Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  0, Vol. Issue (): 307-314   https://doi.org/10.1007/s11467-009-0025-7
  本期目录
Simulation of electronic structure of nanomaterials by central insertion scheme
Simulation of electronic structure of nanomaterials by central insertion scheme
Bin GAO (高斌)1,2, Jun JIANG (江俊)1, Yi LUO (罗毅)1()
1. Department of Theoretical Chemistry, School of Biotechnology, Royal Institute of Technology, SE-10691 Stockholm, Sweden; 2. Centre for Theoretical and Computational Chemistry (CTCC), Department of Chemistry, University of Troms?, N-9037 Troms?, Norway
 全文: PDF(714 KB)   HTML
Abstract

An effective central insertion scheme (CIS) that allows to study the electronic structure of nanomaterials at the first principles level is introduced. Taking advantage of advanced numerical methods, such as the implicitly restarted Arnoldi method (IRAM) and spectral transformation, together with efficient parallelization technique, this scheme can provide accurate electronic structures and properties of one-,two-, and three-dimensional nanomaterials with only a fraction of computational time required for conventional quantum chemical calculations. Electronic structures of several nanostructures, such as single-walled carbon nanotubes of sub-100 nm in length, silicon nanoclusters of sub-6.5 nm in diameter and metal doped silicon clusters, calculated at hybrid density functional level are presented.

Key wordsnanomaterial    electronic structure    density functional theory    largescale calculations
收稿日期: 2009-02-05      出版日期: 2009-09-05
Corresponding Author(s): null,Email:luo@theochem.kth.se   
 引用本文:   
. Simulation of electronic structure of nanomaterials by central insertion scheme[J]. Frontiers of Physics, 0, (): 307-314.
Bin GAO (高斌), Jun JIANG (江俊), Yi LUO (罗毅). Simulation of electronic structure of nanomaterials by central insertion scheme. Front. Phys. , 0, (): 307-314.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-009-0025-7
https://academic.hep.com.cn/fop/CN/Y0/V/I/307
1 W. T. Yang, Phys. Rev. Lett. , 1991, 66: 1438
doi: 10.1103/PhysRevLett.66.1438
2 W. T. Yang and T. S. Lee, J. Chem. Phys. , 1995, 103: 5674
doi: 10.1063/1.470549
3 J. Jiang, K. Liu, W. Lu, Y. Luo, J. Chem. Phys. , 2006, 124: 214711
doi: 10.1063/1.2207137
4 C. Yang, Ph D. Thesis, Rice University, 1998, available at http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1. 49.8963
5 D. C. Sorensen, SIAM J. Matrix Analysis and Applications , 1992, 13: 357
doi: 10.1137/0613025
6 R. B. Lehoucq,D. C. Sorensen, and C. Yang, ARPACK Users’ Guide: Solution of Large Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods, 1997, available athttp://www.caam.rice.edu/software/ARPACK/
7 T. Sakurai, H. Tadano, Y. Inadomi, and U. Nagashima, Appl. Num. Anal. Comp. Math. , 2004, 1: 516
doi: 10.1002/anac.200410014
8 B. Gao, J. Jiang, K. Liu, Z. Y. Wu, W. Lu, and Y. Luo, J. Comput. Chem. , 2008, 29: 434
doi: 10.1002/jcc.20799
9 BioNano-LEGO V1.0 is a tool package for central insertion scheme approach written by B. Gao, J. Jiang, K. Liu, and Y. Luo, Royal Institute of Technology, Sweden, 2007
10 B. Gao, J. Jiang, Z. Y. Wu, and Y. Luo, J. Chem. Phys. , 2008, 128: 084707
doi: 10.1063/1.2839294
11 Y. Saad, Numerical Methods for Large Eigenvalue Problems, 1st edition, New York: Halsted Press, 1992
12 S. Iijima, Nature , 1991, 354: 56
doi: 10.1038/354056a0
13 R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Physical Properties of Carbon Nanotubes, London: Imperial College Press, 1998
14 L. Yang, M. P. Anantram, J. Han, and J. P. Lu, Phys. Rev. B , 1999, 60: 13874
doi: 10.1103/PhysRevB.60.13874
15 C. D. Spataru, S. Ismail-Beigi, L. X. Benedict, and S. G. Louie, Phys. Rev. Lett. , 2004, 92: 077402
doi: 10.1103/PhysRevLett.92.077402
16 Y. Akai and S. Saito, Physica E , 2005, 29: 555
doi: 10.1016/j.physe.2005.06.026
17 V. Barone, J. E. Peralta, M. Wert, J. Heyd, and G. E. Scuseria, Nano Lett. , 2005, 5: 1621
doi: 10.1021/nl0506352
18 V. Barone, J. E. Peralta, and G. E. Scuseria, Nano Lett. , 2005, 5: 1830
doi: 10.1021/nl0509733
19 T. Miyake and S. Saito, Phys. Rev. B , 2005, 72: 073404
doi: 10.1103/PhysRevB.72.073404
20 M. J. O’Connell, S. M. Bachilo, C. B. Huffman, V. C. Moore, M. S. Strano, E. H. Haroz, K. L. Rialon, P. J. Boul, W. H. Noon, C. Kittrell, J. P. Ma, R. H. Hauge, R. B. Weisman, and R. E. Smalley, Science , 2002, 297: 593
doi: 10.1126/science.1072631
21 A. Javey, P. Qi, Q. Wang, and H. Dai, Proc. Natl. Acad. Sci. U.S.A. , 2004, 101: 13408
doi: 10.1073/pnas.0404450101
22 A. Javey, J. Guo, M. Paulsson, Q. Wang, D. Mann, M. Lundstrom, and H. Dai, Phys. Rev. Lett. , 2004, 92: 106804
doi: 10.1103/PhysRevLett.92.106804
23 R. V. Seidel, A. P. Graham, J. Kretz, B. Rajasekharan, G. S. Duesberg, M. Liebau, E. Unger, F. Kreupl, and W. Hoenlein, Nano Lett. , 2005, 5: 147
doi: 10.1021/nl048312d
24 Y. M. Lin, J. Appenzeller, Z. H. Chen, Z. G. Chen, H. M. Cheng, and P. Avouris, IEEE Electron Device Lett. , 2005, 26: 823
25 S. M. Bachilo, M. S. Strano, C. Kittrell, R. H. Hauge, R. E. Smalley, and R. B. Weisman, Science , 2002, 298: 2361
26 G. Dukovic, F. Wang, D. H. Song, M. Y. Sfeir, T. F. Heinz, and L. E. Brus, Nano Lett. , 2005, 5: 2314
doi: 10.1021/nl0518122
27 F. Wang, G. Dukovic, L. E. Brus, and T. F. Heinz, Science , 2005, 308: 838
doi: 10.1126/science.1110265
28 V. N. Popov, New J. Phys. , 2004, 6: 1
doi: 10.1088/1367-2630/6/1/017
29 V. N. Popov and L. Henrard, Phys. Rev. B , 2004, 70: 115407
doi: 10.1103/PhysRevB.70.115407
30 M. J. Frisch, G. W. Trucks, H. B. Schlegel, ., Gaussian 03, Revision D. 01, Gaussian, Inc., Wallingford CT , 2004
31 R. B. Weisman and S. M. Bachilo, Nano Lett. , 2003, 3: 1235
doi: 10.1021/nl034428i
32 A. D. Zedtsis, Rev. Adv. Mater. Sci. , 2006, 11: 56
33 G. Medeiros-Ribeiro, A. M. Bratkovski, T. I. Kamins, D. A. A. Ohlberg, and R. S. Williams, Science , 1998, 279: 353
doi: 10.1126/science.279.5349.353
34 J. P. Wilcoxon, P. P. Provencio, and G. A. Samara, Phys. Rev. B , 2001, 64: 035417
doi: 10.1103/PhysRevB.64.035417
35 M. V. Wolkin, J. Jorne, P. M. Fauchet, G. Allan, and C. Delerue, Phys. Rev. Lett. , 1999, 82: 197
doi: 10.1103/PhysRevLett.82.197
36 K. Kim, Phys. Rev. B , 1998, 57: 13072
doi: 10.1103/PhysRevB.57.13072
37 Y. Kanemitsou, Phys. Rev. B , 1994, 49: 16845
doi: 10.1103/PhysRevB.49.16845
38 S. Ogut, J. Chelikowsky, and S. G. Louie, Phys. Rev. Lett. , 1997, 79: 1770
doi: 10.1103/PhysRevLett.79.1770
39 S. Ogut, J. Chelikowsky, and S. G. Louie, Phys. Rev. Lett. , 1998, 80: 3162
doi: 10.1103/PhysRevLett.80.3162
40 F. A. Reboredo, A. Franceschetti, and A. Zunger, Phys. Rev. B , 2000, 61: 13073
doi: 10.1103/PhysRevB.61.13073
41 I. Vasiiev, S. Ogut, and J. Cheliskowsky, Phys. Rev. Lett. , 2001, 86: 1813
doi: 10.1103/PhysRevLett.86.1813
42 G. Nesher, L. Kronik, and J. R. Chelikowsky, Phys. Rev. B , 2005, 71: 035344
doi: 10.1103/PhysRevB.71.035344
43 A. Puzder, A. J. Williamson, J. C. Grossman, and G. Galli, J. Chem. Phys. , 2002, 117: 6721
doi: 10.1063/1.1504707
44 J. Nayak, R. Mythili, M. Vijayalakshmi, and S. N. Sahu, Physica E , 2004, 24: 227
doi: 10.1016/j.physe.2004.04.035
45 M. A. Malik, P. O’Brien, S. Noragera, and J. Smith, J. Mater. Chem. , 2003, 13: 2591
doi: 10.1039/b305860n
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed