Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2012, Vol. 7 Issue (4): 444-448   https://doi.org/10.1007/s11467-012-0249-9
  RESEARCH ARTICLE 本期目录
The entanglement of several graph states
The entanglement of several graph states
Xiao-Yu Chen (陈小余,)
College of Information and Electronic Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
 全文: PDF(171 KB)   HTML
Abstract

We exactly evaluate the entanglement of a six vertex and a nine vertex graph states which correspond to non “two-colorable” graphs. The upper bound of entanglement for five vertex ring graph state is improved to 2.9275, less than the upper bound determined by local operations and classical communication. An upper bound of entanglement is proposed based on the definition of graph state.

Key wordsgraph state    closest separable state    multipartite entanglement
收稿日期: 2011-07-10      出版日期: 2012-08-01
Corresponding Author(s): Xiao-Yu Chen (陈小余),Email:xychen@zjgsu.edu.cn   
 引用本文:   
. The entanglement of several graph states[J]. Frontiers of Physics, 2012, 7(4): 444-448.
Xiao-Yu Chen (陈小余). The entanglement of several graph states. Front. Phys. , 2012, 7(4): 444-448.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-012-0249-9
https://academic.hep.com.cn/fop/CN/Y2012/V7/I4/444
1 V. Vedral, M. B. Plenio, M. A. Rippin, and P. L. Knight, Phys. Rev. Lett. , 1997, 78(12): 2275
doi: 10.1103/PhysRevLett.78.2275
2 V. Vedral and M. B. Plenio, Phys. Rev. A , 1998, 57(3): 1619
doi: 10.1103/PhysRevA.57.1619
3 C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W. K. Wootters, Phys. Rev. A , 1996, 54(5): 3824
doi: 10.1103/PhysRevA.54.3824
4 W. Dür, G. Vidal, and J. I. Cirac, Phys. Rev. A , 2000, 62(6): 062314
doi: 10.1103/PhysRevA.62.062314
5 A. Miyake, Phys. Rev. A , 2003, 67(1): 012108
doi: 10.1103/PhysRevA.67.012108
6 G. Vidal and R. Tarrach, Phys. Rev. A , 1999, 59(1): 141
doi: 10.1103/PhysRevA.59.141
7 T. C. Wei and P. M. Goldbart, Phys. Rev. A , 2003, 68(4): 042307
doi: 10.1103/PhysRevA.68.042307
8 T. C. Wei, M. Ericsson, P. M. Goldbart, and W. J. Munro, Quant. Inform. Comp. , 2004, 4: 252
9 M. Hayashi, D. Markham, M. Murao, M. Owari, and S. Virmani, Phys. Rev. Lett. , 2006, 96(4): 040501
doi: 10.1103/PhysRevLett.96.040501
10 T. C. Wei, Phys. Rev. A , 2008, 78(1): 012327
doi: 10.1103/PhysRevA.78.012327
11 M. Hayashi, D. Markham, M. Murao, M. Owari, and S. Virmani, Phys. Rev. A , 2008, 77(1): 012104
doi: 10.1103/PhysRevA.77.012104
12 D. Markham, A.Miyake, and S. Virmani, New J. Phys. , 2007, 9(6): 194
doi: 10.1088/1367-2630/9/6/194
13 M. Hein, W. Dür, J. Eisert, R. Raussendorf, M. Van den Nest, and H. J. Briegel, in: G. Casati, D. L. Shepelyansky, P. Zoller, and G. Benenti(Eds.), Quantum Computers, Algorithms and Chaos, 162, Amsterdam: IOS Press, 2006
14 O. Gühne, B. Jungnitsch, T. Moroder, and Y. S. Weinstein, Phys. Rev. A , 2011, 84(5): 052319
doi: 10.1103/PhysRevA.84.052319
15 B. Jungnitsch, T. Moroder, and O. Gühne, Phys. Rev. A , 2011, 84(3): 03231
doi: 10.1103/PhysRevA.84.032310
16 X. Y. Chen and L. Z. Jiang, Phys. Rev. A , 2011, 83(5): 052316
doi: 10.1103/PhysRevA.83.052316
17 M. Hein, J. Eisert, and H. J. Briegel, Phys. Rev. A , 2004, 69(6): 062311
doi: 10.1103/PhysRevA.69.062311
18 D. Schlingemann and R. F. Werner, Phys. Rev. A , 2002, 65(1): 012308
doi: 10.1103/PhysRevA.65.012308
19 R. Raussendorf and H. J. Briegel, Phys. Rev. Lett. , 2001, 86(22): 5188
doi: 10.1103/PhysRevLett.86.5188
20 P. Walther, K. J. Resch, T. Rudolph, E. Schenck, H. Weinfurter, V. Vedral, M. Aspelmeyer, and A. Zeilinger, Nature , 2005, 434(7030): 169
doi: 10.1038/nature03347
21 C. Y. Lu, X. Q. Zhou, O. Gühne, W. B. Gao, J. Zhang, Z. S. Yuan, A. Goebel, T. Yang, and J. W. Pan, Nat. Phys. , 2007, 3(2): 91
doi: 10.1038/nphys507
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed