Dynamics of Bose–Einstein condensates near Feshbach resonance in external potential
Dynamics of Bose–Einstein condensates near Feshbach resonance in external potential
Xiao-fei ZHANG (张晓斐)1,2, Xing-hua HU (胡兴华)1, Deng-shan WANG (王灯山)1, Xun-xu LIU (刘循序)1, Wu-ming LIU (刘伍明)1()
1. Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 2. College of Science, Honghe University, Mengzi 661100, China
We review our recent theoretical advances in the dynamics of Bose–Einstein condensates with tunable interactions using Feshbach resonance and external potential. A set of analytic and numerical methods for Gross–Pitaevskii equations are developed to study the nonlinear dynamics of Bose– Einstein condensates. Analytically, we present the integrable conditions for the Gross–Pitaevskii equations with tunable interactions and external potential, and obtain a family of exact analytical solutions for one- and two-component Bose–Einstein condensates in one and two-dimensional cases. Then we apply these models to investigate the dynamics of solitons and collisions between two solitons. Numerically, the stability of the analytic exact solutions are checked and the phenomena, such as the dynamics and modulation of the ring dark soliton and vector-soliton, soliton conversion via Feshbach resonance, quantized soliton and vortex in quasi-two-dimensional are also investigated. Both the exact and numerical solutions show that the dynamics of Bose–Einstein condensates can be effectively controlled by the Feshbach resonance and external potential, which offer a good opportunity for manipulation of atomic matter waves and nonlinear excitations in Bose–Einstein condensates.
. Dynamics of Bose–Einstein condensates near Feshbach resonance in external potential[J]. Frontiers of Physics, 2011, 6(1): 46-60.
Xiao-fei ZHANG (张晓斐), Xing-hua HU (胡兴华), Deng-shan WANG (王灯山), Xun-xu LIU (刘循序), Wu-ming LIU (刘伍明). Dynamics of Bose–Einstein condensates near Feshbach resonance in external potential. Front. Phys. , 2011, 6(1): 46-60.
M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E.Wieman, and E. A. Cornell, Science , 1995, 269: 198 doi: 10.1126/science.269.5221.198
2
F. Dalfovo, S. Giorgini, L. P. Pitaevskii, and S. Stringari, Rev. Mod. Phys ., 1999, 71: 463 doi: 10.1103/RevModPhys.71.463
3
P. G. Drazin and R. S. Johnson, Solitons: An Introduction, Cambridge: Cambridge University Press , 1989
4
K. E. Strecker, G. B. Partridge, A. G. Truscoff, and R. G. Hulet, Nature (London) , 2002, 417: 150 doi: 10.1038/nature747
5
L. Khaykovich, F. Schreck, G. Ferrari, T. Bourdel, J. Cubizolles, L. D. Carr, Y. Castin, and C. Salomon, Science , 2002, 296: 1290 doi: 10.1126/science.1071021
6
C. Becker, S. Stellmer, P. Soltan-Panahi, S. D?orscher, M. Baumert, Eva-MariaRichter, JochenKronj?ager, K. Bongs, and K. Sengstock, Nature Phys ., 2008, 4: 496 doi: 10.1038/nphys962
7
B. Eiermann, Th. Anker, M. Albiez, M. Taglieber, P. Treutlein, K. P. Marzlin, and M. K. Oberthaler, Phys. Rev. Lett ., 2004, 92: 230401 doi: 10.1103/PhysRevLett.92.230401
A. J. Moerdijk, B. J. Verhaar, and A. Axelsson, Phys. Rev. A , 1995, 51: 4852 doi: 10.1103/PhysRevA.51.4852
14
J. L. Roberts, N. R. Claussen, James P. Burke, Jr., C. H. Greene, E. A. Cornell, and C. E.Wieman, Phys. Rev. Lett ., 1998, 81: 5109 doi: 10.1103/PhysRevLett.81.5109
15
J. Stenger, S. Inouye, M. R. Andrews, H. -J. Miesner, D. M. Stamper-Kurn, and W. Ketterle, Phys. Rev. Lett ., 1999, 82: 2422 doi: 10.1103/PhysRevLett.82.2422
16
S. Inouye, M. R. Andrews, J. Stenger, H. -J. Miesner, D. M. Stamper-Kurn, and W. Ketterle, Nature , 1998, 392: 151 doi: 10.1038/32354
17
S. L. Cornish, N. R. Claussen, J. L. Roberts, E. A. Cornell, and C. E. Wieman, Phys. Rev. Lett ., 2000, 85: 1795 doi: 10.1103/PhysRevLett.85.1795
18
E. A. Donley, N. R. Claussen, S. L. Cornish, J. L. Roberts, E. A. Cornell, and C. E. Wieman, Nature (London) , 2001, 412: 295 doi: 10.1038/35085500
G. Thalhammer, G. Barontini, L. De Sarlo, J. Catani, F. Minardi, and M. Inguscio, Phys. Rev. Lett ., 2008, 100: 210402 doi: 10.1103/PhysRevLett.100.210402
29
H. W. Xiong, S. J. Liu, W. P. Zhang, and M. S. Zhan, Phys. Rev. Lett ., 2005, 95: 120401 doi: 10.1103/PhysRevLett.95.120401
30
C. J. Myatt, E. A. Burt, R. W. Ghrist, E. A. Cornell, and C. E. Wieman, Phys. Rev. Lett ., 1997, 78: 586 doi: 10.1103/PhysRevLett.78.586
31
D. S. Hall, M. R. Matthews, J. R. Ensher, C. E. Wieman, and E. A. Cornell, Phys. Rev. Lett ., 1998, 81: 1539 doi: 10.1103/PhysRevLett.81.1539
32
D. M. Stamper-Kurn, M. R. Andrews, A. P. Chikkatur, S. Inouye, H.-J. Miesner, J. Stenger, and W. Ketterle, Phys. Rev. Lett ., 1998, 80: 2027 doi: 10.1103/PhysRevLett.80.2027
33
T. S. Raju, P. K. Panigrahi, and K. Porsezian, Phys. Rev. A , 2005, 71: 035601 doi: 10.1103/PhysRevA.71.035601
34
G. Modugno, G. Ferrari, G. Roati, R. J. Brecha, A. Simoni, and M. Inguscio, Science , 2001, 294: 1320 doi: 10.1126/science.1066687
35
H. A. Cruz, V. A. Brazhnyi, V. V. Konotop, G. L. Alfimov, and M. Salerno, Phys. Rev. A , 2007, 76: 013603 doi: 10.1103/PhysRevA.76.013603
36
Q. Y. Li, Z. D. Li, S. F. Yao, L. Li, and G. S. Fu, Chin. Phys. B, 2010, 19: 080501 doi: 10.1088/1674-1056/19/8/080501