysical Chemistry, 2001, 89(1): 25–34
https://doi.org/10.1016/S0301-4622(00)00213-1 pmid: 11246743
35 Y H, Wang B, Zhang M, Ma et al.. Synthesis of GelMA/PEGDA hydrogel by UV photopolymerization.Imaging Science and Photochemistry, 2017, 35(4): 574–580
36 S B, Bae M H, Kim W H Park . Electrospinning and dual crosslinking of water-soluble silk fibroin modified with glycidyl methacrylate.Polymer Degradation & Stability, 2020, 179: 109304
https://doi.org/10.1016/j.polymdegradstab.2020.109304
37 R X Zeng . Modern Testing and Analysis Technology of Polymers. Guangzhou, China: South China University of Technology Press, 2007
38 K H, Zhang A L, Yin C, Huang et al.. Degradation of electrospun SF/P(LLA-CL) blended nanofibrous scaffolds in vitro.Polymer Degradation & Stability, 2011, 96(12): 2266–2275
https://doi.org/10.1016/j.polymdegradstab.2011.08.011
39 G, Ma X, Zhang J, Han et al.. Photo-polymeriable chitosan derivative prepared by Michael reaction of chitosan and polyethylene glycol diacrylate (PEGDA).International Journal of Biological Macromolecules, 2009, 45(5): 499–503
https://doi.org/10.1016/j.ijbiomac.2009.08.007 pmid: 19720075
40 J, Feng F, Wang X, Han et al.. A “green pathway” different from simple diffusion in soft matter: fast molecular transport within micro/nanoscale multiphase porous systems.Nano Research, 2014, 7(3): 434–442
https://doi.org/10.1007/s12274-014-0409-z
41 K, Li Y, Zhu Q, Zhang et al.. A self-healing hierarchical fiber hydrogel that mimics ECM structure.Materials, 2020, 13(22): 5277
https://doi.org/10.3390/ma13225277 pmid: 33233475
42 A, Mirtaghavi A, Baldwin N, Tanideh et al.. Crosslinked porous three-dimensional cellulose nanofibers–gelatine biocomposite scaffolds for tissue regeneration.International Journal of Biological Macromolecules, 2020, 164: 1949–1959
https://doi.org/10.1016/j.ijbiomac.2020.08.066 pmid: 32791272
43 S I, Somo B, Akar E S, Bayrak et al.. Pore interconnectivity influences growth factor-mediated vascularization in sphere-templated hydrogels.Tissue Engineering Part C: Methods, 2015, 21(8): 773–785
https://doi.org/10.1089/ten.tec.2014.0454 pmid: 25603533
44 A M, Higgins B L, Banik J L Brown . Geometry sensing through POR1 regulates Rac1 activity controlling early osteoblast differentiation in response to nanofiber diameter.Integrative Biology, 2015, 7(2): 229–236
https://doi.org/10.1039/C4IB00225C pmid: 25539497
45 S, Sharma S Tiwari . A review on biomacromolecular hydrogel classification and its applications.International Journal of Biological Macromolecules, 2020, 162: 737–747
https://doi.org/10.1016/j.ijbiomac.2020.06.110 pmid: 32553961
46 X D, Zhao D D, Pei Y X, Yang et al.. Green tea derivative driven smart hydrogels with desired functions for chronic diabetic wound treatment.Advanced Functional Materials, 2021, 31(18): 2009442
https://doi.org/10.1002/adfm.202009442
47 R, Ansar S, Saqib A, Mukhtar et al.. Challenges and recent trends with the development of hydrogel fiber for biomedical applications.Chemosphere, 2022, 287(Pt 1): 131956
https://doi.org/10.1016/j.chemosphere.2021.131956 pmid: 34523459
48 D R McClay . The role of thin filopodia in motility and morphogenesis.Experimental Cell Research, 1999, 253(2): 296–301
https://doi.org/10.1006/excr.1999.4723 pmid: 10585250
49 E, Prince E Kumacheva . Design and applications of man-made biomimetic fibrillar hydrogels.Nature Reviews Materials, 2019, 4(2): 99–115
https://doi.org/10.1038/s41578-018-0077-9
50 M T, Spang K L Christman . Extracellular matrix hydrogel therapies: in vivo applications and development.Acta Biomaterialia, 2018, 68: 1–14
https://doi.org/10.1016/j.actbio.2017.12.019 pmid: 29274480
[1] FMS-23647-OF-Fyy_suppl_1 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed