Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics in China - Selected Publications from Chinese Universities  2008, Vol. 3 Issue (1): 74-87   https://doi.org/10.1007/s11467-008-0004-4
  本期目录
Reversibly switchable DNA nanocompartment on surfaces: experiments, applications, and theory
Reversibly switchable DNA nanocompartment on surfaces: experiments, applications, and theory
MAO You-dong, LUO Chun-xiong, OU-YANG Qi
School of Physics, Key Laboratory for Mesoscopic Physics, and Center for Theoretical Biology, Peking University
 全文: PDF(1031 KB)   HTML
Abstract:This paper summarizes our studies of DNA nanocompartement in recent years. Biological macromolecules have been used to fabricate many nanostructures, bio-devices, and biomimetics because of their physical and chemical properties. But dynamic nanostructure and bio-machinery that depend on collective behavior of biomolecules have not been demonstrated. Here, we report the design of DNA nanocompartment on surfaces that exhibit reversible changes in molecular mechanical properties. Such molecular nanocompar- tment is served to encage molecules, switched by the collective effect of Watson-Crick base- pairing interactions. This effect is used to investigate the dynamic process of nanocompartment switching and molecular thermosensing, as well as perform molecular recognition. Further, we found that ‘fuel’ strands with single-base variation cannot afford an efficient closing of nanocompartment, which allows highly sensitive label-free DNA array detection. Theoretical analysis and computer simulations confirm our experimental observations, which are discussed in this review paper. Our results suggest that DNA nanocompartment can be used as building blocks for complex biomaterials, because its core functions are independent of substrates and mediators.
出版日期: 2008-03-05
 引用本文:   
. Reversibly switchable DNA nanocompartment on surfaces: experiments, applications, and theory[J]. Frontiers of Physics in China - Selected Publications from Chinese Universities, 2008, 3(1): 74-87.
MAO You-dong, LUO Chun-xiong, OU-YANG Qi. Reversibly switchable DNA nanocompartment on surfaces: experiments, applications, and theory. Front. Phys. , 2008, 3(1): 74-87.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-008-0004-4
https://academic.hep.com.cn/fop/CN/Y2008/V3/I1/74
1 Mao C Sun W Shen Z Seeman N C Nature 1999 397144.
doi: 10.1038/16437
2 Yuke B Turberfield A J Mills A P Simmel F C Neumann J L Nature 2000 406605.
doi: 10.1038/35020524
3 Yan H Zhang X Shen Z Seeman N C Nature 2002 41562.
doi: 10.1038/415062a
4 Braun E Eichen Y Sivan U Ben-Yoseph G Nature 1998 391776.
doi: 10.1038/35826
5 Kasumov A Y et al.Science 2001 291280.
doi: 10.1126/science.291.5502.280
6 Benenson Y et al.Nature 2001 414430.
doi: 10.1038/35106533
7 Winfree E Liu F Wenzler L A Seeman N C Nature 1998 394539.
doi: 10.1038/28998
8 Park S J Taton A Mirkin C A Science 2002 2951503.
doi: 10.1126/science.1066348
9 Gittins D I Bethell D Schiffrin D J Nichols R J Nature 2000 40867.
doi: 10.1038/35040518
10 Lahann J et al.Science 2003 299371.
doi: 10.1126/science.1078933
11 Mao Y Luo C Ouyang Q Nucleic Acids Res. 2003 31e108.
doi: 10.1093/nar/gng108
12 Mao Y et al.Nucleic Acids Res. 2004 32e144.
doi: 10.1093/nar/gnh145
13 Luo C X Mao Y D Ouyang Q Acta Biophysica Sinica 2005 21151.
doi: null
14 Steel A B Herne T M Tarlov M J Anal. Chem. 1998 704670.
doi: 10.1021/ac980037q
15 Herne T M Tarlov M J J. Am. Chem. Soc. 1997 1198916.
doi: 10.1021/ja9719586
16 Kelley S O et al.Langmuir 1998 146781.
doi: 10.1021/la980874n
17 Kelley S O Barton K B Bioconjugate Chem. 1997 831.
doi: 10.1021/bc960070o
18 Okahata Y et al.Anal. Chem. 1998 701288.
doi: 10.1021/ac970584w
19 Yang M Yau H C M Chan H L Langmuir 1998 146121.
doi: 10.1021/la980577i
20 Chang S Mao Y D Ouyang Q Journal of Physics: Conference Series 2006 2918.
doi: 10.1088/1742‐6596/29/1/004
21 Mao Y D Chang S Yang S X Ouyang Q Jiang L Nature Nanotechnology 2007 266.
doi: 10.1038/nnano.2007.148
22 Guo Z Guilfoyle R A Thiel A J Wang R Smith L M Nucleic Acids Res. 1994 225456.
doi: 10.1093/nar/22.24.5456
23 Paraschiv V et al.Adv. Mater. 2002 14722.
doi: 10.1002/1521‐4095(20020517)14:10<722::AID‐ADMA722>3.0.CO;2‐T
24 Jing T W et al.Proc. Natl. Acad. Sci. USA 1993 908934.
doi: 10.1073/pnas.90.19.8934
25 Allemand J F Bensimon D Lavery R Croquette V Proc. Natl. Acad. Sci. USA 1998 9514152.
doi: 10.1073/pnas.95.24.14152
26 Bard A J Fulkner L R Electrochemical methodsNew YorkWiley 1980 .
doi: null
27 Tuite E Nordén B J. Am. Chem. Soc. 1994 1167548.
doi: 10.1021/ja00096a011
28 Rohs R Sklenar H Lavery R Roder B J. Am.Chem. Soc. 2000 1222860.
doi: 10.1021/ja992966k
29 Ohuigin C et al.Nucleic Acids Res. 1987 157411.
doi: 10.1093/nar/15.18.7411
30 Aoki H Buhlmann P Umezawa Y Electroanalysis 2000 121272.
doi: 10.1002/1521‐4109(200011)12:16<1272::AID‐ELAN1272>3.0.CO;2‐F
31 Cater M T Rodriguez M Bard A J J. Am. Chem. Soc. 1989 1118901.
doi: 10.1021/ja00206a020
32 Johnston D H Thorp H H J. Phys. Chem. 1996 10013837.
doi: 10.1021/jp960252f
33 Reid G D et al.J. Am. Chem. Soc. 2001 1236953.
doi: 10.1021/ja015584z
34 Lifson S J. Chem. Phys. 1964 403705.
doi: 10.1063/1.1725077
35 Poland D Scheraga H A J. Chem. Phys. 1966 451456.
doi: 10.1063/1.1727785
36 Poland D Scheraga H A J. Chem. Phys. 1966 451464.
doi: 10.1063/1.1727786
37 Zhang Y L Zheng W M Liu J X Chen Y Z Phys.Rev. E 1997 567100.
doi: 10.1103/PhysRevE.56.7100
38 Theodorakopoulos N Dauxois T Peyard M Phys. Rev. Lett. 2000 856.
doi: 10.1103/PhysRevLett.85.6
39 Dauxois T Peyard M Phys. Rev. E 1995 514027.
doi: 10.1103/PhysRevE.51.4027
40 Dauxois T Peyard M Phys. Rev. E 1993 47R44.
doi: 10.1103/PhysRevE.47.R44
41 Zimm B H Bragg J K J. Chem. Phys. 1959 281246.
doi: 10.1063/1.1744378
42 Harreis H M Kornyshev A A Likos C N Lowen H Sutmann G Phys. Rev. Lett. 2002 89018303.
doi: 10.1103/PhysRevLett.89.018303
43 Harreis H M Likos C N Lowen H Biophys. J. 2003 843607.
doi: null
44 Kornyshev A A Leikin S J. Chem. Phys. 1997 1073656.
doi: 10.1063/1.475320
45 Kornyshev A A Phys. Rev. E 2000 622576.
doi: 10.1103/PhysRevE.62.2576
46 Allahyarov E Lowen H Phys. Rev. E 2000 625542.
doi: 10.1103/PhysRevE.62.5542
47 Kornyshev A A Phys. Rev. Lett. 2001 863666.
doi: 10.1103/PhysRevLett.86.3666
48 Hill T L J. Chem. Phys. 1959 30383.
doi: 10.1063/1.1729961
49 Goychuk I Hänggi P Proc. Natl. Acad. Sci.USA 2002 993552.
doi: 10.1073/pnas.052015699
50 Wiggins P Phillips R Proc. Natl. Acad. Sci.USA 2004 1014071.
doi: 10.1073/pnas.0307804101
51 Markin S Sachs F Phys. Biol. 2004 1110.
doi: 10.1088/1478‐3967/1/2/007
52 Cherstvy A G Kornyshev A A Leikin S J. Phys. Chem. B 2004 1086508.
doi: 10.1021/jp0380475
53 Kornyshev A A Leikin S Phys. Rev. Lett. 2001 863666.
doi: 10.1103/PhysRevLett.86.3666
54 Wiggins P A et al.Nature Nanotechnology 2006 1137.
doi: 10.1038/nnano.2006.63
55 Chou T Phys. Rev. Lett. 1998 8085.
doi: 10.1103/PhysRevLett.80.85
56 Hahn K Kärger J Kukla V Phys. Rev. Lett. 1996 762762.
doi: 10.1103/PhysRevLett.76.2762
57 Eisenberg R S Klosek M M Schuss Z J. Chem. Phys. 1995 1021767.
doi: 10.1063/1.468704
58 Nadler B Schuss Z Singer A Phys. Rev. Lett. 2005 94218101.
doi: 10.1103/PhysRevLett.94.218101
59 Kosztin I Schulten K Phys. Rev. Lett. 2004 93238102.
doi: 10.1103/PhysRevLett.93.238102
60 Hille B Ion Channels of Excitable MembranesSunderlandSinauer Associates 2001 .
doi: null
61 Gillespie P G Walker R G Nature 2001 413194.
doi: 10.1038/35093011
62 Yellen G Nature 2002 41935.
doi: 10.1038/nature00978
63 MacKinnon R Nobel lecture, Angew. Chem. Int. Ed. 2004 434265.
doi: 10.1002/anie.200400662
64 Perozo E Cortes D M Sompornpisut P Kloda A Martinac B Nature 2002 418942.
doi: 10.1038/nature00992
65 Chinappi M De Angeles E Melchionna S Casciola C M Succi S Piva R Phys. Rev. Lett. 2006 97144509.
doi: 10.1103/PhysRevLett.97.144509
66 Cheng J Kricka L J Biochip TechnologyPhiladelphia, PAHarwood Academic Publishers 2001 .
doi: null
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed