Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2011, Vol. 6 Issue (4): 370-378   https://doi.org/10.1007/s11467-011-0220-1
  REVIEW ARTICLE 本期目录
Mott physics, sign structure, ground state wavefunction, and high-Tc superconductivity
Mott physics, sign structure, ground state wavefunction, and high-Tc superconductivity
Zheng-Yu Weng()
Institute for Advanced Study, Tsinghua University, Beijing 100084, China
 全文: PDF(447 KB)   HTML
Abstract

In this article I give a pedagogical illustration of why the essential problem of high-Tc superconductivity in the cuprates is about how an antiferromagnetically ordered state can be turned into a short-range state by doping. I will start with half-filling where the antiferromagnetic ground state is accurately described by the Liang–Doucot–Anderson (LDA) wavefunction. Here the effect of the Fermi statistics becomes completely irrelevant due to the no double occupancy constraint. Upon doping, the statistical signs reemerge, albeit much reduced as compared to the original Fermi statistical signs. By precisely incorporating this altered statistical sign structure at finite doping, the LDA ground state can be recast into a short-range antiferromagnetic state. Superconducting phase coherence arises after the spin correlations become short-ranged, and the superconducting phase transition is controlled by spin excitations. I will stress that the pseudogap phenomenon naturally emerges as a crossover between the antiferromagnetic and superconducting phases. As a characteristic of non Fermi liquid, the mutual statistical interaction between the spin and charge degrees of freedom will reach a maximum in a high-temperature “strange metal phase” of the doped Mott insulator.

Key wordsMott physics    high-Tc cuprates    ground state wavefunction    sign structure
收稿日期: 2011-09-29      出版日期: 2011-12-05
Corresponding Author(s): Weng Zheng-Yu,Email:weng@tsinghua.edu.cn   
 引用本文:   
. Mott physics, sign structure, ground state wavefunction, and high-Tc superconductivity[J]. Frontiers of Physics, 2011, 6(4): 370-378.
Zheng-Yu Weng. Mott physics, sign structure, ground state wavefunction, and high-Tc superconductivity. Front. Phys. , 2011, 6(4): 370-378.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-011-0220-1
https://academic.hep.com.cn/fop/CN/Y2011/V6/I4/370
1 P. W. Anderson, Science , 1987, 235(4793): 1196
2 P. W. Anderson, P. A. Lee, M. Randeria, T. M. Rice, N. Trivedi, and F. C. Zhang, J. Phys.: Condens. Matter , 2004, 16(24): R755, and references therein
3 For a review, see: B. Edegger, V. N. Muthukumar, and C. Gros, Adv. Phys. , 2007, 56(6): 927
4 D. Vaknin, S. K. Sinha, D. E. Moncton, D. C. Johnston, J. M. Newsam, C. R. Safinya, and H. King, Phys. Rev. Lett. , 1987, 58(26): 2802
5 A. Auerbach, Interacting Electrons and Quantum Magnetism, New York: Springer-Verlag, 1994
6 For a review, see: P. A. Lee, N. Nagaosa, and X. G. Wen, Rev. Mod. Phys. , 2006, 78(1): 17
7 Z. Y. Weng, New J. Phys. , 2011, 13: 103039; arXiv: 1105.3027, 2011, and references therein
8 S. Liang, B. Doucot, and P. W. Anderson, Phys. Rev. Lett. , 1988, 61(3): 365
9 W. Marshall, Proc. R. Soc. Lond. A , 1955, 232(1188): 48
10 For a review, see: Z. Y. Weng, Int. J. Mod. Phys. B , 2007, 21: 773; arXiv:0704.2875, 2007
11 J. Zaanen and B. J. Overbosch, Phil. Trans. R. Soc. A , 2011, 369: 1599; arXiv:0911.4070, 2009
12 D. N. Sheng, Y. C. Chen, and Z. Y. Weng, Phys. Rev. Lett. , 1996, 77(25): 5102
13 Z. Y. Weng, D. N. Sheng, Y.-C. Chen, and C. S. Ting, Phys. Rev. B , 1997, 55(6): 3894
14 K. Wu, Z. Y. Weng, and J. Zaanen, Phys. Rev. B , 2008, 77(15): 155102
15 J. W. Mei and Z. Y. Weng, Phys. Rev. B , 2010, 81(1): 014507
16 Y. J. Uemura, J. Phys.: Condens. Matter , 2004, 16(40): S4515
17 Y. J. Uemura, Physica B , 2006, 374-375: 1
18 T. Timusk and B. Statt, Rep. Prog. Phys. , 1999, 62(1): 61
19 A. Damascelli, Z. Hussin, and Z. X. Shen, Rev. Mod. Phys. , 2003, 75(2): 473
20 Z. Y. Weng and V. N. Muthukumar, Phys. Rev. B , 2002, 66(9): 094509
21 Z. Y. Weng and X. L. Qi, Phys. Rev. B , 2006, 74(14): 144518
22 Z. A. Xu, N. P. Ong, Y. Wang, T. Kakeshita, and S. Uchida, Nature , 2000, 406(6795): 486
23 Y. Wang, Z. A. Xu, T. Kakheshita, S. Uchida, S. Ono, Y. Ando, and N. Ong, Phys. Rev. B , 2001, 64(22): 224519
24 P. Ye, C. S. Tian, X. L. Qi, and Z. Y. Weng, Phys. Rev. Lett. , 2011, 106(14): 147002
25 P. Ye, C. S. Tian, X. L. Qi, and Z. Y. Weng, Nucl. Phys. B , 2012, 854[FS]: 815; arXiv:1106.1223, 2011
26 S. P. Kou, X. L. Qi, and Z. Y. Weng, Phys. Rev. B , 2005, 71(23): 235102
27 V. J. Emery and S. A. Kivelson, Nature , 1995, 374(6521): 434
28 Z. Těsanovi?, Nat. Phys. , 2008, 4: 408
29 J. W. Mei, S. Kawasaki, G. Q. Zheng, Z. Y. Weng, and X. G. Wen, arXiv:1109.0406 , 2011
30 T. C. Ribeiro and X. G. Wen, Phys. Rev. B , 2006, 74(15): 155113
31 T. C. Ribeiro and X. G. Wen, Phys. Rev. Lett. , 2005, 95(5): 057001
32 Y. Qi and S. Sachdev, Phys. Rev. B , 2010, 81(11): 115129
33 Z. C. Gu and Z. Y. Weng, Phys. Rev. B , 2007, 76(2): 024501
34 F. C. Zhang, C. Gros, T. M. Rice, and H. Shiba, Supercond. Sci. Technol. , 1988, 1(1): 36
35 G. Baskaran, Z. Zou, and P. W. Anderson, Solid State Commun. , 1987, 63(11): 973
36 P. W. Anderson, arXiv:1011.2736 , 2010
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed