The 3-D quadratic diffeomorphism is defined as a map with a constant Jacobian. A few such examples are well known. In this paper, all possible forms of the 3-D quadratic diffeomorphisms are determined. Some numerical results are also given and discussed.
Corresponding Author(s):
ELHADJ Zeraoulia,Email:zeraoulia@mail.univ-tebessa.dz, zelhadj12@yahoo.fr; SPROTT J. C.,Email:sprott@physics.wisc.edu
引用本文:
. Classification of three-dimensional quadratic diffeomorphisms with constant Jacobian[J]. Frontiers of Physics, 2009, 4(1): 111-121.
Zeraoulia ELHADJ, J. C. SPROTT. Classification of three-dimensional quadratic diffeomorphisms with constant Jacobian. Front. Phys. , 2009, 4(1): 111-121.
A. L. Shilnikov, Bifurcation and chaos in the Morioka-Shimizu system, Methods of qualitative theory of differential equations (Gorky), 1986: 180-193; English translation in Selecta Math. Soviet., 1991, 10: 105-117
D. A. Miller and G. Grassi, A discrete generalized hyperchaotic Hénon map circuit, Circuits and Systems, MWSCAS 2001. Proceedings of the 44th IEEE 2001 Midwest Symposium 2001: 328
G. Grassi and S. Mascolo, A system theory approach for designing crytosystems based on hyperchaos, IEEE Transactions, Circuits & Systems-I: Fundamental theory and applications, 1999, 46(9): 1135 doi: 10.1109/81.788815
7
S. V. Gonchenko, I. I. Ovsyannikov, C. Simo, and D. Turaev, Three-Dimensional H′enon-like Maps and Wild Lorenz-like Attractors, International Journal of Bifurcation and Chaos , 2005, 15(11): 3493 doi: 10.1142/S0218127405014180
8
S. V. Gonchenko, J. D. Meiss, and I. I. Ovsyannikov, Regular and Chaotic Dynamics , 2006, 11(2): 191 doi: 10.1070/RD2006v011n02ABEH000345
9
S. V. Gonchenko and I. I. Ovsyannikov, Three-dimensional H′enon map in homoclinic bifurcations, 2005, in preparation
A. J. Dragt and D. T. Abell, Symplectic maps and computation of orbits in particle accelerators. In Integration algorithms and classical mechanics ON: Toronto, 1993: 59-85 ; Amer. Math. Soc.,Providence, RI , 1996
17
E. N. Lorenz, J. Atoms. Sc. , 1963, 20: 130
18
G. Chen and X. Dong, From Chaos to Order: Methodologies, Perspectives and Applications Singapore: World Scientific , 1998
19
G. Chen, Controlling Chaos and Bifurcations in Engineering Systems, Boca Raton, FL , USA: CRC Press, 1999
20
W. W. Yu, J. Cao, K. W. Wong, and J. Lü, Chaos , 2007, 17(3): 033
21
Etienne Forest, Beam Dynamics : A New Attitude and Framework (The Physics and Technology of Particle and Photon Beams) , Amsterdam: Harwood Academic, 1998