Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2011, Vol. 6 Issue (1): 106-108   https://doi.org/10.1007/s11467-010-0114-7
  RESEARCH ARTICLE 本期目录
Hawking radiation from a Vaidya black hole by Hamilton–Jacobi method
Hawking radiation from a Vaidya black hole by Hamilton–Jacobi method
Han DING (丁翰,), Wen-biao LIU (刘文彪,)
Department of Physics, Institute of Theoretical Physics, Beijing Normal University, Beijing 100875, China
 全文: PDF(132 KB)   HTML
Abstract

Using the Hamilton–Jacobi method, Hawking radiation from the apparent horizon of a dynamical Vaidya black hole is calculated. The black hole thermodynamics can be built successfully on the apparent horizon. If a relativistic perturbation is given to the apparent horizon, a similar calculation can also lead to a purely thermal spectrum, which corresponds to a modified temperature from the former. The first law of thermodynamics can also be constructed successfully at a new supersurface which has a small deviation from the apparent horizon. When the event horizon is thought as such a deviation from the apparent horizon, the expressions of the characteristic position and temperature are consistent with the previous result that asserts that thermodynamics should be built on the event horizon. It is concluded that the thermodynamics should be constructed on the apparent horizon exactly while the event horizon thermodynamics is just one of the perturbations near the apparent horizon.

Key wordsVaidya black hole    Hawking radiation    apparent horizon    event horizon    thermodynamics
收稿日期: 2010-05-05      出版日期: 2011-03-05
Corresponding Author(s): null,Email:dinghan@mail.bnu.edu.cn; null,Email:wbliu@bnu.edu.cn   
 引用本文:   
. Hawking radiation from a Vaidya black hole by Hamilton–Jacobi method[J]. Frontiers of Physics, 2011, 6(1): 106-108.
Han DING (丁翰), Wen-biao LIU (刘文彪). Hawking radiation from a Vaidya black hole by Hamilton–Jacobi method. Front. Phys. , 2011, 6(1): 106-108.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-010-0114-7
https://academic.hep.com.cn/fop/CN/Y2011/V6/I1/106
1 S. W. Hawking, Nature , 1974, 248: 30
doi: 10.1038/248030a0
2 S. W. Hawking, Commun. Math. Phys ., 1975, 43(3): 199
doi: 10.1007/BF02345020
3 J. D. Bekenstein, Phys. Rev. D , 1973, 7: 2333
doi: 10.1103/PhysRevD.7.2333
4 J. M. Bardeen, B. Carter, and S. W. Hawking, Commun. Math. Phys ., 1973, 31: 161
doi: 10.1007/BF01645742
5 R. Balbinot, Phys. Rev. D , 1986, 33: 1611
doi: 10.1103/PhysRevD.33.1611
6 J. Ren, J. Y. Zhang, and Z. Zhao, Chin. Phys. Lett ., 2006, 23: 2019
doi: 10.1088/0256-307X/23/8/016
7 E. C. Vagenas and S. Das, JHEP , 2006, 0610: 025
8 G. Fodor, K. Nakamura, Y. Oshiro, and A. Tomimatsu, Phys. Rev. D , 1996, 54: 3882
doi: 10.1103/PhysRevD.54.3882
9 P. Hajicek, Phys. Rev. D , 1987, 36: 1065
doi: 10.1103/PhysRevD.36.1065
10 W. Collins, Phys. Rev. D , 1992, 45: 495
doi: 10.1103/PhysRevD.45.495
11 M. Angheben, M. Nadalini, L. Vanzo, and S. Zerbini, JHEP , 2005, 05: 014
12 K. Srinivasam and T. Padmanabhan, Phys. Rev. D , 1999, 60: 024001
doi: 10.1103/PhysRevD.60.024001
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed