Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  0, Vol. Issue (): 204-208   https://doi.org/10.1007/s11467-011-0178-z
  RESEARCH ARTICLE 本期目录
Ti-doped nano-porous graphene: A material for hydrogen storage and sensor
Ti-doped nano-porous graphene: A material for hydrogen storage and sensor
Sa LI1(), Hong-min ZHAO2, Puru JENA1
1. Department of Physics, Virginia Commonwealth University, Richmond, VA 23284, USA; 2. Department of Physics, School of Science, Beijing Jiaotong University, Beijing 100044, China
 全文: PDF(299 KB)   HTML
Abstract

Clustering of Ti on carbon nanostructures has proved to be an obstacle in their use as hydrogen storagematerials. Using density functional theory we show that Ti atoms will not cluster at moderate concentrations when doped into nanoporous graphene. Since each Ti atom can bind up to three hydrogen molecules with an average binding energy of 0.54 eV/H2, this material can be ideal for storing hydrogen under ambient thermodynamic conditions. In addition, nanoporous graphene is magnetic with or without Ti doping, but when it is fully saturated with hydrogen, the magnetism disappears. This novel feature suggests that nanoporous graphene cannot only be used for storing hydrogen, but also as a hydrogen sensor.

Key wordsnano-porous graphene    hydrogen storage    hydrogen sensor
收稿日期: 2011-03-19      出版日期: 2011-06-05
Corresponding Author(s): LI Sa,Email:sli2@vcu.edu   
 引用本文:   
. Ti-doped nano-porous graphene: A material for hydrogen storage and sensor[J]. Frontiers of Physics, 0, (): 204-208.
Sa LI, Hong-min ZHAO, Puru JENA. Ti-doped nano-porous graphene: A material for hydrogen storage and sensor. Front. Phys. , 0, (): 204-208.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-011-0178-z
https://academic.hep.com.cn/fop/CN/Y0/V/I/204
1 J. S. Noh, R. K. Agarwal, and J. A. Schwarz, Int. J. Hydrogen Energy , 1987, 12: 693
doi: 10.1016/0360-3199(87)90132-7
2 R. K. Agarwal, J. S. Noh, J. A. Schwarz, and P. Davini, Carbon , 1987, 25: 219
doi: 10.1016/0008-6223(87)90119-9
3 A. C. Dillon, K. M. Jones, T. A. Bekkedahl, C. H. Kiang, D. S. Bethune, and M. J. Heben, Nature , 1997, 386: 377
doi: 10.1038/386377a0
4 C. Liu, Y. Y. Fan, M. Liu, H. T. Cong, H. M. Cheng, and M. S. Dresselhaus, Science , 1999, 286: 1127
doi: 10.1126/science.286.5442.1127
5 Y. Ye, C. C. Ahn, B. Fultz, J. J. Vajo, and J. J. Zinck, Appl. Phys. Lett. , 2000, 77: 2171
doi: 10.1063/1.1312857
6 A. Chambers, C. Park, R. T. K. Baker, and N. M. Rodriguez, J. Phys. Chem. B , 1998, 102: 4253
doi: 10.1021/jp980114l
7 K. Murata, K. Kaneko, H. Kanoh, D. Kasuya, K. Takahashi, F. Kokai, M. Yudasaka, and S. Iijima, J. Phys. Chem. B , 2002, 106: 11132
doi: 10.1021/jp020583u
8 G. G. Tibbetts, G. P. Meisner, and C. H. Olk, Carbon , 2001, 39: 2291
doi: 10.1016/S0008-6223(01)00051-3
9 M. Shiraishi, T. Takenobu, and M. Ata, Chem. Phys. Lett. , 2003, 367: 633
doi: 10.1016/S0009-2614(02)01781-5
10 H. Kajiura, S. Tsutsui, K. Kadono, M. Kakuta, M. Ata, and Y. Murakami, Appl. Phys. Lett. , 2003, 82: 1105
doi: 10.1063/1.1555262
11 Q. Y. Wang and J. K. Johnson, J. Chem. Phys. , 1999, 110: 577
doi: 10.1063/1.478114
12 Z. Zhou, J. J. Zhao, Z. F. Chen, X. P. Gao, T. Y. Yan, B. Wen, and P. v. R. Schleyer, J. Phys. Chem. B , 2006, 110: 13363
doi: 10.1021/jp0622740
13 T. Yildirim and S. Ciraci, Phys. Rev. Lett. , 2005, 94: 175501
doi: 10.1103/PhysRevLett.94.175501
14 T. Yildirim, J. Iniguez, and S. Ciraci, Phys. Rev. B , 2005, 72: 153403
doi: 10.1103/PhysRevB.72.153403
15 Y. F. Zhao, Y. H. Kim, A. C. Dillon, M. J. Heben, and S. B. Zhang, Phys. Rev. Lett. , 2005, 94: 155504
doi: 10.1103/PhysRevLett.94.155504
16 Y. H. Kim, Y. F. Zhao, A. Williamson, M. J. Heben, and S. B. Zhang, Phys. Rev. Lett. , 2006, 96: 016102
doi: 10.1103/PhysRevLett.96.016102
17 Q. Sun, Q. Wang, P. Jena, and Y. Kawazoe, J. Am. Chem. Soc. , 2005, 127: 14582
doi: 10.1021/ja0550125
18 S. Li and P. Jena, Phys. Rev. Lett. , 2006, 97: 209601
doi: 10.1103/PhysRevLett.97.209601
19 Q. Sun, P. Jena, Q. Wang, and M. Marquez, J. Am. Chem. Soc. , 2006, 128: 9741
doi: 10.1021/ja058330c
20 S. Li and P. Jena, Phys. Rev. B , 2008, 77: 193101
doi: 10.1103/PhysRevB.77.193101
21 A. K. Geim and K. S. Novoselov, Nat. Mater. , 2007, 6: 183
doi: 10.1038/nmat1849
22 J. C. Meyer, A. K. Geim, M. I. Katsnelson, K. S. Novoselov, T. J. Booth, and S. Roth, Nature , 2007, 446: 60
doi: 10.1038/nature05545
23 J. S. Arellano, L. M. Molina, A. Rubio, and J. A. Alonso, J. Chem. Phys. , 2000, 112: 8114
doi: 10.1063/1.481411
24 Y. Okamoto and Y. Miyamoto, J. Phys. Chem. B , 2001, 105: 3470
doi: 10.1021/jp003435h
25 N. Park, S. Hong, G. Kim, and S. H. Jhi, J. Am. Chem. Soc. , 2007, 129: 8999
doi: 10.1021/ja0703527
26 Y. Gogotsi, R. K. Dash, G. Yushin, T. Yildirim, G. Laudisio, and J. E. Fischer, J. Am. Chem. Soc. , 2005, 127: 16006
doi: 10.1021/ja0550529
27 G. Yushin, R. Dash, J. Jagiello, J. E. Fischer, and Y. Gogotsi, Adv. Funct. Mater. , 2006, 16: 2288
doi: 10.1002/adfm.200500830
28 J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. , 1996, 77: 3865
doi: 10.1103/PhysRevLett.77.3865
29 W. Kohn and L. J. Sham, Phys. Rev. , 1965, 140: A1133
doi: 10.1103/PhysRev.140.A1133
30 Y. Y. Sun, K. Lee, L.Wang, Y.-H. Kim, W. Chen, Z. F. Chen, and S. B. Zhang, Phys. Rev. B , 2010, 82: 073401
doi: 10.1103/PhysRevB.82.073401
31 P. E. Blochl, Phys. Rev. B , 1994, 50: 17953
doi: 10.1103/PhysRevB.50.17953
32 http://invsee.asu.edu/nmodules/Carbonmod/crystalline.html
33 Q. Wang, Q. Sun, P. Jena, and Y. Kawazoe, Phys. Rev. B , 2007, 75: 075312
doi: 10.1103/PhysRevB.75.075312
34 C.-G. Zhang, R. W. Zhang, Z.-X. Wang, Z. Zhou, S. B. Zhang, and Z. F. Chen, Chem. Eur. J. , 2009, 15: 5910
doi: 10.1002/chem.200900172
35 T. L. Makarova, B. Sundqvist, R. Hohne, P. Esquinazi, Y. Kopelevich, P. Scharff, V. A. Davydov, L. S. Kashevarova, and A. V. Rakhmanina, Nature , 2001, 413: 716
doi: 10.1038/35099527
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed