Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2011, Vol. 6 Issue (4): 440-449   https://doi.org/10.1007/s11467-011-0231-y
  REVIEW ARTICLE 本期目录
Superconductivity in the cuprates: Deduction of mechanism for d-wave pairing through analysis of ARPES
Superconductivity in the cuprates: Deduction of mechanism for d-wave pairing through analysis of ARPES
Han-Yong Choi1(), Chandra M. Varma2(), Xing-jiang Zhou3
1. Department of Physics and Institute for Basic Science Research, Sung Kyun Kwan University, Suwon 440-746, Korea; 2. Department of Physics and Astronomy, University of California, Riverside, California 92521, USA; 3. National Laboratory for Superconductivity, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
 全文: PDF(451 KB)   HTML
Abstract

In the Eliashberg integral equations for d-wave superconductivity, two different functions (α2F)n(ω, θ) and (α2F)p,d(ω) determine, respectively, the “normal” self-energy and the “pairing” self-energy. ω is the frequency of fluctuations scattering the fermions whose momentum is near the Fermi-surface and makes an angle θ to a chosen axis. We present a quantitative analysis of the high-resolution laser based Angle Resolved Photoemission Spectroscopy (ARPES) data on a slightly under doped cuprate compound Bi2212 and use the Eliashberg equations to deduce the ω and θ dependence of (α2F)n(ω, θ) for T just above Tc and below Tc. Besides its detailed ω dependence, we find the remarkable result that this function is nearly independent of θ between the (π; π)-direction and 25 degrees from it, except for the dependence of the cut-off energy on θ. Assuming that the same fluctuations determine both the normal and the pairing self-energy, we ask what theories give the function (α2F)p,d(ω) required for the d-wave pairing instability at high temperatures as well as the deduced (α2F)n(θ, ω). We show that the deduced (α2F)n(θ, ω) can only be obtained from antiferromagnetic (AFM) fluctuations if their correlation length is smaller than a lattice constant. Using (α2F)p,d(ω) consistent with such a correlation length and the symmetry of matrix-elements scattering fermions by AFM fluctuations, we calculate Tc and show that AFM fluctuations are excluded as the pairing mechanism for d-wave superconductivity in cuprates. We also consider the quantumcritical fluctuations derived microscopically as the fluctuations of the observed loop–current order discovered in the under-doped cuprates, and which lead to the marginal Fermi–liquid properties in the normal state. We show that their frequency dependence and the momentum dependence of their matrix-elements to scatter fermions are consistent with the θ and ω dependence of the deduced (α2F)n(ω, θ). The pairing kernel (α2F)p,d(ω) calculated using the experimental values in the Eliashberg equation gives d-wave instability at Tc comparable to the experiments.

Key wordshigh temperature superconductivity    mechanisms of superconductivity
收稿日期: 2011-10-31      出版日期: 2011-12-05
Corresponding Author(s): Choi Han-Yong,Email:hychoi@skku.edu; Varma Chandra M.,Email:chandra.varma@ucr.edu   
 引用本文:   
. Superconductivity in the cuprates: Deduction of mechanism for d-wave pairing through analysis of ARPES[J]. Frontiers of Physics, 2011, 6(4): 440-449.
Han-Yong Choi, Chandra M. Varma, Xing-jiang Zhou. Superconductivity in the cuprates: Deduction of mechanism for d-wave pairing through analysis of ARPES. Front. Phys. , 2011, 6(4): 440-449.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-011-0231-y
https://academic.hep.com.cn/fop/CN/Y2011/V6/I4/440
1 G. M. Eliashberg, Zh. Eksp. Teor. Fiz. , 1960, 38: 966
2 L. P. Gorkov, Sov. Phys. JETP , 1960, 7: 505
3 W. McMillan and J. R. Rowell, Phys. Rev. Lett. , 1965, 14(4): 108
4 J. R. Schrieffer, D. J. Scalapino, and J. W. Wilkins, Phys. Rev. Lett. , 1963, 10(8): 336
5 I. Vekhter and C. M. Varma, Phys. Rev. Lett. , 2003, 90(23): 237003
6 K. Miyake, S. Schmitt-Rink, and C. M. Varma, Phys. Rev. B , 1986, 34(9): 6554
7 C. M. Varma, arXiv: 1001.3618 , 2010
8 J. M. Bok, J. H. Yun, H. Y. Choi, and C. M. Varma, Phys. Rev. B , 2010, 81(17): 174516
9 J. H. Yun, J. M. Bok, H. Y. Choi, W. Zhang, X. J. Zhou, and C. M. Varma, Phys. Rev. B , 2011, 814(10): 104521
10 W. Zhang, J. M. Bok, J. H. Yun, G. Liu, L. Zhao, H. Liu, J. Meng, X. Dong, J. Zhang, W. Lu, H. Y. Choi, and X. Zhou, Phys. Rev. B, to be published
11 E. Schachinger and J. P. Carbotte, Phys. Rev. B , 2008, 77(9): 094525
12 J. Hwang, T. Timusk, E. Schachinger, and J. P. Carbotte, Phys. Rev. B , 2007, 75(14): 144508
13 E. van Hemmen, E. Muhlethaler, A. B. Kuzmenko, H. Eisaki, W. Meevasana, M. Greven, and D. van der Marel, Phys. Rev. B , 2009, 79(18): 184512
14 L. Zhu, V. Aji, A. Shekhter, and C. M. Varma, Phys. Rev. Lett. , 2008, 100(5): 057001
15 D. J. Scalapino, E. Loh, and J. E. Hirsch, Phys. Rev. B , 1986, 34(11): 8190
16 D. J. Scalapino, Phys. Rep. , 1995, 250(6): 329
17 H. Monien, A. J. Millis, and D. Pines, Phys. Rev. B , 1990, 42: 167
18 D. Pines, A. V. Chubukov, and J. Schmalian, The Physics of Superconductors , Vol. 2, Berlin: Springer, 2003
19 H. A. Mook, M. Yethiraj, G. Aeppli, T. Mason, and T. Armstrong, Phys. Rev. Lett. , 1993, 70(22): 3490
20 A. V. Balatasky and P. Bourges, Phys. Rev. Lett. , 1990, 82: 5337
21 V. Aji and C. M. Varma, Phys. Rev. Lett. , 2007, 99(6): 067003
22 V. Aji and C. M. Varma, Phys. Rev. B , 2009, 79(18): 184501
23 V. Aji and C. M. Varma, Phys. Rev. B , 2010, 82(17): 174501
24 M. E. Simon and C. M. Varma, Phys. Rev. Lett. , 2001, 86(9): 1781
25 C. M. Varma, Phys. Rev. B , 2006, 73(15): 155113
26 B. Fauque, Y. Sidis, V. Hinkov, S. Pailhès, C. T. Lin, X. Chaud, and P. Bourges, Phys. Rev. Lett. , 2006, 96(19): 197001
27 H. Mook, Y. Sidis, B. Fauqué, V. Balédent, and P. Bourges, Phys. Rev. B , 2008, 78(2): 020506
28 Y. Li, V. Balédent, N. Bari?i?Y. Cho, B. Fauqué, Y. Sidis, G. Yu, X. Zhao, P. Bourges, and M. Greven, Nature , 2008, 455(7211): 372
29 A. Kaminski, S. Rosenkranz, H. M. Fretwell, J. C. Campuzano, Z. Li, H. Raffy, W. G. Cullen, H. You, C. G. Olson, C. M. Varma, and H. H?chst, Nature , 2002, 416(6881): 610
30 A. Shekhter, V. Aji, and C. M. Varma, Phys. Rev. B , 2010, 81: 064515
31 C. M. Varma, P. B. Littlewood, and S. Schmitt-Rink, Phys. Rev. Lett. , 1989, 63(18): 1996
32 Y. He and C. M. Varma, Phys. Rev. Lett. , 2011, 106(14): 147001
33 Y. Li, V. Balédent, G. Yu, N. Bari?i?K. Hradil, R. A. Mole, Y. Sidis, P. Steffens, X. Zhao, P. Bourges, and M. Greven, Nature , 2010, 468(7321): 283
34 S. Johnston, F. Vernay, B. Moritz, Z.X. Shen, N. Nagaosa, J. Zaanen, and T. Devereaux, Phys. Rev. B , 2010, 82(6): 064513
35 C. M. Varma, Phys. Rev. B , 1997, 55(21): 14554
36 Y. Li, V. Baledent, N. Barisic, Y. C. Cho, Y. Sidis, G. Yu, X. Zhao, P. Bourges, and M. Greven, Phys. Rev. B, to the published
37 J. L. Tallon and J. W. Loram, Physica C , 2000, 349(1-2): 53
39 V. Baledent, B. Fauqué, Y. Sidis, N. Christensen, S. Pailhès, K. Conder, E. Pomjakushina, J. Mesot, and P. Bourges, Phys. Rev. Lett. , 2010, 105(2): 0207004
40 P. Bourges, Private communication, to be published , 2010
42 P. Bourges and Y. Sidis, Comptes Rendus Physique , 2011, 12(5-6): 461
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed