Single-electron tunneling and Coulomb blockade in carbon-based quantum dots
Single-electron tunneling and Coulomb blockade in carbon-based quantum dots
Wei FAN (樊巍)1,2, Rui-qin ZHANG (张瑞勤)1,3()
1. Nano-organic Photoelectronic Laboratory, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; 2. Graduate University of Chinese Academy of Sciences, Beijing 100190, China; 3. Center of Super-diamond and Advanced Films and Department of Physics & Materials Science, City University of Hong Kong, Hong Kong Special Administrative Region, China
Single-electron tunneling (SET) and Coulomb blockade (CB) phenomena have been widely observed in nanoscaled electronics and have received intense attention around the world. In the past few years, we have studied SET in carbon nanotube fragments and fullerenes by applying the so-called “Orthodox” theory [28]. As outlined in this review article, we investigated the single-electron charging and discharging process via current-voltage characteristics, gate effect, and electronic structure-related factors. Because the investigated geometric structures are three-dimensionally confined, resulting in a discrete spectrum of energy levels resembling the property of quantum dots, we evidenced the CB and Coulomb staircases in these structures. These nanostructures are sufficiently small that introducing even a single electron is sufficient to dramatically change the transport properties as a result of the charging energy associated with this extra electron. We found that the Coulomb staircases occur in the I-V characteristics only when the width of the left barrier junction is smaller than that of the right barrier junction. In this case, the transmission coefficient of the emitter junction is larger than that of the collector junction; also, occupied levels enter the bias window, thereby enhancing the tunneling extensively.
M. A. Reed, J. N. Randall, R. J. Aggarwall, R. J. Matyi, T. M. Moore, and A. E. Wetsel, Phys. Rev. Lett. , 1998, 60: 535 doi: 10.1103/PhysRevLett.60.535
2
J. H. F. Scott-Thomas, S. B. Field, M. A. Kastner, H. I. Smith, and D. A. Antonadis, Phys. Rev. Lett. , 1989, 62: 583 doi: 10.1103/PhysRevLett.62.583
3
S. Tarucha, D. G. Austing, T. Honda, R. J. van der Hage, and L. P. Kouwenhoven, Phys. Rev. Lett. , 1996, 77: 3613 doi: 10.1103/PhysRevLett.77.3613
4
L. P. Kouwenhoven and P. L. McEuen, in: Nano-Science and Technology, edited by G. Timp, AIP Press , 1997
5
M. H. Devoret, D. Esteve, and C. Urbina, Nature , 1992, 360: 547 doi: 10.1038/360547a0
G. Binnig, H. Rohrer, Ch. Gerber, and E. Weibel, Phys. Rev. Lett. , 1982, 49: 57 doi: 10.1103/PhysRevLett.49.57
10
C. J. Chen, Introduction to Scanning Tunneling Microscopy, New York: Oxford University Press, 1993
11
T.W. Odom, J. L. Huang, P. Kim, and C. M. Lieber, Nature (London) , 1998, 391: 62 doi: 10.1038/34145
12
J. G. Hou, J. L. Yang, H. Q. Wang, Q. X. Li, C. G. Zeng, L. F. Yuan, B. Wang, D. M. Chen, and Q. S. Zhu, Nature (London) , 2001, 409: 304 doi: 10.1038/35053163
W. H. Green, S. M. Gorun, G. Fitzgerald, P. W. Fowler, A. Ceulemans, and B. C. Teca, J. Chem. Phys. , 1996, 100: 14892 doi: 10.1021/jp960689n
15
B. Li, C. Zeng, J. Zhao, J. L. Yang, J. G. Hou, and Q. S. Zhu, J. Chem. Phys. , 2006, 124: 064709 doi: 10.1063/1.2163333
16
C. Sch?nenberger, H. van Houten, and H. C. Donkersloot, Europhys. Lett. , 1992, 20: 249 doi: 10.1209/0295-5075/20/3/010
17
P. J. M. van Bentum, R. T. M. Smokers, and H. van Kempen, Phys. Rev. Lett. , 1988, 60: 2543 doi: 10.1103/PhysRevLett.60.2543
18
R. Wilkins, E. Ben-Jacob, and R. C. Jaklevic, Phys. Rev. Lett. , 1989, 63: 801 doi: 10.1103/PhysRevLett.63.801
19
M. Dorogi, J. Gomez, R. Osifchin, R. P. Andres, and R. Reifenberger, Phys. Rev. B , 1995, 52: 9071 doi: 10.1103/PhysRevB.52.9071
20
D. Porath, Y. Levi, M. Tarabiah, and O. Millo, Phys. Rev. B , 1997, 56: 9829 doi: 10.1103/PhysRevB.56.9829
21
S. W. Chen, R. S. Ingram, M. J. Hostetler, J. J. Pietron, R. W. Murray, T. G. Schaaff, J. T. Khoury, M. M. Alvarez, and R. L. Whetten, Science , 1998, 280: 2098 doi: 10.1126/science.280.5372.2098
22
U. Banin, Y. W. Cao, D. Katz, and O. Millo, Nature (London) , 1999, 400: 542 doi: 10.1038/22979
23
J. G. Hou, B. Wang, J. L. Yang, X. R. Wang, H. Q. Wang, Q. S. Zhu, and X. D. Xiao, Phys. Rev. Lett. , 2001, 86: 5321 doi: 10.1103/PhysRevLett.86.5321
24
B. Wang, H. Q. Wang, H. X. Li, C. G. Zeng, J. G. Hou, and X. D. Xiao, Phys. Rev. B , 2001, 63: 035403 doi: 10.1103/PhysRevB.63.035403
25
S. W. Wu, G. V. Nazin, X. Chen, X. H. Qiu, and W. Ho, Phys. Rev. Lett. , 2004, 93: 236802 doi: 10.1103/PhysRevLett.93.236802
26
W. Fan, R. Q. Zhang, A. R. Rocha, and S. Sanvito, J. Chem. Phys. , 2008, 129: 074710 doi: 10.1063/1.2971176
27
Z. Z. Sun, X. R. Wang, R. Q. Zhang, and S. T. Lee, J. Appl. Phys. , 2008, 103: 103719 doi: 10.1063/1.2936321
28
D. V. Averin and K. K. Likharev, J. Low Temp. Phys. , 1986, 62: 345 doi: 10.1007/BF00683469
29
Y. Q. Feng, R. Q. Zhang, K. S. Chan, H. F. Cheung, and S. T. Lee, Phys. Rev. B , 2002, 66: 045404 doi: 10.1103/PhysRevB.66.045404
30
Y. Q. Feng, R. Q. Zhang, and S. T. Lee, J. Appl. Phys. , 2004, 95: 5729 doi: 10.1063/1.1704851
31
R. Q. Zhang, Y. Q. Feng, S. T. Lee, and C. L. Bai, J. Phys. Chem. B , 2004, 108: 16636 doi: 10.1021/jp047698d
M. J. Frisch, G. W. Trucks, H. B. Schlegel, ., Gaussian 98, Revision A.9, Gaussian, Inc., Pittsburgh PA , 1998
44
P. M. Ajayan and S. Iijima, Nature (London) , 1992, 358: 23 doi: 10.1038/358023a0
45
H. van Houten, C. W. J. Beenakker, and A. A. M. Staring, Single Charge Tunneling, edited by H. Grabert and M. H. Devoret, New York: Plenum, 1992
46
D. H. Cobden, M. Bockrath, P. L. McEuen, A. G. Rinzler, and R. E. Smalley, Phys. Rev. Lett. , 1998, 81: 681 doi: 10.1103/PhysRevLett.81.681
47
J. J. Palacios, A. J. Perez-Jimenez, E. Louis, and J. A. Verges, Nanotechnology , 2001, 12: 160 doi: 10.1088/0957-4484/12/2/318
48
A. T. Johnson, L. P. Kouwenhoven, W. de Jong, N. C. van der Vaart, C. J. P. M. Harmans, and C. T. Foxon, Phys. Rev. Lett. , 1992, 69: 1592 doi: 10.1103/PhysRevLett.69.1592
E. B. Foxman, P. L. McEuen, U. Meirav, N. S. Wingreen, Y. Meir, P. A. Belk, N. R. Belk, and M. A. Kastner, Phys. Rev. B , 1993, 47: 10020 doi: 10.1103/PhysRevB.47.10020
H. Kietzmann, R. Rochow, G. Gantefoer, W. Eberhardt, K. Vietze, G. Seifert, and P. W. Fowler, Phys. Rev. Lett. , 1998, 81: 5378 doi: 10.1103/PhysRevLett.81.5378
53
H. Prinzback, A. Weller, P. Landenberger, F. Wahl, J. Woerth, L. T. Scott, M. Gelmont, D. Olevano, and B. V. Issendorff, Nature , 2000, 407: 60 doi: 10.1038/35024037
B. Wang, Y. Zhou, X. Ding, K. Wang, X. Wang, J. Yang, and J. G. Hou, J. Phys. Chem. B , 2006, 110: 24505 doi: 10.1021/jp065069t
56
J. Zhao, C. Zeng, X. Cheng, K. Wang, G. Wang, J. L. Yang, J. G. Hou, and Q. S. Zhu, Phys. Rev. Lett. , 2005, 95: 045502 doi: 10.1103/PhysRevLett.95.045502
57
H. Park, J. Park, A. K. L. Lim, E. H. Anderson, A. P. Alivisatos, and P. L. McEuen, Nature , 2000, 407: 57 doi: 10.1038/35024031