Simulation of electronic structure of nanomaterials by central insertion scheme
Simulation of electronic structure of nanomaterials by central insertion scheme
Bin GAO (高斌)1,2, Jun JIANG (江俊)1, Yi LUO (罗毅)1()
1. Department of Theoretical Chemistry, School of Biotechnology, Royal Institute of Technology, SE-10691 Stockholm, Sweden; 2. Centre for Theoretical and Computational Chemistry (CTCC), Department of Chemistry, University of Troms?, N-9037 Troms?, Norway
An effective central insertion scheme (CIS) that allows to study the electronic structure of nanomaterials at the first principles level is introduced. Taking advantage of advanced numerical methods, such as the implicitly restarted Arnoldi method (IRAM) and spectral transformation, together with efficient parallelization technique, this scheme can provide accurate electronic structures and properties of one-,two-, and three-dimensional nanomaterials with only a fraction of computational time required for conventional quantum chemical calculations. Electronic structures of several nanostructures, such as single-walled carbon nanotubes of sub-100 nm in length, silicon nanoclusters of sub-6.5 nm in diameter and metal doped silicon clusters, calculated at hybrid density functional level are presented.
. Simulation of electronic structure of nanomaterials by central insertion scheme[J]. Frontiers of Physics, 0, (): 307-314.
Bin GAO (高斌), Jun JIANG (江俊), Yi LUO (罗毅). Simulation of electronic structure of nanomaterials by central insertion scheme. Front. Phys. , 0, (): 307-314.
W. T. Yang and T. S. Lee, J. Chem. Phys. , 1995, 103: 5674 doi: 10.1063/1.470549
3
J. Jiang, K. Liu, W. Lu, Y. Luo, J. Chem. Phys. , 2006, 124: 214711 doi: 10.1063/1.2207137
4
C. Yang, Ph D. Thesis, Rice University, 1998, available at http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1. 49.8963
5
D. C. Sorensen, SIAM J. Matrix Analysis and Applications , 1992, 13: 357 doi: 10.1137/0613025
6
R. B. Lehoucq,D. C. Sorensen, and C. Yang, ARPACK Users’ Guide: Solution of Large Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods, 1997, available athttp://www.caam.rice.edu/software/ARPACK/
7
T. Sakurai, H. Tadano, Y. Inadomi, and U. Nagashima, Appl. Num. Anal. Comp. Math. , 2004, 1: 516 doi: 10.1002/anac.200410014
8
B. Gao, J. Jiang, K. Liu, Z. Y. Wu, W. Lu, and Y. Luo, J. Comput. Chem. , 2008, 29: 434 doi: 10.1002/jcc.20799
9
BioNano-LEGO V1.0 is a tool package for central insertion scheme approach written by B. Gao, J. Jiang, K. Liu, and Y. Luo, Royal Institute of Technology, Sweden, 2007
10
B. Gao, J. Jiang, Z. Y. Wu, and Y. Luo, J. Chem. Phys. , 2008, 128: 084707 doi: 10.1063/1.2839294
11
Y. Saad, Numerical Methods for Large Eigenvalue Problems, 1st edition, New York: Halsted Press, 1992
M. J. O’Connell, S. M. Bachilo, C. B. Huffman, V. C. Moore, M. S. Strano, E. H. Haroz, K. L. Rialon, P. J. Boul, W. H. Noon, C. Kittrell, J. P. Ma, R. H. Hauge, R. B. Weisman, and R. E. Smalley, Science , 2002, 297: 593 doi: 10.1126/science.1072631
21
A. Javey, P. Qi, Q. Wang, and H. Dai, Proc. Natl. Acad. Sci. U.S.A. , 2004, 101: 13408 doi: 10.1073/pnas.0404450101
22
A. Javey, J. Guo, M. Paulsson, Q. Wang, D. Mann, M. Lundstrom, and H. Dai, Phys. Rev. Lett. , 2004, 92: 106804 doi: 10.1103/PhysRevLett.92.106804
23
R. V. Seidel, A. P. Graham, J. Kretz, B. Rajasekharan, G. S. Duesberg, M. Liebau, E. Unger, F. Kreupl, and W. Hoenlein, Nano Lett. , 2005, 5: 147 doi: 10.1021/nl048312d
24
Y. M. Lin, J. Appenzeller, Z. H. Chen, Z. G. Chen, H. M. Cheng, and P. Avouris, IEEE Electron Device Lett. , 2005, 26: 823
25
S. M. Bachilo, M. S. Strano, C. Kittrell, R. H. Hauge, R. E. Smalley, and R. B. Weisman, Science , 2002, 298: 2361
26
G. Dukovic, F. Wang, D. H. Song, M. Y. Sfeir, T. F. Heinz, and L. E. Brus, Nano Lett. , 2005, 5: 2314 doi: 10.1021/nl0518122
27
F. Wang, G. Dukovic, L. E. Brus, and T. F. Heinz, Science , 2005, 308: 838 doi: 10.1126/science.1110265