Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

邮发代号 80-974

2019 Impact Factor: 1.747

Frontiers of Materials Science  2017, Vol. 11 Issue (3): 223-232   https://doi.org/10.1007/s11706-017-0388-6
  本期目录
One-step synthesis and self-assembly behavior of thermo-responsive star-shaped β-cyclodextrin--(P(MEO 2MA-co-PEGMA))21 copolymers
Lulu WEI1, Beibei LU1, Lei LI1, Jianning WU1, Zhiyong LIU1(), Xuhong GUO1,2
1. School of Chemistry and Chemical Engineering, Shihezi University/Key Laboratory of Materials-Oriented Chemical Engineering of Xinjiang Uygur Autonomous Region/Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Bingtuan, Shihezi 832003, China
2. State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
 全文: PDF(381 KB)   HTML
Abstract

A novel β-cyclodextrin–poly(2-(2-methoxyethoxy)ethyl methacrylate)-co-poly(ethylene glycol) methacrylate (abbreviated as: β-CD–(P(MEO2MA-co-PEGMA))21) was prepared by using the one-step strategy, and then the star-shaped copolymers were used in the atom transfer radical polymerization (ATRP). The structure of star-shaped β-CD–(P(MEO2MA-co-PEGMA))21 copolymers were studied by FTIR, 1H NMR and gel permeation chromatography (GPC). The star-shaped copolymers could self-assembled into micelles in aqueous solution owing to the outer amphiphilic β-CD as a core and the hydrophilic P(MEO2MA-co-PEGMA) segments as a shell. These thermo-responsive star-shaped copolymers micelles exhibited lower critical solution temperature (LCST) in water, which could be finely tuned by changing the feed ratio of MEO2MA to PEGMA. The LCST of star-shaped β-CD–(P(MEO2MA-co-PEGMA))21 copolymer micelles were increased from 35°C to 58°C with the increasing content of PEGMA. The results were investigated by DLS and TEM. When the temperature was higher than corresponding LCSTs, the micelles started to associate and form spherical nanoparticles. Therefore, β-CD–(P(MEO2MA-co-PEGMA))21 star-shaped copolymer micelles could be potentially applied in nano-carrier, nano-reactor, smart materials and biomedical fields.

Key wordsstar-shaped copolymers    thermo-responsive    β-cyclodextrin (β-CD)    self-assembly    atom transfer radical polymerization (ATRP)
收稿日期: 2017-04-11      出版日期: 2017-08-24
Corresponding Author(s): Zhiyong LIU   
 引用本文:   
. [J]. Frontiers of Materials Science, 2017, 11(3): 223-232.
Lulu WEI, Beibei LU, Lei LI, Jianning WU, Zhiyong LIU, Xuhong GUO. One-step synthesis and self-assembly behavior of thermo-responsive star-shaped β-cyclodextrin--(P(MEO 2MA-co-PEGMA))21 copolymers. Front. Mater. Sci., 2017, 11(3): 223-232.
 链接本文:  
https://academic.hep.com.cn/foms/CN/10.1007/s11706-017-0388-6
https://academic.hep.com.cn/foms/CN/Y2017/V11/I3/223
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Sample a) η(MEO2MA)/η(PEGMA) Mn(GPC)b) /(g?mol−1) Mn(NMR)c) /(g?mol−1) PDI b)
Feed ratio Actual ratio
C1 95/5 96/4 78200 78900 1.28
C2 90/10 89/11 83100 84000 1.51
C3 85/15 84/16 93700 94500 1.42
C4 80/20 79/21 119200 12400 1.35
Tab.1  
Fig.7  
Fig.8  
Fig.9  
Fig.10  
Fig.11  
1 Lapienis G. Star-shaped polymers having PEO arms. Progress in Polymer Science, 2009, 34(9): 852–892
https://doi.org/10.1016/j.progpolymsci.2009.04.006
2 Aloorkar N H, Kulkarni  A S, Patil  R A, et al.. Star polymers: an overview. International Journal of Pharmaceutical Sciences and Nanotechnology, 2012, 5(2): 1675–1684
3 Ramkissoon-Ganorkar C ,  Baudyš M ,  Kim S W . Effect of ionic strength on the loading efficiency of model polypeptide/protein drugs in pH-/temperature-sensitive polymers. Journal of Biomaterials Science: Polymer Edition, 2000, 11(1): 45–54
https://doi.org/10.1163/156856200743481 pmid: 10680607
4 Zhao S P, Zhou  F, Li L Y . pH- and temperature-responsive behaviors of hydrogels resulting from the photopolymerization of allylated chitosan and N-isopropylacrylamide, and their drug release  profiles.  Journal  of  Polymer  Research, 2012, 19(9): 9944
https://doi.org/10.1007/s10965-012-9944-z
5 Miladinovic Z R ,  Micic M ,  Suljovrujic E . Temperature/pH dual responsive OPGMA based copolymeric hydrogels prepared by gamma radiation: an optimisation study. Journal of Polymer Research, 2016, 23(4): 77
6 Wang H, Yan  H, Zhu Y J , et al.. Synthesis and characterization of thermo-responsive supramolecular diblock copolymers. Journal of Polymer Research, 2016, 23(4): 73–81
https://doi.org/10.1007/s10965-016-0949-x
7 Ward M A, Georgiou  T K. Thermoresponsive polymers for biomedical applications. Polymers, 2011, 3(4): 1215–1242
https://doi.org/10.3390/polym3031215
8 Wang M, Gao  Y F, Cao  C X, et al.. Binary solvent colloids of thermosensitive poly(N-isopropylacrylamide) microgel for smart windows. Industrial & Engineering Chemistry Research, 2014, 53(48): 18462–18472
https://doi.org/10.1021/ie502828b
9 Mu C G, Fan  X D, Tian  W, et al.. Miktoarm star polymers with poly(N-isopropylacrylamide) or poly(oligo(ethylene glycol) methacrylate) as building blocks: synthesis and comparison of thermally-responsive behaviors. Polymer Chemistry, 2012, 3(5): 1137–1149
https://doi.org/10.1039/c2py20029e
10 Li Y W, Guo  H L, Zhang  Y F, et al.. Pseudo-graft polymer based on adamantyl-terminated poly(oligo(ethylene glycol) methacrylate) and homopolymer with cyclodextrin as pendant: its thermoresponsivity through polymeric self-assembly and host-guest inclusion complexation. RSC Advances, 2014, 4(34): 17768–17779
https://doi.org/10.1039/C3RA47861K
11 Zhang Z X, Liu  K L, Li  J. Self-assembly and micellization of a dual thermoresponsive supramolecular pseudo-block copolymer. Macromolecules, 2011, 44(5): 1182–1193
https://doi.org/10.1021/ma102196q
12 Mao J, Ji  X L, Bo  S Q. Synthesis and pH/temperature-responsive behavior of PLLA-b-PDMAEMA block polyelectrolytes prepared via ROP and ATRP. Macromolecular Chemistry and Physics, 2011, 212(7): 744–752
https://doi.org/10.1002/macp.201000672
13 Ma Z Y, Jia  X, Zhang G X , et al.. pH-responsive controlled-release fertilizer  with  water  retention  via  atom  transfer  radical polymerization of acrylic acid on mussel-inspired initiator. Journal of Agricultural and Food Chemistry, 2013, 61(23): 5474–5482
https://doi.org/10.1021/jf401102a pmid: 23692274
14 Matyjaszewski K, Tsarevsky  N V. Macromolecular engineering by atom transfer radical polymerization. Journal of the American Chemical Society, 2014, 136(18): 6513–6533
https://doi.org/10.1021/ja408069v pmid: 24758377
15 Matyjaszewski K, Miller  P J, Pyun  J, et al.. Synthesis and characterization of star polymers with varying arm number, length, and composition from organic and hybrid inorganic–organic multifunctional initiators. Macromolecules, 1999, 32(20): 6526–6535
https://doi.org/10.1021/ma9904823
16 Szejtli J. Introduction and general overview of cyclodextrin chemistry. Chemical Reviews, 1998, 98(5): 1743–1754
https://doi.org/10.1021/cr970022c pmid: 11848947
17 Tian Z C, Chen  C, Allcock H R . Injectable and biodegradable supramolecular hydrogels by inclusion complexation between poly(organophosphazenes) and α-cyclodextrin. Macromolecules, 2013, 46(7): 2715–2724
https://doi.org/10.1021/ma4004314
18 Dong H, Li  Y, Yu J , et al.. A versatile multicomponent assembly via β-cyclodextrin host-guest chemistry on graphene for biomedical applications. Small, 2013, 9(3): 446–456
https://doi.org/10.1002/smll.201201003 pmid: 23047287
19 Davis M E, Brewster  M E. Cyclodextrin-based pharmaceutics: past, present and future. Nature Reviews Drug Discovery, 2004, 3(12): 1023–1035
https://doi.org/10.1038/nrd1576 pmid: 15573101
20 Machín R, Isasi  J R, Vélaz  I. β-Cyclodextrin hydrogels as potential drug delivery systems. Carbohydrate Polymers, 2012, 87(3): 2024–2030
https://doi.org/10.1016/j.carbpol.2011.10.024
21 Chen G, Jiang  M. Cyclodextrin-based inclusion complexation bridging supramolecular chemistry and macromolecular self-assembly. Chemical Society Reviews, 2011, 40(5): 2254–2266
https://doi.org/10.1039/c0cs00153h pmid: 21344115
22 Chen B Y, Pang  X H, Dong  C M. Dual stimuli-responsive supramolecular polypeptide-based hydrogel and reverse micellar hydrogel mediated by host-guest chemistry. Advanced Functional Materials, 2010, 20(4): 579–586
https://doi.org/10.1002/adfm.200901400
23 Shao S Q, Si  J X, Tang  J B, et al.. Jellyfish-shaped amphiphilic dendrimers: synthesis and formation of extremely uniform aggregates. Macromolecules, 2014, 47(3): 916–921
https://doi.org/10.1021/ma4025619
24 Pang X C, Zhao  L, Akinc M , et al.. Novel amphiphilic multi-arm, star-like block copolymers as unimolecular micelles. Macromolecules, 2011, 44(10): 3746–3752
https://doi.org/10.1021/ma200594j
25 Pang X C, Zhao  L, Feng C W , et al.. Novel amphiphilic multiarm, starlike coil-rod diblock copolymers via a combination of click chemistry with living polymerization. Macromolecules, 2011, 44(18): 7176–7183
https://doi.org/10.1021/ma201564t
26 Zhang Q, Su  L, Collins J , et al.. Dendritic cell lectin-targeting sentinel-like unimolecular glycoconjugates to release an anti-HIV drug. Journal of the American Chemical Society, 2014, 136(11): 4325–4332
https://doi.org/10.1021/ja4131565 pmid: 24568546
27 Lutz J F, Hoth  A. Preparation of ideal PEG analogues with a tunable thermosensitivity by controlled radical copolymerization of 2-(2-methoxyethoxy) ethyl methacrylate and oligo (ethylene glycol) methacrylate. Macromolecules, 2006, 39(2): 893–896
https://doi.org/10.1021/ma0517042
28 Yuan W Z, Li  X F, Gu  S Y, et al.. Amphiphilic chitosan graft copolymer via combination of ROP, ATRP and click chemistry: synthesis, self-assembly, thermosensitivity, fluorescence, and controlled drug release. Polymer, 2011, 52(3): 658–666
https://doi.org/10.1016/j.polymer.2010.12.052
29 Kotsuchibashi Y, Ebara  M, Hoffman A S , et al.. Temperature-responsive mixed core nanoparticle properties determined by the composition of statistical and block copolymers in the core. Polymer Chemistry, 2015, 6(10): 1693–1697
https://doi.org/10.1039/C4PY01794C
30 Das S, Samanta  S, Chatterjee D P , et al.. Thermosensitive water-soluble poly(ethylene glycol)-based polythiophene graft copolymers. Journal of Polymer Science Part A: Polymer Chemistry, 2013, 51(6): 1417–1427
https://doi.org/10.1002/pola.26514
31 Elias P Z, Liu  G W, Wei  H, et al.. A functionalized, injectable hydrogel  for localized drug delivery with tunable thermosensitivity: synthesis and characterization of physical and toxicological properties. Journal of Controlled Release, 2015, 208: 76–84
https://doi.org/10.1016/j.jconrel.2015.03.003 pmid: 25747144
32 Zhang Z X, Liu  X, Xu F J , et al.. Pseudo-block copolymer based on star-shaped poly(N-isopropylacrylamide) with a β-cyclodextrin core and guest-bearing PEG: Controlling thermoresponsivity through supramolecular self-assembly. Macromolecules, 2008, 41(16): 5967–5970
https://doi.org/10.1021/ma8009646
33 Medel S, Manuel García  J, Garrido L , et al.. Thermo- and pH-responsive gradient and block copolymers based on 2-(2-methoxyethoxy)ethyl methacrylate synthesized via atom transfer radical polymerization and the formation of thermoresponsive surfaces. Journal of Polymer Science Part A: Polymer Chemistry, 2011, 49(3): 690–700
https://doi.org/10.1002/pola.24480
34 Rieger J, Grazon  C, Charleux B , et al.. Pegylated thermally responsive block copolymer micelles and nanogels via in situ RAFT aqueous dispersion polymerization. Journal of Polymer Science Part A: Polymer Chemistry, 2009, 47(9): 2373–2390
https://doi.org/10.1002/pola.23329
35 Gil E S, Hudson  S M. Stimuli-responsive polymers and their bioconjugates. Progress in Polymer Science, 2004, 29(12): 1173–1222
https://doi.org/10.1016/j.progpolymsci.2004.08.003
36 Hoffman A S, Stayton  P S. Bioconjugates of smart polymers and proteins: synthesis and applications. Macromolecular Symposia, 2004, 207(1): 139–152
https://doi.org/10.1002/masy.200450314
37 Badi N, Lutz  J F. PEG-based thermogels: applicability in physiological media. Journal of Controlled Release, 2009, 140(3): 224–229
https://doi.org/10.1016/j.jconrel.2009.04.012 pmid: 19376170
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed