QU Zhen1, KANG Da-wei1, GAO Xu-tuan2, XIE Shi-jie3
1.School of Physics and Microelectronics, Shandong University; 2.School of Physics and Microelectronics, Shandong University; School of Physics, Shandong University of Technology; 3.School of Physics and Microelectronics, Shandong University; National Key Laboratory of Crystal Materials, Shandong University;
Abstract:DNA (Deoxyribonucleic acid) has recently caught the attention of chemists and physicists. A major reason for this interest is DNA’s potential use in nanoelectronic devices, both as a template for assembling nanocircuits and as an element of such circuits. However, the electronic properties of the DNA molecule remain very controversial. Charge-transfer reactions and conductivity measurements show a large variety of possible electronic behavior, ranging from Anderson and bandgap insulators to effective molecular wires and induced superconductors. In this review article, we summarize the wide-ranging experimental and theoretical results of charge transport in DNA. An itinerant electron model is suggested and the effect of the density of itinerant electrons on the conductivity of DNA is studied. Calculations show that a DNA molecule may show conductivity from insulating to metallic, which explains the controversial and profuse electric characteristics of DNA to some extent.
出版日期: 2008-09-05
引用本文:
. Itinerant electron model and conductance of DNA[J]. Frontiers of Physics in China - Selected Publications from Chinese Universities, 2008, 3(3): 349-364.
QU Zhen, KANG Da-wei, GAO Xu-tuan, XIE Shi-jie. Itinerant electron model and conductance of DNA. Front. Phys. , 2008, 3(3): 349-364.
J. M.Warman, M. P.de Haas, and A.Rupprecht, Chem. Phys. Lett., 1996, 249(5–6): 319. doi: 10.1016/0009‐2614(95)01429‐2
2
S.Luryi, J.Xu, and A.Zaslavsky, Future Trends in Microelectronics, USA, New York: John Wiley & Sons Inc., 1999 : 87
3
C.Joachim, J. K.Gimzewski, and A.Aviram, Nature, 2000, 408(6812): 541. doi: 10.1038/35046000
4
J. M.Tour, Acc. Chem. Res., 2000, 33(11): 791. doi: 10.1021/ar0000612
5
A.Aviram and M. A.Ratner, Chem. Phys. Lett., 1974, 29(2): 277. doi: 10.1016/0009‐2614(74)85031‐1
6
A. Aviram and M. A. Ratner (eds.), Molecular ElectronicsScience and Technology: Annals of the New York Academy of Sciences, New York: The New York Academy of Sciences, 1998, Vol. 852
7
A.Aviram, M. A.Ratner, and V.Mujica, Molecular Electronics II: Annalsof the New York Academy of Sciences, New York: The New York Academyof Sciences, 2002, Vol.960
8
C. P.Collier, E. W.Wong, M.Bolohradsky, F. M.Raymo, J. F.Stoddart, P. J.Kuekes, R. S.Williams, and J. R.Heath, Science, 1999, 285: 391. doi: 10.1126/science.285.5426.391
9
C. P.Collier, G.Mattersteig, E. W.Wong, Y.Luo, K.Beverly, J.Sampario, F. M.Raymo, and J. R.Heath, Science, 2001, 289: 1172. doi: 10.1126/science.289.5482.1172
R.Rinaldi, A.Biasco, G.Maruccio, V.Arima, P.Visconti, R.Cingolani, P.Facci, F.De Rienzo, R.Di Felice, E.Molinari, M. P.Verbeet, and G. W.Canters, Appl. Phys. Lett., 2003, 82(3): 472. doi: 10.1063/1.1530748
13
R.Rinaldi, E.Branca, R.Cingolani, R.Di Felice, A.Calzolari, E.Molinari, S.Masiero, G.Spada, G.Gottarelli, and A.Garbesi, Annals of the New York Academy of Sciences, 2002, 960: 184
S. G.Lemay, J. W.Janssen, M.van den Hout, M.Mooji, M. J.Bronikowski, P. A.Willis, R. E.Smalley, L. P.Kouwenhoven, and C.Dekker, Nature, 2001, 412(6847): 617. doi: 10.1038/35088013
16
W.Liang, M. P.Shores, M.Bockrath, J. R.Long, and H.Park, Nature, 2002, 417(6890): 725. doi: 10.1038/nature00790
K.-H.Yoo, D. H.Ha, J.-O.Lee, J. W.Park, J.Kim, J. J.Kim, H.-Y.Lee, T.Kawai, and H. Y.Choi, Phys. Rev. Lett., 2001, 87(19): 198102. doi: 10.1103/PhysRevLett.87.198102
T.Kanno, H.Tanaka, N.Miyoshi, M.Fukuda, and T.Kawai, Jpn. J. Appl. Phys., 2000, 39: 1892. doi: 10.1143/JJAP.39.1892
55
J. S.Hwang, G. S.Lee, K. J.Kong, D. J.Ahn, S. W.Hwang, and D.Ahn, Microelectron. Eng., 2002, 63(1–3): 161. doi: 10.1016/S0167‐9317(02)00641‐X
56
J. S.Hwang, G. S.Lee, D.Ahn, G. S.Lee, D. J.Ahn, and S. W.Hwang, Appl. Phys. Lett., 2002, 81(6):1134. doi: 10.1063/1.1498862
57
Private communication.
58
T.Muir, E.Morales, J.Root, I.Kumar, B.Garcia, C.Vellandi, D.Jenigian, T.Marsh, E.Henderson, and J.Vesenka, J. Vac. Sci. Technol.A, 1998, 16(3): 1172. doi: 10.1116/1.581254
59
Y.Zhang, R. H.Austin, J.Kraeft, E. C.Cox, and N. P.Ong, Phys. Rev. Lett., 2002, 89: 189102
60
K. W.Hipps, Science, 2001, 294: 536. doi: 10.1126/science.1065708
61
X. D.Cui, A.Primak, X.Zarate, J.Tomfohr, O. F.Sankey, A. L.Moore, T. A.Moore, D.Gust, G.Harris, and S. M.Lindsay, Science, 2001, 294: 571. doi: 10.1126/science.1064354
62
D. H.Ha, H.Nham, K.-H.Yoo, H.So, H. Y.Lee, and T.Kawai, Chem. Phys. Lett., 2002, 355(5–6): 405. doi: 10.1016/S0009‐2614(02)00142‐2
H.Ymada, E. B.Starikov, D.Hennig, and J. F. R.Archilla, Eur. Phys. J. E, 2005, 17: 149. doi: 10.1140/epje/i2004‐10135‐8
71
S.Priyadarshy, S. M.Risser, and D. N.Beratan, J. Biol. Inorg. Chem., 1998, 3(2): 196. doi: 10.1007/s007750050221
72
E. S.Krider and T. J.Meade, J. Biol. Inorg. Chem., 1998, 3(2): 210. doi: 10.1007/s007750050223
73
T. L.Netzel, J. Biol. Inorg. Chem., 1998, 3(2): 210. doi: 10.1007/s007750050223
74
D. N.Beratan, S.Priyadarshy, and S. M.Risser, Chem. Biol., 1997, 4(1): 3. doi: 10.1016/S1074‐5521(97)90230‐1
75
M.Bixon, B.Giese, S.Wessely, T.Langenbacher, M. E.Michel Beyerle, and J.Jortner, Proc. Natl. Acad. Sci. USA, 1999, 96: 11713. doi: 10.1073/pnas.96.21.11713
76
M.Bixon and J.Jortner, J. Phys. Chem. B, 2000, 104: 3906. doi: 10.1021/jp9936493
77
J.Jortner, M.Bixon, A.Voityuk, and N.Rosch, J. Phys. Chem. A, 2002, 106(33): 7599. doi: 10.1021/jp014232b
78
A. A.Voityuk, N.Rosch, M.Bixon, and J.Jortner, J. Phys. Chem. B, 2000, 104: 9740. doi: 10.1021/jp001109w
79
E. C.Grozema, Y. A.Berlin, and L. D. A.Siebbeles, J. Am. Chem. Soc., 2000, 122(51): 10903
80
Y.-J.Ye, R. S.Chen, F.Chen, J.Sun, and J.Ladik, Solid State Commun., 2001, 119(3): 175. doi: 10.1016/S0038‐1098(01)00204‐6
E. M.Conwell and S. V.Rakhmanova, Proc. Natl. Acad. Sci.USA, 2000, 97: 4556. doi: 10.1073/pnas.050074497
116
S. V.Rakhmanova and E. M.Conwell, J. Phys. Chem. B, 2001, 105: 2056. doi: 10.1021/jp0036285
117
E. M.Conwell and D. M.Basko, Synthetic Metals, 2003, 137: 1381. doi: 10.1016/S0379‐6779(02)01151‐7
118
J. H.Park, H. Y.Choi, and E. M.Conwell, J. Phys. Chem. B, 2004, 108: 19483. doi: 10.1021/jp046968p
119
E. M.Conwell, J. H.Park, and H. Y.Choi, J. Phys. Chem. B, 2005, 109: 9760. doi: 10.1021/jp044485f
120
E. M.Conwell and S. M.Bloch, J. Phys. Chem. B, 2006, 110: 5801. doi: 10.1021/jp0553986
121
D.Ly, Y.Kan, B.Armitage, and G. B.Schuster, J. Am. Chem. Soc., 1996, 118(36): 8747. doi: 10.1021/ja9615785
122
D.Ly, L.Sanii, and G. B.Schuster, J. Am. Chem. Soc., 1999, 121(40): 9400. doi: 10.1021/ja991753s
123
B.Zheng, J.Wu, W. Q.Sun, and C. B.Liu, Chem. Phys. Lett., 2006, 425: 123. doi: 10.1016/j.cplett.2006.05.022
124
D. T.Breslin, J. E.Coury, J. R.Anderson, L.McFail-Isom, Y.Kan, L. D.Williams, L. A.Bottomley, and G. B.Schuster, J. Am. Chem. Soc., 1997, 119(21): 5043. doi: 10.1021/ja963607h
125
S. M.Gasper and G. B.Schuster, J. Am. Chem. Soc., 1997, 119(52): 12762. doi: 10.1021/ja972496z
126
J. H.Wei, L. X.Wang, K. S.Chan, and Y. J.Yan, Phys. Rev. B, 2005, 72: 064304. doi: 10.1103/PhysRevB.72.064304
127
G. B.Schuster, Acc. Chem. Res., 2000, 33(4): 253. doi: 10.1021/ar980059z
128
B.Armitage, D.Ly, T.Koch, H.Frydenlund, H.Orum, H. G.Baand, and G. B.Schuster, Proc. Natl. Acad. Sci. USA, 1997, 94: 12320. doi: 10.1073/pnas.94.23.12320
129
D.Hennig, J. F. R.Archilla, and J.Agarwal, Physica D, 2003, 180: 256
130
D.Hennig, E. B.Starikov, J. F. R.Archilla, and F.Palmero, J. Bio. Phys., 2004, 30: 227. doi: 10.1023/B:JOBP.0000046721.92623.a9
131
D.Hennig and J. F. R.Archilla, Physica A, 2004, 331: 579. doi: 10.1016/j.physa.2003.09.053
132
R.Bruinsma, G.Gruner, M. R. D.Orsogna, and J.Rudnick, Phys. Rev. Lett., 2000 : 85
133
R. N.Barnett, C. L.Cleveland, A.Joy, U.Landman, and G. B.Schuste, Science, 2001, 294: 567. doi: 10.1126/science.1062864
C. R.Cantor, P. R.Schimmel, Biophysical Chemistry,Part 3: The Behavior of Biological Macromolecules, Chapter 19, New York: W. H. Freeman and Company, 1980 : 1207
136
F. C.Grozema, L. D. A.Siebbeles, Y. A.Berlin, and M. A.Ratner, Chem. Phys. Chem., 2002, 3: 536