Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Front. Phys.   2009, Vol. 4 Issue (4): 549-555   https://doi.org/10.1007/s11467-009-0060-4
  Research articles 本期目录
Some explicit formulas of Lyapunov exponents for three-dimensional quadratic mappings
Some explicit formulas of Lyapunov exponents for three-dimensional quadratic mappings
Zeraoulia ELHADJ1,J. C. SPROTT2,
1.Department of Mathematics, University of Tébessa, Tébessa 12002, Algeria; 2.Department of Physics, University of Wisconsin, Madison, WI 53706, USA;
 全文: PDF(333 KB)  
Abstract:This paper shows that there exist six different cases where it is possible to find rigorously a Lyapunov exponent for three-dimensional quadratic mappings. Some elementary examples are also given and discussed.
Key wordsthree-dimensional quadratic map    chaos    Lyapunov exponent    rigorous formula
出版日期: 2009-12-05
 引用本文:   
. Some explicit formulas of Lyapunov exponents for three-dimensional quadratic mappings[J]. Front. Phys. , 2009, 4(4): 549-555.
Zeraoulia ELHADJ, J. C. SPROTT, . Some explicit formulas of Lyapunov exponents for three-dimensional quadratic mappings. Front. Phys. , 2009, 4(4): 549-555.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-009-0060-4
https://academic.hep.com.cn/fop/CN/Y2009/V4/I4/549
G. Benettin, L. Galgani, A. Giorgilli, and J. M. Strelcyn, Meccanica, 1980, 15 (9): 21

doi: 10.1007/BF02128237
I. Shimada and T. Nagashima, Prog. Theor. Phys., 1979, 61: 1605

doi: 10.1143/PTP.61.1605
Z. Li, J. B. Park, Y. H. Joo, Y. H. Choi, and G. Chen, IEEE Trans. Circ. Syst.-I:Fundamental Theory and Applications, 2002, 49: 249

doi: 10.1109/TCSI.2002.801242
X. F. Wang and G. Chen, Int. J. Bifur. Chaos, 1999, 9: 1435

doi: 10.1142/S0218127499000985
X. F. Wang and G. Chen, Int. J. Circ. TheoryAppl., 2000, 28: 305

doi: 10.1002/(SICI)1097-007X(200005/06)28:3<305::AID-CTA106>3.0.CO;2-P
G. Chen and D. Lai, IEEE Trans. Circ. Syst.-I:Fundamental Theory and Applications, 1997, 44: 250

doi: 10.1109/81.557372
D. Lai and G. Chen, Int. J. Bifur. Chaos, 2003, 13 (11): 3437

doi: 10.1142/S0218127403008648
E. Forest, Beam Dynamics : A New Attitude and Framework (The Physics and Technologyof Particle and Photon Beams), Amsterdam: Harwood Academic, 1998
D. V. Turaev and L. P. Shilnikov, Sb. Math., 1998, 189 (2): 137

doi: 10.1070/SM1998v189n02ABEH000300
G. Baier and M. Klein, Phys. Lett. A, 1990, 151(67): 281

doi: 10.1016/0375-9601(90)90283-T
S. V. Gonchenko, I. I. Ovsyannikov, C. Simo, and D. Turaev, Int. J. Bifur. Chaos, 2005, 15 (11): 3493

doi: 10.1142/S0218127405014180
S. V. Gonchenko, J. D. Meiss, and I. I. Ovsyannikov, Regular and Chaotic Dynamics, 2006, 11 (2): 191

doi: 10.1070/RD2006v011n02ABEH000345
S. V. Gonchenko and I. I. Ovsyannikov, Three-dimensional Hénonmap in homoclinic bifurcations, 2005, preprint
H. E. Lomeli and J. D. Meiss, Nonlinearity, 1998, 11: 557

doi: 10.1088/0951-7715/11/3/009
K. E. Lenz, H. E. Lomeli, and J. D. Meiss, Regular and Chaotic Motion, 1999, 3: 122

doi: 10.1070/rd1998v003n03ABEH000085
D. A. Miller, G. Grassi, A discrete generalized hyperchaoticHénon map circuit, Circuits and Systems, MWSCAS 2001, In: Proceedings of the 44 th IEEE 2001 MidwestSymposium, 2001, 1: 328
G. Grassi and S. Mascolo, IEEE Trans. Circ. Syst.-I:Fundamental Theory and Applications, 1999, 46 (9): 1135

doi: 10.1109/81.788815
Z. Elhadj and J. C. Sprott, Front. Phys. China, 2009, 4(1): 111

doi: 10.1007/s11467-009-0005-y
A. L. Shilnikov, Bifurcation and chaos in the Morioka _ Shimizu system, Methods ofqualitative theory of differential equations (Gorky), 1986: 180; English translation in: Selecta Math. Soviet., 1991, 10: 105
A. L. Shilnikov, Physica D, 1993, 62: 338

doi: 10.1016/0167-2789(93)90292-9
R. L. Devaney, Trans. Am. Math. Soc., 1976, 218: 89

doi: 10.2307/1997429
H. Bass, E. H. Connell, and D. Wright, Bull. Amer. Math. Soc. (N.S.), 1982, 7(2): 287
J. C. Sprott, Electronic Journal of Theoretical Physics, 2006, 3: 19
E. D. Courant and H. S. Snyder, Ann. Phys. (New York), 1958, 3: 1

doi: 10.1016/0003-4916(58)90012-5
A. J. Dragt and D. T. Abell, Symplectic maps and computationof orbits in particle accelerators. In: Integration Algorithms and Classical Mechanics (Toronto, ON), 1993: 59; Amer. Math. Soc., Providence, RI, 1996
E. N. Lorenz, J. Atoms. Sc., 1963, 20: 130
G. Chen and X. Dong, From Chaos to Order:Methodologies, Perspectives and Applications, Singapore: World Scientific, 1998
G. Chen, Controlling Chaos and Bifurcations in Engineering Systems, BocaRaton, FL, USA: CRC Press, 1999
W. W. Yu, J. Cao, K. W. Wong, and J. Lü, Chaos, 2007, 17(3): 033
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed