Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2009, Vol. 4 Issue (3): 315-326   https://doi.org/10.1007/s11467-009-0023-9
  本期目录
Single-electron tunneling and Coulomb blockade in carbon-based quantum dots
Single-electron tunneling and Coulomb blockade in carbon-based quantum dots
Wei FAN (樊巍)1,2, Rui-qin ZHANG (张瑞勤)1,3()
1. Nano-organic Photoelectronic Laboratory, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; 2. Graduate University of Chinese Academy of Sciences, Beijing 100190, China; 3. Center of Super-diamond and Advanced Films and Department of Physics & Materials Science, City University of Hong Kong, Hong Kong Special Administrative Region, China
 全文: PDF(768 KB)   HTML
Abstract

Single-electron tunneling (SET) and Coulomb blockade (CB) phenomena have been widely observed in nanoscaled electronics and have received intense attention around the world. In the past few years, we have studied SET in carbon nanotube fragments and fullerenes by applying the so-called “Orthodox” theory [28]. As outlined in this review article, we investigated the single-electron charging and discharging process via current-voltage characteristics, gate effect, and electronic structure-related factors. Because the investigated geometric structures are three-dimensionally confined, resulting in a discrete spectrum of energy levels resembling the property of quantum dots, we evidenced the CB and Coulomb staircases in these structures. These nanostructures are sufficiently small that introducing even a single electron is sufficient to dramatically change the transport properties as a result of the charging energy associated with this extra electron. We found that the Coulomb staircases occur in the I-V characteristics only when the width of the left barrier junction is smaller than that of the right barrier junction. In this case, the transmission coefficient of the emitter junction is larger than that of the collector junction; also, occupied levels enter the bias window, thereby enhancing the tunneling extensively.

Key wordssingle-electron tunneling (SET)    Coulomb blockade (CB)    Coulomb staircase    carbon nanotube (CNT)    fullerene    Orthodox theory
收稿日期: 2009-01-20      出版日期: 2009-09-05
Corresponding Author(s): null,Email:aprqz@cityu.edu.hk   
 引用本文:   
. Single-electron tunneling and Coulomb blockade in carbon-based quantum dots[J]. Frontiers of Physics, 2009, 4(3): 315-326.
Wei FAN (樊巍), Rui-qin ZHANG (张瑞勤). Single-electron tunneling and Coulomb blockade in carbon-based quantum dots. Front. Phys. , 2009, 4(3): 315-326.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-009-0023-9
https://academic.hep.com.cn/fop/CN/Y2009/V4/I3/315
1 M. A. Reed, J. N. Randall, R. J. Aggarwall, R. J. Matyi, T. M. Moore, and A. E. Wetsel, Phys. Rev. Lett. , 1998, 60: 535
doi: 10.1103/PhysRevLett.60.535
2 J. H. F. Scott-Thomas, S. B. Field, M. A. Kastner, H. I. Smith, and D. A. Antonadis, Phys. Rev. Lett. , 1989, 62: 583
doi: 10.1103/PhysRevLett.62.583
3 S. Tarucha, D. G. Austing, T. Honda, R. J. van der Hage, and L. P. Kouwenhoven, Phys. Rev. Lett. , 1996, 77: 3613
doi: 10.1103/PhysRevLett.77.3613
4 L. P. Kouwenhoven and P. L. McEuen, in: Nano-Science and Technology, edited by G. Timp, AIP Press , 1997
5 M. H. Devoret, D. Esteve, and C. Urbina, Nature , 1992, 360: 547
doi: 10.1038/360547a0
6 R. C. Ashoori, Nature , 1996, 379: 413
doi: 10.1038/379413a0
7 K. Mullen, E. Ben Jacob, R.C. Jaklevic, and Z. Schuss, Phys. Rev. B , 1988, 37: 98
doi: 10.1103/PhysRevB.37.98
8 T. A. Fulton and D. J. Dolan, Phys. Rev. Lett. , 1987, 59: 109
doi: 10.1103/PhysRevLett.59.109
9 G. Binnig, H. Rohrer, Ch. Gerber, and E. Weibel, Phys. Rev. Lett. , 1982, 49: 57
doi: 10.1103/PhysRevLett.49.57
10 C. J. Chen, Introduction to Scanning Tunneling Microscopy, New York: Oxford University Press, 1993
11 T.W. Odom, J. L. Huang, P. Kim, and C. M. Lieber, Nature (London) , 1998, 391: 62
doi: 10.1038/34145
12 J. G. Hou, J. L. Yang, H. Q. Wang, Q. X. Li, C. G. Zeng, L. F. Yuan, B. Wang, D. M. Chen, and Q. S. Zhu, Nature (London) , 2001, 409: 304
doi: 10.1038/35053163
13 A. E. Hanna and M. Tinkham, Phys. Rev. B , 1991, 44: 5919
doi: 10.1103/PhysRevB.44.5919
14 W. H. Green, S. M. Gorun, G. Fitzgerald, P. W. Fowler, A. Ceulemans, and B. C. Teca, J. Chem. Phys. , 1996, 100: 14892
doi: 10.1021/jp960689n
15 B. Li, C. Zeng, J. Zhao, J. L. Yang, J. G. Hou, and Q. S. Zhu, J. Chem. Phys. , 2006, 124: 064709
doi: 10.1063/1.2163333
16 C. Sch?nenberger, H. van Houten, and H. C. Donkersloot, Europhys. Lett. , 1992, 20: 249
doi: 10.1209/0295-5075/20/3/010
17 P. J. M. van Bentum, R. T. M. Smokers, and H. van Kempen, Phys. Rev. Lett. , 1988, 60: 2543
doi: 10.1103/PhysRevLett.60.2543
18 R. Wilkins, E. Ben-Jacob, and R. C. Jaklevic, Phys. Rev. Lett. , 1989, 63: 801
doi: 10.1103/PhysRevLett.63.801
19 M. Dorogi, J. Gomez, R. Osifchin, R. P. Andres, and R. Reifenberger, Phys. Rev. B , 1995, 52: 9071
doi: 10.1103/PhysRevB.52.9071
20 D. Porath, Y. Levi, M. Tarabiah, and O. Millo, Phys. Rev. B , 1997, 56: 9829
doi: 10.1103/PhysRevB.56.9829
21 S. W. Chen, R. S. Ingram, M. J. Hostetler, J. J. Pietron, R. W. Murray, T. G. Schaaff, J. T. Khoury, M. M. Alvarez, and R. L. Whetten, Science , 1998, 280: 2098
doi: 10.1126/science.280.5372.2098
22 U. Banin, Y. W. Cao, D. Katz, and O. Millo, Nature (London) , 1999, 400: 542
doi: 10.1038/22979
23 J. G. Hou, B. Wang, J. L. Yang, X. R. Wang, H. Q. Wang, Q. S. Zhu, and X. D. Xiao, Phys. Rev. Lett. , 2001, 86: 5321
doi: 10.1103/PhysRevLett.86.5321
24 B. Wang, H. Q. Wang, H. X. Li, C. G. Zeng, J. G. Hou, and X. D. Xiao, Phys. Rev. B , 2001, 63: 035403
doi: 10.1103/PhysRevB.63.035403
25 S. W. Wu, G. V. Nazin, X. Chen, X. H. Qiu, and W. Ho, Phys. Rev. Lett. , 2004, 93: 236802
doi: 10.1103/PhysRevLett.93.236802
26 W. Fan, R. Q. Zhang, A. R. Rocha, and S. Sanvito, J. Chem. Phys. , 2008, 129: 074710
doi: 10.1063/1.2971176
27 Z. Z. Sun, X. R. Wang, R. Q. Zhang, and S. T. Lee, J. Appl. Phys. , 2008, 103: 103719
doi: 10.1063/1.2936321
28 D. V. Averin and K. K. Likharev, J. Low Temp. Phys. , 1986, 62: 345
doi: 10.1007/BF00683469
29 Y. Q. Feng, R. Q. Zhang, K. S. Chan, H. F. Cheung, and S. T. Lee, Phys. Rev. B , 2002, 66: 045404
doi: 10.1103/PhysRevB.66.045404
30 Y. Q. Feng, R. Q. Zhang, and S. T. Lee, J. Appl. Phys. , 2004, 95: 5729
doi: 10.1063/1.1704851
31 R. Q. Zhang, Y. Q. Feng, S. T. Lee, and C. L. Bai, J. Phys. Chem. B , 2004, 108: 16636
doi: 10.1021/jp047698d
32 C. W. J. Beenakker, Phys. Rev. B , 1991, 44: 1646
doi: 10.1103/PhysRevB.44.1646
33 D. K. Ferry and S. M. Goodnick, Transport in Nanostructures, Cambridge, UK: Cambridge University Press, 1997
34 A. Selloni, P. Carnevali, E. Tosatti, and C. D. Chen, Phys. Rev. B , 1985, 31: 2602
doi: 10.1103/PhysRevB.31.2602
35 H. W. Ch. Postma, M. Jonge, Z. Yao, and C. Dekker, Phys. Rev. B , 2000, 62: R10653
doi: 10.1103/PhysRevB.62.R10653
36 J. Hu, M. Ouyang, P. Yang, and C. M. Lieber, Nature (London) , 1999, 399: 48
doi: 10.1038/19941
37 M. Bockrath, D. H. Cobden, J. Lu, A. G. Rinzler, R. E. Smalley, L. Balents, and P. L. McEuen, Nature (London) , 1999, 397: 598
doi: 10.1038/17569
38 Y. G. Semenov, K. W. Kim, and G. J. Iafrate, Phys. Rev. B , 2007, 75: 045429
doi: 10.1103/PhysRevB.75.045429
39 D. Bulaev, B. Trauzettel, and D. Loss, Phys. Rev. B , 2008, 77: 235301
doi: 10.1103/PhysRevB.77.235301
40 J. Wildoer, L. Venema, A. Rinzler, R. Smalley, and C. Dekker, Nature (London) , 1998, 391: 59
doi: 10.1038/34139
41 A. D. Becke, Phys. Rev. A , 1988, 38: 3098
doi: 10.1103/PhysRevA.38.3098
42 C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B , 1988, 37: 785
doi: 10.1103/PhysRevB.37.785
43 M. J. Frisch, G. W. Trucks, H. B. Schlegel, ., Gaussian 98, Revision A.9, Gaussian, Inc., Pittsburgh PA , 1998
44 P. M. Ajayan and S. Iijima, Nature (London) , 1992, 358: 23
doi: 10.1038/358023a0
45 H. van Houten, C. W. J. Beenakker, and A. A. M. Staring, Single Charge Tunneling, edited by H. Grabert and M. H. Devoret, New York: Plenum, 1992
46 D. H. Cobden, M. Bockrath, P. L. McEuen, A. G. Rinzler, and R. E. Smalley, Phys. Rev. Lett. , 1998, 81: 681
doi: 10.1103/PhysRevLett.81.681
47 J. J. Palacios, A. J. Perez-Jimenez, E. Louis, and J. A. Verges, Nanotechnology , 2001, 12: 160
doi: 10.1088/0957-4484/12/2/318
48 A. T. Johnson, L. P. Kouwenhoven, W. de Jong, N. C. van der Vaart, C. J. P. M. Harmans, and C. T. Foxon, Phys. Rev. Lett. , 1992, 69: 1592
doi: 10.1103/PhysRevLett.69.1592
49 M. A. Kastner, Rev. Mod. Phys. , 1992, 64:849
doi: 10.1103/RevModPhys.64.849
50 E. B. Foxman, P. L. McEuen, U. Meirav, N. S. Wingreen, Y. Meir, P. A. Belk, N. R. Belk, and M. A. Kastner, Phys. Rev. B , 1993, 47: 10020
doi: 10.1103/PhysRevB.47.10020
51 G. E. Scuseria, Science , 1996, 271: 942
doi: 10.1126/science.271.5251.942
52 H. Kietzmann, R. Rochow, G. Gantefoer, W. Eberhardt, K. Vietze, G. Seifert, and P. W. Fowler, Phys. Rev. Lett. , 1998, 81: 5378
doi: 10.1103/PhysRevLett.81.5378
53 H. Prinzback, A. Weller, P. Landenberger, F. Wahl, J. Woerth, L. T. Scott, M. Gelmont, D. Olevano, and B. V. Issendorff, Nature , 2000, 407: 60
doi: 10.1038/35024037
54 H. W. Kroto, Nature , 1987, 329: 529
doi: 10.1038/329529a0
55 B. Wang, Y. Zhou, X. Ding, K. Wang, X. Wang, J. Yang, and J. G. Hou, J. Phys. Chem. B , 2006, 110: 24505
doi: 10.1021/jp065069t
56 J. Zhao, C. Zeng, X. Cheng, K. Wang, G. Wang, J. L. Yang, J. G. Hou, and Q. S. Zhu, Phys. Rev. Lett. , 2005, 95: 045502
doi: 10.1103/PhysRevLett.95.045502
57 H. Park, J. Park, A. K. L. Lim, E. H. Anderson, A. P. Alivisatos, and P. L. McEuen, Nature , 2000, 407: 57
doi: 10.1038/35024031
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed