We exactly evaluate the entanglement of a six vertex and a nine vertex graph states which correspond to non “two-colorable” graphs. The upper bound of entanglement for five vertex ring graph state is improved to 2.9275, less than the upper bound determined by local operations and classical communication. An upper bound of entanglement is proposed based on the definition of graph state.
. The entanglement of several graph states[J]. Frontiers of Physics, 2012, 7(4): 444-448.
Xiao-Yu Chen (陈小余). The entanglement of several graph states. Front. Phys. , 2012, 7(4): 444-448.
M. Hein, W. Dür, J. Eisert, R. Raussendorf, M. Van den Nest, and H. J. Briegel, in: G. Casati, D. L. Shepelyansky, P. Zoller, and G. Benenti(Eds.), Quantum Computers, Algorithms and Chaos, 162, Amsterdam: IOS Press, 2006
14
O. Gühne, B. Jungnitsch, T. Moroder, and Y. S. Weinstein, Phys. Rev. A , 2011, 84(5): 052319 doi: 10.1103/PhysRevA.84.052319
15
B. Jungnitsch, T. Moroder, and O. Gühne, Phys. Rev. A , 2011, 84(3): 03231 doi: 10.1103/PhysRevA.84.032310
P. Walther, K. J. Resch, T. Rudolph, E. Schenck, H. Weinfurter, V. Vedral, M. Aspelmeyer, and A. Zeilinger, Nature , 2005, 434(7030): 169 doi: 10.1038/nature03347
21
C. Y. Lu, X. Q. Zhou, O. Gühne, W. B. Gao, J. Zhang, Z. S. Yuan, A. Goebel, T. Yang, and J. W. Pan, Nat. Phys. , 2007, 3(2): 91 doi: 10.1038/nphys507