Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Front. Phys.   2010, Vol. 5 Issue (1): 107-122   https://doi.org/10.1007/s11467-009-0080-0
  Research articles 本期目录
A quantitative assessment of stochastic electrodynamics with spin (SEDS): Physical principles and novel applications
A quantitative assessment of stochastic electrodynamics with spin (SEDS): Physical principles and novel applications
Giancarlo CAVALLERI1,Francesco BARBERO1,Gianfranco BERTAZZI1,Eros CESARONI1,Ernesto TONNI1,Leonardo BOSI2,Gianfranco SPAVIERI3,George T. GILLIES4,
1.Dipartimento di Matematica e Fisica, Università Cattolica del Sacro Cuore, via Musei 41, 25121 Brescia, Italy; 2.Politecnico di Milano (Polo Regionale di Lecco), Dipartimento di Fisica, piazza L. da Vinci 32, 20133 Milano, Italy; 3.Centro de Física Fundamental, Facultad de Ciencias, Universidad de Los Andes, Mérida, 5101 Venezuela; 4.School of Engineering and Applied Science, University of Virginia, Charlottesville, VA 22904-4746, USA;
 全文: PDF(409 KB)  
Abstract:Stochastic electrodynamics (SED) without spin, denoted as pure SED, has been discussed and seriously considered in the literature for several decades because it accounts for important aspects of quantum mechanics (QM). SED is based on the introduction of the nonrenormalized, electromagnetic stochastic zero-point field (ZPF), but neglects the Lorentz force due to the radiation random magnetic field Br. In addition to that rather basic limitation, other drawbacks remain, as well: i) SED fails when there are nonlinear forces; ii) it is not possible to derive the Schrödinger equation in general; iii) it predicts broad spectra for rarefied gases instead of the observed narrow spectral lines; iv) it does not explain double-slit electron diffraction patterns. We show in this short review that all of those drawbacks, and mainly the first most basic one, can be overcome in principle by introducing spin into stochastic electrodynamics (SEDS). Moreover, this modification of the theory also explains four observed effects that are otherwise so far unexplainable by QED, i.e., 1) the physical origin of the ZPF, and its natural upper cutoff; 2) an anomaly in experimental studies of the neutrino rest mass; 3) the origin and quantitative treatment of 1/f noise; and 4) the high-energy tail (~ 1021 eV) of cosmic rays. We review the theoretical and experimental situation regarding these things and go on to propose a double-slit electron diffraction experiment that is aimed at discriminating between QM and SEDS. We show that, in the context of this experiment, for the case of an electron beam focused on just one of the slits, no interference pattern due to the other slit is predicted by QM, while this is not the case for SEDS. A second experiment that could discriminate between QED and SEDS regards a transversely large electron beam including both slits obtained in an insulating wall, where the ZPF is reduced but not vanished. The interference pattern according to SEDS should be somewhat modified with respect to QED’s.
Key wordsquantum mechanics    Aharonov–Bohm effect    spin    electrodynamics
出版日期: 2010-03-05
 引用本文:   
. A quantitative assessment of stochastic electrodynamics with spin (SEDS): Physical principles and novel applications[J]. Front. Phys. , 2010, 5(1): 107-122.
Giancarlo CAVALLERI, Francesco BARBERO, Gianfranco BERTAZZI, Eros CESARONI, Ernesto TONNI, Leonardo BOSI, Gianfranco SPAVIERI, George T. GILLIES, . A quantitative assessment of stochastic electrodynamics with spin (SEDS): Physical principles and novel applications. Front. Phys. , 2010, 5(1): 107-122.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-009-0080-0
https://academic.hep.com.cn/fop/CN/Y2010/V5/I1/107
R. P. Feynman, QED: The Strange Theory of Light and Matter, 7th Ed., Princeton: Princeton UniversityPress, 1988: 9
L. Bosi and G. Cavalleri, Nuovo Cimento B, 2002, 117: 243
G. Cavalleri and L. Bosi, Phys. Stat. Sol. (c), 2007, 4: 1230

doi: 10.1002/pssc.200673705
G. Cavalleri, E. Tonni, L. Bosi, and G. Spavieri, Fluct. Noise Lett., 2007, 7: L193
E. Nelson, Phys. Rev., 1966, 150(4): 1079

doi: 10.1103/PhysRev.150.1079
J. G. Gilson, Proc. Cambridge Philos. Soc., 1968, 74(4): 1061

doi: 10.1017/S0305004100043826
A. F. Kracklauer, Phys. Rev. D, 1974, 10(4): 1358

doi: 10.1103/PhysRevD.10.1358
G. Cavalleri, Phys. Rev. D, 1981, 23(2): 363

doi: 10.1103/PhysRevD.23.363
L. De la Pe?a-Auerbach and A. M. Cetto, Found. Phys., 1975, 5 (2): 355
A. Carati and L. Galgani, Phys. Rev. E, 2000, 61(5): 4791

doi: 10.1103/PhysRevE.61.4791
G. Cavalleri and E. Cesaroni, Phys. Rev. E, 2003, 68: 028101

doi: 10.1103/PhysRevE.68.028101
A. Carati and L. Galgani, Phys. Rev. E, 2003, 68: 028102

doi: 10.1103/PhysRevE.68.028102
A. Carati, L. Galgani, and B. Pozzi, Phys. Rev. Lett., 2003, 90: 010601

doi: 10.1103/PhysRevLett.90.010601
For a more readable derivation, see: T. H. Boyer, Phys. Rev., 1969, 182: 1374

doi: 10.1103/PhysRev.182.1374
T. H. Boyer, Phys. Rev. D, 1975, 11: 790

doi: 10.1103/PhysRevD.11.790
G. Cavalleri, E. Tonni, C. Bernasconi, and P. Di Sia, Nuovo Cimento B, 2001, 116: 1353
G. Cavalleri, F. Barbero, E. Tonni, D. Molteni, G. Bottoni, and S. Lacchin, in: Proc. of X Int. Conf., Physical Interpretations of Relativity Theory, London, September, 8―112006, edited by M. C. Duffy, University of Sunderland,PD Publications, Liverpool, Great Britain, 2008, Vol. I (in press)
T. W. Marshall and P. Claverie, J. Math. Phys., 1980, 21: 1819

doi: 10.1063/1.524635
A. Rueda and G. Cavalleri, Nuovo Cimento C, 1983, 6: 239
H. E. Puthoff, Phys. Rev. D, 1987, 35: 3266

doi: 10.1103/PhysRevD.35.3266
M. Surdin, P. Braffort, and A. Taroni, Nature, 1966, 210(5034): 405

doi: 10.1038/210405a0
E. Santos, Nuovo Cimento B, 1974, 19(1): 57

doi: 10.1007/BF02749757
L. De la Pe?a-Auerbach and A. M. Cetto, J. Math. Phys., 1979, 20(3): 469
T. H. Boyer, Phys. Rev. A, 1980, 21: 66

doi: 10.1103/PhysRevA.21.66
T. H. Boyer, Phys. Rev. D, 1984, 29: 1089

doi: 10.1103/PhysRevD.29.1089
A. Rueda, Nuovo Cimento A, 1978, 48: 155

doi: 10.1007/BF02799672
A. Rueda, Phys. Rev. A, 1981, 23: 2020

doi: 10.1103/PhysRevA.23.2020
L. De la Pe?a-Auerbach, Stochastic Electrodynamics: its development, presentsituation, and perspectives, in: Stochastic Processes Applied to Physicsand other Related Fields, edited by G. Gomez, S. M. Moore, A. M. Rodriguez-Vargas, and A. Rueda, World Scientific, 1983: 428―649. The criticism to Boyer's 1969 paper [14], is found in: L.De la Pe?a-Auerbach and A. M. Cetto, The Quantum Dice, Kluwer,1996, Chap. 5, Sec. 5.2: 1476
B. Haisch, A. Rueda, and H. E. Puthoff, Phys. Rev. A, 1994, 49: 678

doi: 10.1103/PhysRevA.49.678
A. Rueda, B. Haisch, and D. C. Cole, Astrophys. J., 1995, 445: 7

doi: 10.1086/175667
D. C. Cole, A. Rueda, and K. Danley, Phys. Rev. A, 2001, 63: 054101

doi: 10.1103/PhysRevA.63.054101
A. Rueda and B. Haisch, Ann. Phys. (Leipzig), 2005, 14: 479

doi: 10.1002/andp.200510147
Y. S. Levin, Phys. Rev. A, 2009, 79: 012114

doi: 10.1103/PhysRevA.79.012114
L. Pesquera and P. Claverie, J. Math. Phys., 1982, 23: 1315

doi: 10.1063/1.525516
A. O. Barut and N. Zanghi, Phys. Rev. Lett., 1984, 52: 2009

doi: 10.1103/PhysRevLett.52.2009
G. Cavalleri, Nuovo Cimento B, 1997, 112: 1193
I. Pitowsky, Phys. Rev Lett., 1982, 48: 1299

doi: 10.1103/PhysRevLett.48.1299
D. Z. Albert and R. Galchen, Was Einstein Wrong?: A QuantumThreat to Special Relativity, in: ScientificAmerican Magazine, March2009
A. Aspect, J. Dalibard, and G. Roger, Phys. Rev. Lett., 1982, 49: 1804

doi: 10.1103/PhysRevLett.49.1804
G. Cavalleri, E. Cesaroni, and E. Tonni, in: Recent advances in Relativity Theory2: material interpretations, edited by M. C. Duffy and M. Wegener, Palm Harbor, Florida(USA): Hadronic Press, 2001, Vol. 2: 19
G. Cavalleri, Lett. Nuovo Cimento, 1985, 43: 285

doi: 10.1007/BF02751922
G. Cavalleri and G. Spavieri, Nuovo Cimento B, 1986, 95: 194

doi: 10.1007/BF02749010
J. Maddox, Nature (London), 1987, 325: 385

doi: 10.1038/325385a0
G. Cavalleri and G. Mauri, Phys. Rev. B, 1990, 41: 6751

doi: 10.1103/PhysRevB.41.6751
G. Cavalleri and A. Zecca, Phys. Rev. B, 1991, 43: 3223

doi: 10.1103/PhysRevB.43.3223
A. Zecca and G. Cavalleri, Nuovo Cimento B, 1997, 112: 1
G. Cavalleri and E. Tonni, in: The Foundation of QuantumMechanics – Historical Analysis and Open Questions –Lecce 1998, edited by C. Garola and A. Rossi, World Scientific Publ., 2000: 111
A. Tonomura, N. Osakabe, T. Matsuda, T. Kawasaki, and J. Endo, Phys. Rev. Lett., 1986, 56: 792

doi: 10.1103/PhysRevLett.56.792
N. Osakabe, et al, Phys. Rev. A, 1986, 34: 815

doi: 10.1103/PhysRevA.34.815
A. Tonomura, et al., Am. J. Phys., 1989, 57: 117

doi: 10.1119/1.16104
Y. Aharonov and D. Bohm, Phys. Rev., 1959, 115: 48

doi: 10.1103/PhysRev.115.485
Y. Aharonov and A. Casher, Phys. Rev. Lett., 1984, 53: 319

doi: 10.1103/PhysRevLett.53.319
G. Spavieri, Phys. Rev. Lett., 1998, 81: 1533

doi: 10.1103/PhysRevLett.81.1533
G. Spavieri, Phys. Rev. A, 1999, 59: 3194

doi: 10.1103/PhysRevA.59.3194
X. G. He and B. H. J. McKellar, Phys. Rev. A, 1993, 47: 3424

doi: 10.1103/PhysRevA.47.3424
M. Wilkens, Phys. Rev. A, 1994, 49: 570

doi: 10.1103/PhysRevA.49.570
M. Wilkens, Phys. Rev. Lett., 1994, 72: 5

doi: 10.1103/PhysRevLett.72.5
J. Anandan, Phys. Rev. Lett., 2000, 85: 1354

doi: 10.1103/PhysRevLett.85.1354
V. M. Tkachuk, Phys. Rev. A, 2000, 62: 052112―1

doi: 10.1103/PhysRevA.62.052112
G. Spavieri, Phys. Rev. Lett., 1999, 82: 3932

doi: 10.1103/PhysRevLett.82.3932
G. Spavieri, Phys. Lett. A, 2003, 310: 13

doi: 10.1016/S0375-9601(03)00203-2
G. Spavieri, Eur. Phys. J. D, 2006, 39: 157

doi: 10.1140/epjd/e2006-00089-y
T. H. Boyer, Phys. Rev. A, 1987, 36: 5083

doi: 10.1103/PhysRevA.36.5083
T. H. Boyer, Nuovo Cimento B, 1987, 100: 685
G. Spavieri and G. Cavalleri, Europhys. Lett., 1992, 18: 301

doi: 10.1209/0295-5075/18/4/004
G. Spavieri, Eur. J. Phys. D, 2006, 37: 327

doi: 10.1140/epjd/e2005-00328-9
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed