Amorphous Sn modified nitrogen-doped porous carbon nanosheets with rapid capacitive mechanism for high-capacity and fast-charging lithium-ion batteries
Chong Xu, Guang Ma, Wang Yang(), Sai Che, Neng Chen, Ni Wu, Bo Jiang, Ye Wang, Yankun Sun, Sijia Liao, Jiahao Yang, Xiang Li, Guoyong Huang, Yongfeng Li()
State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
Sn-based materials are considered as a kind of potential anode materials for lithium-ion batteries (LIBs) owing to their high theoretical capacity. However, their use is limited by large volume expansion deriving from the lithiation/delithiation process. In this work, amorphous Sn modified nitrogen-doped porous carbon nanosheets (ASn-NPCNs) are obtained. The synergistic effect of amorphous Sn and high edge-nitrogen-doped level porous carbon nanosheets provides ASn-NPCNs with multiple advantages containing abundant defect sites, high specific surface area (214.9 m2·g−1), and rich hierarchical pores, which can promote the lithium-ion storage. Serving as the LIB anode, the as-prepared ASn-NPCNs-750 electrode exhibits an ultrahigh capacity of 1643 mAh·g−1 at 0.1 A·g−1, ultrafast rate performance of 490 mAh·g−1 at 10 A·g−1, and superior long-term cycling performance of 988 mAh·g−1 at 1 A·g−1 after 2000 cycles with a capacity retention of 98.9%. Furthermore, the in-depth electrochemical kinetic test confirms that the ultrahigh-capacity and fast-charging performance of the ASn-NPCNs-750 electrode is ascribed to the rapid capacitive mechanism. These impressive results indicate that ASn-NPCNs-750 can be a potential anode material for high-capacity and fast-charging LIBs.
. [J]. Frontiers of Materials Science, 2023, 17(3): 230651.
Chong Xu, Guang Ma, Wang Yang, Sai Che, Neng Chen, Ni Wu, Bo Jiang, Ye Wang, Yankun Sun, Sijia Liao, Jiahao Yang, Xiang Li, Guoyong Huang, Yongfeng Li. Amorphous Sn modified nitrogen-doped porous carbon nanosheets with rapid capacitive mechanism for high-capacity and fast-charging lithium-ion batteries. Front. Mater. Sci., 2023, 17(3): 230651.
J, Xiao Q, Li Y, Bi et al.. Understanding and applying coulombic efficiency in lithium metal batteries.Nature Energy, 2020, 5(8): 561–568 https://doi.org/10.1038/s41560-020-0648-z
2
S, Chae M, Ko K, Kim et al.. Confronting issues of the practical implementation of Si Anode in high-energy lithium-ion batteries.Joule, 2017, 1(1): 47–60 https://doi.org/10.1016/j.joule.2017.07.006
3
J, Zhou Z, Jiang S, Niu et al.. Self-standing hierarchical P/CNTs@rGO with unprecedented capacity and stability for lithium and sodium storage.Chem, 2018, 4(2): 372–385 https://doi.org/10.1016/j.chempr.2018.01.006
4
L, Liang X, Sun J, Zhang et al.. In situ synthesis of hierarchical core double-shell Ti-doped LiMnPO4@NaTi2(PO4)3@C/3D graphene cathode with high-rate capability and long cycle life for lithium-ion batteries.Advanced Energy Materials, 2019, 9: 1–15
5
Z, Xu Y, Zeng L, Wang et al.. Nanoconfined phosphorus film coating on interconnected carbon nanotubes as ultrastable anodes for lithium ion batteries.Journal of Power Sources, 2017, 356: 18–26 https://doi.org/10.1016/j.jpowsour.2017.04.064
6
Y, Xia S, Han Y, Zhu et al.. Stable cycling of mesoporous Sn4P3/SnO2@C nanosphere anode with high initial coulombic efficiency for Li-ion batteries.Energy Storage Materials, 2019, 18: 125–132 https://doi.org/10.1016/j.ensm.2019.01.021
7
C, Subramaniyam Z, Tai N, Mahmood et al.. Unlocking the potential of amorphous red phosphorus films as a long-term stable negative electrode for lithium batteries.Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2017, 5(5): 1925–1929 https://doi.org/10.1039/C6TA08432J
8
X, Zhang X, Cheng Q Zhang . Nanostructured energy materials for electrochemical energy conversion and storage: a review.Journal of Energy Chemistry, 2016, 25(6): 967–984 https://doi.org/10.1016/j.jechem.2016.11.003
9
X, Zhou Q, Liu C, Jiang et al.. Strategies towards low-cost dual-ion batteries with high performance.Angewandte Chemie International Edition, 2020, 59(10): 3802–3832 https://doi.org/10.1002/anie.201814294
pmid: 30865353
10
Y, Sun N, Liu Y Cui . Promises and challenges of nanomaterials for lithium-based rechargeable batteries.Nature Energy, 2016, 1: 16071 https://doi.org/10.1038/nenergy.2016.71
11
J, Deng X, Yu X, Qin et al.. Carbon sphere-templated synthesis of porous yolk–shell ZnCo2O4 spheres for high-performance lithium storage.Journal of Alloys and Compounds, 2019, 780: 65–71 https://doi.org/10.1016/j.jallcom.2018.11.331
12
F, Niu Z, Shao H, Gao et al.. Si-doped graphene nanosheets for NOx gas sensing.Sensors and Actuators B: Chemical, 2021, 328: 129005 https://doi.org/10.1016/j.snb.2020.129005
13
X, Li G, Chen Z, Le et al.. Well-dispersed phosphorus nanocrystals within carbon via high-energy mechanical milling for high performance lithium storage.Nano Energy, 2019, 59: 464–471 https://doi.org/10.1016/j.nanoen.2019.02.061
14
Y, Sun L, Wang Y, Li et al.. Design of red phosphorus nanostructured electrode for fast-charging lithium-ion batteries with high energy density.JOULE, 2019, 3(4): 1080–1093 https://doi.org/10.1016/j.joule.2019.01.017
15
Y, Wang L, Tian Z, Yao et al.. Enhanced reversibility of red phosphorus/active carbon composite as anode for lithium ion batteries.Electrochimica Acta, 2015, 163: 71–76 https://doi.org/10.1016/j.electacta.2015.02.151
16
B, Huang Z, Pan X, Su et al.. Tin-based materials as versatile anodes for alkali (earth)-ion batteries.Journal of Power Sources, 2018, 395: 41–59 https://doi.org/10.1016/j.jpowsour.2018.05.063
17
J H, Shin J Y Song . Electrochemical properties of Sn-decorated SnO nanobranches as an anode of Li-ion battery.Nano Convergence, 2016, 3(1): 9 https://doi.org/10.1186/s40580-016-0070-1
pmid: 28191419
18
J, Wang W, Li F, Wang et al.. Controllable synthesis of SnO2@C yolk–shell nanospheres as a high-performance anode material for lithium ion batteries.Nanoscale, 2014, 6(6): 3217–3222 https://doi.org/10.1039/C3NR06452B
pmid: 24500178
19
L, Yang T, Dai Y, Wang et al.. Chestnut-like SnO2/C nanocomposites with enhanced lithium ion storage properties.Nano Energy, 2016, 30: 885–891 https://doi.org/10.1016/j.nanoen.2016.08.060
20
J W, Park C M Park . Electrochemical Li topotactic reaction in layered SnP3 for superior Li-ion batteries.Scientific Reports, 2016, 6(1): 35980 https://doi.org/10.1038/srep35980
pmid: 27775090
21
C, Miao M, Liu Y, He et al.. Monodispersed SnO2 nanospheres embedded in framework of graphene and porous carbon as anode for lithium ion batteries.Energy Storage Materials, 2016, 3: 98–105 https://doi.org/10.1016/j.ensm.2016.01.006
22
B, Zhang J, Huang J Kim . Ultrafine amorphous SnOx embedded in carbon nanofiber/carbon nanotube composites for Li-ion and Na-ion batteries.Advanced Functional Materials, 2015, 25(32): 5222–5228 https://doi.org/10.1002/adfm.201501498
23
Z, Yi X, Tian Q, Han et al.. Synthesis of polygonal Co3Sn2 nanostructure with enhanced magnetic properties.RSC Advances, 2016, 6(46): 39818–39822 https://doi.org/10.1039/C6RA05077H
24
M G, Kim S, Sim J Cho . Novel core–shell Sn–Cu anodes for lithium rechargeable batteries prepared by a redox-transmetalation reaction.Advanced Materials, 2010, 22(45): 5154–5158 https://doi.org/10.1002/adma.201002480
pmid: 20941795
25
Z, Yi X, Tian Q, Han et al.. One-step synthesis of Ni3Sn2@reduced graphene oxide composite with enhanced electrochemical lithium storage properties.Electrochimica Acta, 2016, 192: 188–195 https://doi.org/10.1016/j.electacta.2016.01.204
26
Y L, Ding Y, Wen Aken P A, van et al.. Large-scale low temperature fabrication of SnO2 hollow/nanoporous nanostructures: the template-engaged replacement reaction mechanism and high-rate lithium storage.Nanoscale, 2014, 6(19): 11411–11418 https://doi.org/10.1039/C4NR03395G
pmid: 25148613
27
L, Xu C, Kim A K, Shukla et al.. Monodisperse Sn nanocrystals as a platform for the study of mechanical damage during electrochemical reactions with Li.Nano Letters, 2013, 13(4): 1800–1805 https://doi.org/10.1021/nl400418c
pmid: 23477483
28
C, Zhu X, Xia J, Liu et al.. TiO2 nanotube@SnO2 nanoflake core–branch arrays for lithium-ion battery anode.Nano Energy, 2014, 4: 105–112 https://doi.org/10.1016/j.nanoen.2013.12.018
29
Y, Duan S, Du H, Tao et al.. Sn@C composite for lithium ion batteries: amorphous vs.crystalline structures. Ionics, 2021, 27(4): 1403–1412 https://doi.org/10.1007/s11581-021-03906-4
30
Y, Xu Q, Liu Y, Zhu et al.. Uniform nano-Sn/C composite anodes for lithium ion batteries.Nano Letters, 2013, 13(2): 470–474 https://doi.org/10.1021/nl303823k
pmid: 23282084
31
D, Nam J, Kim J, Lee et al.. Tunable Sn structures in porosity-controlled carbon nanofibers for all-solid-state lithium-ion battery anodes.Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2015, 3(20): 11021–11030 https://doi.org/10.1039/C5TA00884K
B, Luo T, Qiu D, Ye et al.. Tin nanoparticles encapsulated in graphene backboned carbonaceous foams as high-performance anodes for lithium-ion and sodium-ion storage.Nano Energy, 2016, 22: 232–240 https://doi.org/10.1016/j.nanoen.2016.02.024
34
G, Ma W, Yang C, Xu et al.. Nitrogen-doped porous carbon embedded Sn/SnO nanoparticles as high-performance lithium-ion battery anode.Electrochimica Acta, 2022, 428: 140898 https://doi.org/10.1016/j.electacta.2022.140898
35
Z, Zhu S, Wang J, Du et al.. Ultrasmall Sn nanoparticles embedded in nitrogen-doped porous carbon as high-performance anode for lithium-ion batteries.Nano Letters, 2014, 14(1): 153–157 https://doi.org/10.1021/nl403631h
pmid: 24328829
36
S, Kang X, Li C, Yin et al.. Three-dimensional mesoporous sandwich-like g-C3N4-interconnected CuCo2O4 nanowires arrays as ultrastable anode for fast lithium storage.Journal of Colloid and Interface Science, 2019, 554: 269–277 https://doi.org/10.1016/j.jcis.2019.06.091
pmid: 31301527
37
Y, Zuo X, Xu C, Zhang et al.. SnS2/g-C3N4/graphite nanocomposites as durable lithium-ion battery anode with high pseudocapacitance contribution.Electrochimica Acta, 2020, 349: 136369 https://doi.org/10.1016/j.electacta.2020.136369
38
D, Adekoya M, Li M, Hankel et al.. Design of a 1D/2D C3N4/rGO composite as an anode material for stable and effective potassium storage.Energy Storage Materials, 2020, 25: 495–501 https://doi.org/10.1016/j.ensm.2019.09.033
39
W, Zou B, Deng X, Hu et al.. Crystal-plane-dependent metal oxide-support interaction in CeO2/g-C3N4 for photocatalytic hydrogen evolution.Applied Catalysis B: Environmental, 2018, 238: 111–118 https://doi.org/10.1016/j.apcatb.2018.07.022
40
H, Jin X, Liu Y, Jiao et al.. Constructing tunable dual active sites on two-dimensional C3N4@MoN hybrid for electrocatalytic hydrogen evolution.Nano Energy, 2018, 53: 690–697 https://doi.org/10.1016/j.nanoen.2018.09.046
41
R, Kennedy K, Marr O Ezekoye . Gas release rates and properties from lithium cobalt oxide lithium ion battery arrays.Journal of Power Sources, 2021, 487: 229388 https://doi.org/10.1016/j.jpowsour.2020.229388
42
G, Zeng Y, Deng X, Yu et al.. Ultrathin g-C3N4 as a hole extraction layer to boost sunlight-driven water oxidation of BiVO4-based photoanode.Journal of Power Sources, 2021, 494: 229701 https://doi.org/10.1016/j.jpowsour.2021.229701
43
W, Zhao J, Wang R, Yin et al.. Single-atom Pt supported on holey ultrathin g-C3N4 nanosheets as efficient catalyst for Li-O2 batteries.Journal of Colloid and Interface Science, 2020, 564: 28–36 https://doi.org/10.1016/j.jcis.2019.12.102
pmid: 31896425
44
S, Vinoth K, Subramani W J, Ong et al.. CoS2 engulfed ultra-thin S-doped g-C3N4 and its enhanced electrochemical performance in hybrid asymmetric supercapacitor.Journal of Colloid and Interface Science, 2021, 584: 204–215 https://doi.org/10.1016/j.jcis.2020.09.071
pmid: 33069019
45
S, Wang Y, Shi C, Fan et al.. Layered g-C3N4@reduced graphene oxide composites as anodes with improved rate performance for lithium-ion batteries.ACS Applied Materials & Interfaces, 2018, 10(36): 30330–30336 https://doi.org/10.1021/acsami.8b09219
pmid: 30117734
46
Y, Hou J, Li Z, Wen et al.. N-doped graphene/porous g-C3N4 nanosheets supported layered-MoS2 hybrid as robust anode materials for lithium-ion batteries.Nano Energy, 2014, 8: 157–164 https://doi.org/10.1016/j.nanoen.2014.06.003
47
B, Zhang Y, Yu Z, Huang et al.. Exceptional electrochemical performance of freestanding electrospun carbon nanofiber anodes containing ultrafine SnOx particles.Energy & Environmental Science, 2012, 5(12): 9895–9902 https://doi.org/10.1039/c2ee23145j
48
H, Hu Q, Li L, Li et al.. Laser irradiation of electrode materials for energy storage and conversion.Matter, 2020, 3(1): 95–126 https://doi.org/10.1016/j.matt.2020.05.001
49
C, Xu W, Yang G, Ma et al.. Edge-nitrogen enriched porous carbon nanosheets anodes with enlarged interlayer distance for fast charging sodium-ion batteries.Small, 2022, 18(48): 2204375 https://doi.org/10.1002/smll.202204375
pmid: 36269880
50
Y, Li W, Yang Z, Tu et al.. Water-soluble salt-templated strategy to regulate mesoporous nanosheets-on-network structure with active mixed-phase CoO/Co3O4 nanosheets on graphene for superior lithium storage.Journal of Alloys and Compounds, 2021, 857: 157626 https://doi.org/10.1016/j.jallcom.2020.157626
51
J, Qin C, He N, Zhao et al.. Graphene networks anchored with sn@graphene as lithium ion battery anode.ACS Nano, 2014, 8(2): 1728–1738 https://doi.org/10.1021/nn406105n
pmid: 24400945
52
T, Yang J, Zhong J, Liu et al.. A general strategy for antimony-based alloy nanocomposite embedded in Swiss-cheese-like nitrogen-doped porous carbon for energy storage.Advanced Functional Materials, 2021, 31(13): 2009433 https://doi.org/10.1002/adfm.202009433
53
J, Liu Y, Zhang L, Zhang et al.. Graphitic carbon nitride (g-C3N4)-derived N-rich graphene with tuneable interlayer distance as a high-rate anode for sodium-ion batteries.Advanced Materials, 2019, 31(24): 1901261 https://doi.org/10.1002/adma.201901261
54
W, Zhang J, Yin M, Sun et al.. Direct pyrolysis of supermolecules: an ultrahigh edge-nitrogen doping strategy of carbon anodes for potassium-ion batteries.Advanced Materials, 2020, 32(25): 2000732 https://doi.org/10.1002/adma.202000732
pmid: 32410270
55
D, Qin L, Wang X, Zeng et al.. Tailored edge-heteroatom tri-doping strategy of turbostratic carbon anodes for high-rate performance lithium and sodium-ion batteries.Energy Storage Materials, 2023, 54: 498–507 https://doi.org/10.1016/j.ensm.2022.10.049
D H, Youn A, Heller C B Mullins . Simple synthesis of nanostructured Sn/nitrogen-doped carbon composite using nitrilotriacetic acid as lithium ion battery anode.Chemistry of Materials, 2016, 28(5): 1343–1347 https://doi.org/10.1021/acs.chemmater.5b04282
58
Y, Cheng Z, Yi C, Wang et al.. Controllable fabrication of C/Sn and C/SnO/Sn composites as anode materials for high-performance lithium-ion batteries.Chemical Engineering Journal, 2017, 330: 1035–1043 https://doi.org/10.1016/j.cej.2017.08.066
59
H, Ying S, Zhang Z, Meng et al.. Ultrasmall Sn nanodots embedded inside N-doped carbon microcages as high-performance lithium and sodium ion battery anodes.Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2017, 5(18): 8334–8342 https://doi.org/10.1039/C7TA01480E
60
X, Chang T, Wang Z, Liu et al.. Ultrafine Sn nanocrystals in a hierarchically porous N-doped carbon for lithium ion batteries.Nano Research, 2017, 10(6): 1950–1958 https://doi.org/10.1007/s12274-016-1381-6
61
M G, Park D H, Lee H, Jung et al.. Sn-based nanocomposite for Li-ion battery anode with high energy density, rate capability, and reversibility.ACS Nano, 2018, 12(3): 2955–2967 https://doi.org/10.1021/acsnano.8b00586
pmid: 29505237
62
X, Liu X, Li J, Yu et al.. Ultrasmall Sn nanoparticles embedded in N-doped carbon nanospheres as long cycle life anode for lithium ion batteries.Materials Letters, 2018, 223: 203–206 https://doi.org/10.1016/j.matlet.2018.04.043
63
R, Mo X, Tan F, Li et al.. Tin-graphene tubes as anodes for lithium-ion batteries with high volumetric and gravimetric energy densities.Nature Communications, 2020, 11(1): 1374 https://doi.org/10.1038/s41467-020-14859-z
pmid: 32170134
64
C, Xu G, Ma W, Yang et al.. One-step reconstruction of acid treated spent graphite for high capacity and fast charging lithium-ion batteries.Electrochimica Acta, 2022, 415: 140198 https://doi.org/10.1016/j.electacta.2022.140198
65
L, Zhu Y, Wang M, Wang et al.. High edge-nitrogen-doped porous carbon nanosheets with rapid pseudocapacitive mechanism for boosted potassium-ion storage.Carbon, 2022, 187: 302–309 https://doi.org/10.1016/j.carbon.2021.11.021