Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics in China  0, Vol. Issue (): 414-421   https://doi.org/10.1007/s11467-010-0110-y
  MINI-REVIEW ARTICLE 本期目录
Investigation of gate-all-around silicon nanowire transistors for ultimately scaled CMOS technology from top–down approach
Investigation of gate-all-around silicon nanowire transistors for ultimately scaled CMOS technology from top–down approach
Ru HUANG (黄如,), Run-sheng WANG (王润声)
Institute of Microelectronics, Peking University, Beijing 100871, China
 全文: PDF(483 KB)   HTML
Abstract

The gate-all-around (GAA) silicon nanowire transistor (SNWT) is considered one of the best candidates for ultimately scaled CMOS devices at the end of the technology roadmap. This paper reviews our recent work on the key issues regarding SNWTs from the top-down approach including process integration, carrier transport, and fluctuation and variability in these unique one-dimensional stronglyconfined nanowire devices. A new process integration scheme for SNWTs is discussed, which features a fully-Si-bulk substrate, an epi-free process, a self-aligned structure and a large source/drain fan-out. The physical characteristics of the fabricated devices with 10-nm-diameter nanowires are further investigated. The carrier transport performance in SNWTs is experimentally estimated, with a modified extraction methodology which takes into account the impact of temperature dependence of parasitic source resistance. SNWTs with sub-40-nm gate lengths exhibit high ballistic efficiency at room temperature, indicating great potential for SNWTs as an alternative device structure for near-ballistic transport. For heat transfer in SNWTs, the self-heating effect is also characterized. However, due to the one-dimensional (1-D) nature of nanowires and increased phonon-boundary scattering in the GAA structure, the self-heating effect in SNWTs based on the bulk substrate is comparable or even a little bit worse than SOI devices, which may limit the ultimate performance of SNWT-based circuits and thus, special design consideration is expected. On the other hand, random variation has become a practical problem at nano-scale. The characteristic variability of SNWTs is experimentally studied in detail. The results of extracted variation sources indicate that, with suppressed random dopant fluctuations in the intrinsic channel, variations in radius and metal-gate work function of SNWTs dominate both the threshold voltage and on-current fluctuations. Comparing with conventional planar MOS devices, SNWT based SRAM cells exhibit better stability due to the superior electrostatic control in SNWTs.

Key wordssilicon nanowire transistor (SNWT)    gate-all-around (GAA)    CMOS    top–down    quasiballistic transport    self-heating effect    variability
收稿日期: 2010-06-01      出版日期: 2010-12-05
Corresponding Author(s): null,Email:ruhuang@pku.edu.cn   
 引用本文:   
. Investigation of gate-all-around silicon nanowire transistors for ultimately scaled CMOS technology from top–down approach[J]. Frontiers of Physics in China, 0, (): 414-421.
Ru HUANG (黄如), Run-sheng WANG (王润声). Investigation of gate-all-around silicon nanowire transistors for ultimately scaled CMOS technology from top–down approach. Front Phys Chin, 0, (): 414-421.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-010-0110-y
https://academic.hep.com.cn/fop/CN/Y0/V/I/414
1 Available: http://public.itrs.net/
2 F. L. Yang, D. H. Lee, H. Y. Chen, C. Y. Chang, S. D. Liu, C. C. Huang, T. X. Chung, H. W. Chen, C. C. Huang, Y. H. Liu, C. C. Wu, C. C. Chen, S. C. Chen, Y. T. Chen, Y. H. Chen, C. J. Chen, B. W. Chan, P. F. Hsu, J. H. Shieh, H. J. Tao, Y. C. Yeo, Y. Li, J. W. Lee, P. Chen, M. S. Liang, and C. Hu, in: VLSI Symp. Tech. Dig. , 2004: 196
3 N. Singh, F. Y. Lim, W. W. Fang, S. C. Rustagi, L. K. Bera, A. Agarwal, C. H. Tung, K. M. Hoe, S. R. Omampuliyur, D. Tripathi, A. O. Adeyeye, G. Q. Lo, N. Balasubramanian, and D. L. Kwong, in: IEDM Tech. Dig. , 2006: 547
4 S. D. Suk, S. Y. Lee, S. M. Kim, E. J. Yoon, M. S. Kim, M. Li, C. W. Oh, K. H. Yeo, S. H. Kim, D. S. Shin, K. H. Lee, H. S. Park, J. N. Han, C. J. Park, J. B. Park, D. W. Kim, D. Park, and B. I. Ryu, in : IEDM Tech. Dig. , 2005: 735
5 K. H. Yeo, S. D. Suk, M. Li, Y. Yeoh, K. H. Cho, K. H. Hong, S. Yun, M. S. Lee, N. Cho, K. Lee, D. Hwang, B. Par, D. W. Kim, D. Park, and B. Ryu, in: IEDM Tech. Dig. , 2006: 735
6 N. Singh, A. Agarwal, L. K. Bera, T. Y. Liow, R. Yang, S. C. Rustagi, C. H. Tung, R. Kumar, G. Q. Lo, N. Balasubramanian, and D. L. Kwong, IEEE Electron Device Lett. , 2006, 27: 383
doi: 10.1109/LED.2006.873381
7 Y. Jiang, T. Y. Liow, N. Singh, , in: VLSI Symp. Tech. Dig. , 2008: 27
8 Y. Tian, R. Huang, Y. Wang, J. Zhuge, R. Wang, J. Liu, X. Zhang, and Y. Wang, in: IEDM Tech. Dig. , 2007: 895
9 J. Zhuge, R. Wang, R. Huang, X. Zhang, and Y. Wang, IEEE Trans. Electron Devices , 2008, 55: 2142
doi: 10.1109/TED.2008.926279
10 R. Wang, R. Huang, D. W. Kim, Y. He, Z. Wang, G. Jia, D. Park, and Y. Wang, in: IEDM Tech. Dig. , 2007: 821
11 L. Zhang, R. Wang, J. Zhuge, R. Huang, D. W. Kim, D. Park, and Y. Wang, in: IEDM Tech. Dig. , 2008: 123
12 J. Zhuge, R. Wang, R. Huang, Y. Tian, L. Zhang, X. Zhang, D. W. Kim, D. Park, and Y. Wang, IEEE Electron Device Lett. , 2009, 30: 57
doi: 10.1109/LED.2008.2007752
13 J. Zhuge, L. Zhang, R. Wang, R. Huang, D. W. Kim, D. Park, and Y. Wang, Appl. Phys. Lett. , 2009, 94: 083503
doi: 10.1063/1.3089240
14 L. Zhang, J. Zhuge, R. Wang, R. Huang, C. Liu, D. Wu, Z. Kang, D. W. Kim, D. Park, and Y. Wang, in: VLSI Symp. Tech. Dig. , 2009: 46
15 J. Wang, E. Polizzi, and M. Lundstrom, in: IEDM Tech. Dig. , 2003: 695
16 K. H. Cho, S. D. Suk, Y. Y. Yeoh, M. Li, K. H. Yeo, D. W. Kim, S. W. Hwang, D. Park, and B. Il Ryu, in: IEDM Tech. Dig. , 2006: 543
17 M. S. Lundstrom and J. Guo, Nanoscale Transistors: Device Physics, Modeling and Simulation, New York: Springer, 2006
18 M. J. Chen, H. T. Huang, K. C. Huang, P. N. Chen, C. S. Chang, and C. H. Diaz, in: IEDM Tech. Dig. , 2002: 39
19 S. Datta, Electronic Transport in Mesoscopic Systems, London: Cambridge University Press, 1997
20 R. Wang, H. Liu, R. Huang, J. Zhuge, L. Zhang, D. W. Kim, X. Zhang, D. Park, and Y. Wang, IEEE Trans. Electron Devices , 2008, 55: 2960
doi: 10.1109/TED.2008.2005152
21 J. Jeon, J. Lee, J. Kim, C. H. Park, , in: Symposium on VLSI Technology , 2009: 48
22 G. Ghibaudo, Electron. Lett. , 1988, 24: 543
doi: 10.1049/el:19880369
23 A. Cros, K. Romanjek, D. Fleury, S. Harrison, R. Cerutti, P. Coronel, B. Dumont, A. Pouydebasque, R. Wacquez, B. Duriez, R. Gwoziecki, F. Boeuf, H. Brut, G. Ghibaudo, and T. Skotnicki, in: IEDM Tech. Dig. , 2006: 663
24 R. Wang, J. Zhuge, R. Huang, D. W. Kim, D. Park, and Y. Wang, IEEE Electron Device Lett. , 2009, 30: 559
doi: 10.1109/LED.2009.2016764
25 R. Agaiby, A. O’eill, S. Olsen, G. Eneman, P. Verheyen, R. Loo, and C. Claeys, in: Proc. ESSDERC , 2006: 97
26 K. Etessam-Yazdani, R. Hussin, and M. Asheghi, in: Proc. ITHERM , 2006: 1257
27 G. Guegan , R. Gwoziecki, O. Gonnard, G. Gouget, C. Raynaud, M. Casse, and S. Deleonibus, in: Proc. Mater. Res. Soc. Symp. , 2006, 913: 0913-D03-02
28 W. Jin, W. Liu, S. K. H. Fung, P. C. H. Chan, and C. Hu, IEEE Trans. Electron Devices , 2001, 48: 730
doi: 10.1109/16.915707
29 B. M. Tenbroek, G. Whiting, M. S. L. Lee, and C. F. Edwards, IEEE Trans. Electron Devices , 1996, 43: 2240
doi: 10.1109/16.544417
30 J. Zhuge, R. Wang, R. Huang, J. Zou, X. Huang, D. W. Kim, X. Zhang, D. Park, and Y. Wang, in: IEDM Tech. Dig. , 2009: 61
31 K. Ohmori, T. Matsuki, D. Ishikawa, T. Morooka, T. Aminaka, Y. Sugita, T. Chikyow, K. Shiraishi, Y. Nara, and K. Yamada, in: IEDM Tech. Dig. , 2008: 409
32 H. Dadgour, K. Endo, V. De, and K. Banerjee, in: IEDM Tech. Dig. , 2008: 705
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed