Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  0, Vol. Issue (): 109-123   https://doi.org/10.1007/s11467-010-0102-y
  REVIEW ARTICLE 本期目录
Mechanical, vibrational, and dynamical properties of amorphous systems near jamming
Mechanical, vibrational, and dynamical properties of amorphous systems near jamming
Ning XU(徐宁,)
Department of Physics, University of Science and Technology of China, Hefei 230026, China
 全文: PDF(674 KB)   HTML
Abstract

Amorphous systems undergo the jamming transition when the density increases, temperature drops, or external shear stress decreases, as described by the jamming phase diagram which was proposed to unify different processes such as the glass transition, random close packing, and yielding under shear stress. At zero temperature and shear stress, the jamming transition occurs at a critical density at Point J. In this paper, we review recent studies of the material properties of marginally jammed solids and the glassy dynamics in the vicinity of Point J. As the only singular point in the jamming phase diagram, Point J exhibits special criticality in both mechanical and vibrational quantities. Dynamics approaching the glass transition in the vicinity of Point J show critical scalings, suggesting that the molecular glass transition and the colloidal glass transition are equivalent in the hard sphere limit. All these studies shed light on the long-standing puzzles of the glass transition and unusual properties of amorphous solids.

Key wordsjamming    amorphous systems    critical phenomena    glass transition
收稿日期: 2010-04-27      出版日期: 2011-03-05
Corresponding Author(s): null,Email:ningxu@ustc.edu.cn   
 引用本文:   
. Mechanical, vibrational, and dynamical properties of amorphous systems near jamming[J]. Frontiers of Physics, 0, (): 109-123.
Ning XU(徐宁). Mechanical, vibrational, and dynamical properties of amorphous systems near jamming. Front. Phys. , 0, (): 109-123.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-010-0102-y
https://academic.hep.com.cn/fop/CN/Y0/V/I/109
1 A. J. Liu and S. R. Nagel, Jamming and Rheology: Constrained Dynamics on Microscopic and Macroscopic scales, New York: Taylor & Francis, 2001
2 M. van Hecke, J. Phys.: Condens. Matter , 2010, 22: 033101
doi: 10.1088/0953-8984/22/3/033101
3 A. J. Liu, S. R. Nagel, W. van Saarloos, and M. Wyart, http://www.ilorentz.org/~saarloos/Papers/jammingreview.pdf, 2010
4 A. J. Liu and S. R. Nagel, Ann. Rev. Condens. Matt. Phys. , 2010 (to be published)
5 G. Parisi and F. Zamponi, Rev. Mod. Phys. , 2010, 82: 789
doi: 10.1103/RevModPhys.82.789
6 A. J. Liu and S. R. Nagel, Nature (London) , 1998, 396: 21
doi: 10.1038/23819
7 V. Trappe, V. Prasad, L. Cipelletti, P. N. Segre, and D. A. Weitz, Nature (London) , 2001, 411: 772
doi: 10.1038/35081021
8 Z. Zhang, N. Xu, D. T. N. Chen, P. Yunker, A. M. Alsayed, K. B. Aptowicz, P. Habdas, A. J. Liu, S. R. Nagel, and A. G. Yodh, Nature (London) , 2009, 459: 230
doi: 10.1038/nature07998
9 P. G. Debenedetti and F. H. Stillinger, Nature (London) , 2001, 410: 259
doi: 10.1038/35065704
10 C. A. Angell, J. Non-Cryst. Solids , 1991, 131: 13
doi: 10.1016/0022-3093(91)90266-9
11 C. A. Angell, Science , 1995, 267: 1924
doi: 10.1126/science.267.5206.1924
12 A. Cavagna, Phys. Rep. , 2009, 476: 51
doi: 10.1016/j.physrep.2009.03.003
13 W. Kauzmann, Chem. Rev. , 1948, 43: 219
doi: 10.1021/cr60135a002
14 G. Adams and J. H. Gibbs, J. Chem. Phys. , 1965, 43: 139
doi: 10.1063/1.1696442
15 M. Goldstein, J. Chem. Phys. , 1969, 51: 3728
doi: 10.1063/1.1672587
16 E. Leutheusser, Phys. Rev. A , 1984, 29: 2765
doi: 10.1103/PhysRevA.29.2765
17 F. H. Stillinger, Science , 1995, 267: 1935
doi: 10.1126/science.267.5206.1935
18 E. Lerner, I. Procaccia, and J. Zylberg, Phys. Rev. Lett. , 2009, 102: 125701
doi: 10.1103/PhysRevLett.102.125701
19 R. Yamamoto and A. Onuki, Phys. Rev. E , 1998, 58: 3515
doi: 10.1103/PhysRevE.58.3515
20 N. La?evi?, F. W. Starr, T. B. Schr?der, and S. C. Glotzer, J. Chem. Phys. , 2003, 119: 7372
doi: 10.1063/1.1605094
21 L. Berthier, G. Biroli, J. P. Bouchaud, L. Cipelletti, D. El Masri, D. L′H?te, F. Ladieu, and M. Pierno, Science , 2005, 310: 1797
doi: 10.1126/science.1120714
22 J. D. Eaves and D. R. Reichman, PNAS , 2009, 106: 15171
doi: 10.1073/pnas.0902888106
23 Amorphous Solids. Low Temperature Properties, edited by W. A. Phillips, Berlin: Springer-Verlag, 1981
24 A. P. Sokolov, U. Buchenau, W. Steffen, B. Frick, and A. Wischnewski, Phys. Rev. B , 1995, 52: R9815
doi: 10.1103/PhysRevB.52.R9815
25 T. Nakayama, K. Yakubo, and R. L. Orbach, Rev. Mod. Phys. , 1994, 66: 381
doi: 10.1103/RevModPhys.66.381
26 R. O. Pohl, X. Liu, and E. Thompson, Rev. Mod. Phys. , 2002, 74: 991
doi: 10.1103/RevModPhys.74.991
27 A. I. Chumakov, I. Sergueev, U. van Bürck, W. Schirmacher, T. Asthalter, R. Rüffer, O. Leupold, and W. Petry, Phys. Rev. Lett. , 2004, 92: 245508
doi: 10.1103/PhysRevLett.92.245508
28 D. G. Cahill, S. K. Watson, and R. O. Pohl, Phys. Rev. B , 1992, 46: 6131
doi: 10.1103/PhysRevB.46.6131
29 D. M. Mueth, G. F. Debregeas, G. S. Karczmar, P. J. Eng, S. R. Nagel, and H. M. Jaeger, Nature (London) , 2000, 406: 385
doi: 10.1038/35019032
30 W. Losert, L. Bocquet, T. C. Lubensky, and J. P. Gollub, Phys. Rev. Lett. , 2000, 85: 1428
doi: 10.1103/PhysRevLett.85.1428
31 D. Howell, R. P. Behringer, and C. Veje, Phys. Rev. Lett. , 1999, 82: 5241
doi: 10.1103/PhysRevLett.82.5241
32 N. Xu, C. S. O’Hern, and L. Kondic, Phys. Rev. Lett. , 2005, 94: 016001
doi: 10.1103/PhysRevLett.94.016001
33 N. Xu, C. S. O’Hern, and L. Kondic, Phys. Rev. E , 2005, 72: 041504
doi: 10.1103/PhysRevE.72.041504
34 H. A. Barnes, J. Rheology , 1989, 33: 329
35 E. Brown, N. A. Forman, C. S. Orellana, H. Zhang, B. W. Maynor, D. E. Betts, J. M. DeSimone, and H. M. Jaeger, arXiv: 0907.4999 , 2009
36 N. J. Wagner and J. F. Brady, Phys. Today , 2009, 62: 27
doi: 10.1063/1.3248476
37 J. D. Weeks, D. Chandler, and H. C. Andersen, J. Chem. Phys. , 1971, 54: 5237
doi: 10.1063/1.1674820
38 W. Kob and H. C. Andersen, Phys. Rev. E , 1995, 51: 4626
doi: 10.1103/PhysRevE.51.4626
39 W.H. Press, B.P. Flannery, S. A. Teukolsky, and W.T. Vetterling, Numerical Recipes in Fortran 77, New York: Cambridge University Press, 1986
40 http://www.eecs.northwestern.edu/~nocedal/lbfgs.html
41 M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids, Oxford: Oxford University Press, 1987
42 N. Xu and C. S. O’Hern, Phys. Rev. Lett. , 2005, 94: 055701
doi: 10.1103/PhysRevLett.94.055701
43 D. J. Durian, Phys. Rev. Lett. , 1995, 75: 4780
doi: 10.1103/PhysRevLett.75.4780
44 D. J. Durian, Phy. Rev. E , 1997, 55: 1739
doi: 10.1103/PhysRevE.55.1739
45 T. C. Hales, Ann. Math. , 2005, 162: 1065
doi: 10.4007/annals.2005.162.1065
46 J. D. Bernal, Nature (London) , 1960, 188: 910
doi: 10.1038/188910a0
47 C. S. O’Hern, S. A. Langer, A. J. Liu, and S. R. Nagel, Phys. Rev. Lett. , 2002, 88: 075507
doi: 10.1103/PhysRevLett.88.075507
48 C. S. O’Hern, L. E. Silbert, A. J. Liu, and S. R. Nagel, Phys. Rev. E , 2003, 68: 011306
doi: 10.1103/PhysRevE.68.011306
49 D. Frenkel, Random close packing: Time for a new Kepler conjecture? http://www.physics.leidenuniv.nl
50 C. Song, P. Wang, and H. A. Makse, Nature (London) , 2008, 453: 629
doi: 10.1038/nature06981
51 H. A. Makse, D. L. Johnson, and L. M. Schwartz, Phys. Rev. Lett. , 2000, 84: 4160
doi: 10.1103/PhysRevLett.84.4160
52 E. Somfai, M. van Hecke, W. G. Ellenbroek, K. Shundyak, and W. van Saarloos, Phys. Rev. E , 2007, 75: 020301(R)
doi: 10.1103/PhysRevE.75.020301
53 K. Shundyak, M. van Hecke, and W. van Saarloos, Phys. Rev. E , 2007, 75: 010301(R)
doi: 10.1103/PhysRevE.75.010301
54 S. Torquato, T. M. Truskett, and P. G. Debenedetti, Phys. Rev. Lett. , 2000, 84: 2064
doi: 10.1103/PhysRevLett.84.2064
55 N. Xu, J. Blawzdziewicz, and C. S. O’Hern, Phys. Rev. E , 2005, 71: 061306
doi: 10.1103/PhysRevE.71.061306
56 N. Xu, D. Frenkel, and A. J. Liu, unpublished
57 A. Donev, I. Cisse, D. Sachs, E. Variano, F. H. Stillinger, R. Connelly, S. Torquato, and P. M. Chaikin, Science , 2004, 303: 990
doi: 10.1126/science.1093010
58 W. N. Man, A. Donev, F. H. Stillinger, M. T. Sullivan, W. B. Russel, D. Heeger, S. Inati, S. Torquato, and P. M. Chaikin, Phys. Rev. Lett. , 2005, 94: 198001
doi: 10.1103/PhysRevLett.94.198001
59 M. Mailman, C. F. Schreck, C. S. O’Hern, and B. Chakraborty, Phys. Rev. Lett. , 2009, 102: 255501
doi: 10.1103/PhysRevLett.102.255501
60 Z. Zeravcic, N. Xu, A. J. Liu, S. R. Nagel, and W. van Saarloos, Europhys. Lett. , 2009, 87: 26001
doi: 10.1209/0295-5075/87/26001
61 L. N. Zou, X. Cheng, M. L. Rivers, H.M. Jaeger, and S. R. Nagel, Science , 2009, 326: 408
doi: 10.1126/science.1177114
62 N. Xu and E. S. C. Ching, Soft Matter , 2010, 6: 2944
doi: 10.1039/b926696h
63 N. Xu, arXiv: 0911.1576 , 2009
64 A. Donev, F. H. Stillinger, and S. Torquato, Phys. Rev. Lett. , 2005, 95: 090604
doi: 10.1103/PhysRevLett.95.090604
65 L. E. Silbert and M. Silbert, Phys. Rev. E , 2009, 80: 041304
doi: 10.1103/PhysRevE.80.041304
66 N. Xu, A. J. Liu, and T. C. Lubensky, unpublished
67 D. J. Durian, Phys. Rev. E , 1997, 55: 1739
doi: 10.1103/PhysRevE.55.1739
68 T. S. Majmudar, M. Sperl, S. Luding, and R. P. Behringer, Phys. Rev. Lett. , 2007, 98: 058001
doi: 10.1103/PhysRevLett.98.058001
69 P. Olsson and S. Teitel, Phys. Rev. Lett. , 2007, 99: 178001
doi: 10.1103/PhysRevLett.99.178001
70 T. Hatano, arXiv: 0804.0477 , 2008
71 L. E. Silbert, A. J. Liu, and S. R. Nagel, Phys. Rev. Lett. , 2005, 95: 098301
doi: 10.1103/PhysRevLett.95.098301
72 M. Wyart, S. R. Nagel, and T. A. Witten, Europhys. Lett. , 2005, 72: 486
doi: 10.1209/epl/i2005-10245-5
73 M. Wyart, L. E. Silbert, S. R. Nagel, and T. A. Witten, Phys. Rev. E , 2005, 72: 051306
doi: 10.1103/PhysRevE.72.051306
74 J. A. Drocco, M. B. Hastings, C. J. O. Reichhardt, and C. Reichhardt, Phys. Rev. Lett. , 2005, 95: 088001
doi: 10.1103/PhysRevLett.95.088001
75 W. G. Ellenbroek, E. Somfai, M. van Hecke, and W. van Saarloos, Phys. Rev. Lett. , 2006, 97: 258001
doi: 10.1103/PhysRevLett.97.258001
76 A. S. Keys, A. R. Abate, S. C. Glotzer, and D. J. Durian, Nature Physics , 2007, 3: 260
doi: 10.1038/nphys572
77 D. A. Head, Phys. Rev. Lett. , 2009, 102: 138001
doi: 10.1103/PhysRevLett.102.138001
78 N. Xu, V. Vitelli, M. Wyart, A. J. Liu, and S. R. Nagel, Phys. Rev. Lett. , 2009, 102: 038001
doi: 10.1103/PhysRevLett.102.038001
79 V. Vitelli, N. Xu, M. Wyart, A. J. Liu, and S. R. Nagel, Phys. Rev. E , 2010, 81: 021301
doi: 10.1103/PhysRevE.81.021301
80 P. W. Anderson, Phys. Rev. , 1958, 109: 1492
doi: 10.1103/PhysRev.109.1492
81 E. Duval, A. Boukenter, and T. Achibat, J. Phys.: Condens. Matter , 1990, 2: 10227
doi: 10.1088/0953-8984/2/51/001
82 T. Keyes, J. Phys. Chem. A , 1997, 101: 2921
doi: 10.1021/jp963706h
83 W. Schirmacher, G. Diezemann, and C. Ganter, Phys. Rev. Lett. , 1998, 81: 136
doi: 10.1103/PhysRevLett.81.136
84 P. Lunkenheimer, U. Schneider, R. Brand, and A. Loidl, Contemp. Phys. , 2000, 41: 15
doi: 10.1080/001075100181259
85 D. A. Parshin and C. Laermans, Phys. Rev. B , 2001, 63: 132203
doi: 10.1103/PhysRevB.63.132203
86 J.W. Kantelhardt, S. Russ, and A. Bunde, Phys. Rev. B , 2001, 63: 064302
doi: 10.1103/PhysRevB.63.064302
87 T. Nakayama, Rep. Prog. Phys. , 2002, 65: 1195
doi: 10.1088/0034-4885/65/8/203
88 V. L. Gurevich, D. A. Parshin, and H. R. Schober, Phys. Rev. B , 2003, 67: 094203
doi: 10.1103/PhysRevB.67.094203
89 T. S. Grigera, V. Martin-Mayor, G. Parisi, and P. Verrocchio, Nature (London) , 2003, 422: 289
doi: 10.1038/nature01475
90 H. Shintani and H. Tanaka, Nature Mater. , 2008, 7: 870
doi: 10.1038/nmat2293
91 W. A. Phillips, J. Low Temp. Phys. , 1972, 7: 351
doi: 10.1007/BF00660072
92 C. Kittel, Phys. Rev. , 1949, 75: 972
doi: 10.1103/PhysRev.75.972
93 M. Wyart, Ann. Phys. (Paris) , 2005, 30: 1
doi: 10.1051/anphys:2006003
94 N. Xu, M. Wyart, A. J. Liu, and S. R. Nagel, Phys. Rev. Lett. , 2007, 98: 175502
doi: 10.1103/PhysRevLett.98.175502
95 N. Xu, V. Vitelli, A. J. Liu, and S. R. Nagel, 2010, 90: 56001
96 A. Souslov, A. J. Liu, and T. C. Lubensky, Phys. Rev. Lett. , 2009, 103: 205503
doi: 10.1103/PhysRevLett.103.205503
97 X. Mao, N. Xu, and T. C. Lubensky, Phys. Rev. Lett. , 2010, 104: 085504
doi: 10.1103/PhysRevLett.104.085504
98 L. E. Silbert, A. J. Liu, and S. R. Nagel, Phys. Rev. E , 2009, 79: 021308
doi: 10.1103/PhysRevE.79.021308
99 Z. Zeravcic, W. van Saarloos, and D. R. Nelson, Europhys. Ning XU, Front. Phys. Lett. , 2008, 83: 44001
doi: 10.1209/0295-5075/83/44001
100 H. R. Schober and G. Ruocco, Phil. Mag. , 2004, 84: 1361
doi: 10.1080/14786430310001644107
101 P. B. Allen, J. L. Feldman, J. Fabian, and F. Wooten, Phil. Mag. B , 1999, 79: 1715
doi: 10.1080/13642819908223054
102 A. Widmer-Cooper, H. Perry, P. Harrowell, and D. R. Reichman, Nature Phys. , 2008, 4: 711
doi: 10.1038/nphys1025
103 C. Liu and S. R. Nagel, Phys. Rev. Lett. , 1992, 68: 2301
doi: 10.1103/PhysRevLett.68.2301
104 C. Liu and S. R. Nagel, Phys. Rev. B , 1993, 48: 15646
doi: 10.1103/PhysRevB.48.15646
105 X. Jia, C. Caroli, and B. Velicky, Phys. Rev. Lett. , 1999, 82: 1863
doi: 10.1103/PhysRevLett.82.1863
106 X. Jia, Phys. Rev. Lett. , 2004, 93: 154303
doi: 10.1103/PhysRevLett.93.154303
107 P. B. Allen and J. L. Feldman, Phys. Rev. Lett. , 1989, 62: 645
doi: 10.1103/PhysRevLett.62.645
108 P. B. Allen and J. L. Feldman, Phys. Rev. B , 1993, 48: 12581
doi: 10.1103/PhysRevB.48.12581
109 A. F. Ioffe and A. R. Regel, Prog. Semicond. , 1960, 4: 237
110 L. Cipelletti and L. Ramos, J. Phys.: Condens. Matter , 2005, 17: R253
doi: 10.1088/0953-8984/17/6/R01
111 C. Heussinger and J. L. Barrat, Phys. Rev. Lett. , 2009, 102: 218303
doi: 10.1103/PhysRevLett.102.218303
112 M. P. Ciamarra, and A. Coniglio, Phys. Rev. Lett. , 2009, 103: 235701
doi: 10.1103/PhysRevLett.103.235701
113 J. Mattsson, H. M. Wyss, A. Fernandez-Nieves, K. Miyazaki, Z. Hu, D. R. Reichman, and D. A. Weitz, Nature (London) , 2009, 462: 83
doi: 10.1038/nature08457
114 N. Xu, T. K. Haxton, A. J. Liu, and S. R. Nagel, Phys. Rev. Lett. , 2009, 103: 245701
doi: 10.1103/PhysRevLett.103.245701
115 W. Kob and H. C. Andersen, Phys. Rev. E , 1995, 52: 4134
doi: 10.1103/PhysRevE.52.4134
116 Y. S. Elmatad, D. Chandler, and J. P. Garrahan, J. Phys. Chem. B , 2009, 113: 5563
doi: 10.1021/jp810362g
117 G. Lois, J. Blawzdziewicz, and C. S. O’Hern, Phys. Rev. Lett. , 2008, 100: 028001
doi: 10.1103/PhysRevLett.100.028001
118 P. J. Lu, E. Zaccarelli, F. Ciulla, A. B. Schofield, F. Sciortino, and D. A. Weitz, Nature (London) , 2007, 453: 499
doi: 10.1038/nature06931
119 G. J. Gao, J. Blawzdziewicz, C. S. O’Hern, and M. Shattuck, Phys. Rev. E , 2009, 80: 061304
doi: 10.1103/PhysRevE.80.061304
120 A. R. Abate and D. J. Durian, Phys. Rev. E , 2006, 74: 031308
doi: 10.1103/PhysRevE.74.031308
121 X. Cheng, Phys. Rev. E , 2010, 81: 031301
doi: 10.1103/PhysRevE.81.031301
122 X. Cheng, arXiv: 0911.1943 , 2009
123 K. Chen, W. G. Ellenbroek, Z. Zhang, D. T. N. Chen, P. Yunker, S. Henkes, C. Brito, O. Dauchot, W. van Saarloos, A. J. Liu, and A. G. Yodh, arXiv: 1003.3065 , 2010
124 P. Yunker, Z. Zhang, K. B. Aptowicz, and A. G. Yodh, Phys. Rev. Lett. , 2009, 103: 115701
doi: 10.1103/PhysRevLett.103.115701
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed