Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2013, Vol. 8 Issue (2): 189-198   https://doi.org/10.1007/s11467-013-0279-y
  REVIEW ARTICLE 本期目录
A review of direct numerical simulations of astrophysical detonations and their implications
A review of direct numerical simulations of astrophysical detonations and their implications
Suzanne T. Parete-Koon1(), Christopher R. Smith2(), Thomas L. Papatheodore2(), O. E. Bronson Messer1,2()
1. National Center for Computational Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6354, USA; 2. Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996-1200, USA
 全文: PDF(306 KB)   HTML
Abstract

Multi-dimensional direct numerical simulations (DNS) of astrophysical detonations in degenerate matter have revealed that the nuclear burning is typically characterized by cellular structure caused by transverse instabilities in the detonation front. Type Ia supernova modelers often use onedimensional DNS of detonations as inputs or constraints for their whole star simulations.While these one-dimensional studies are useful tools, the true nature of the detonation is multi-dimensional. The multi-dimensional structure of the burning influences the speed, stability, and the composition of the detonation and its burning products, and therefore, could have an impact on the spectra of Type Ia supernovae. Considerable effort has been expended modeling Type Ia supernovae at densities above 1×107 g·cm-3 where the complexities of turbulent burning dominate the flame propagation. However, most full star models turn the nuclear burning schemes off when the density falls below 1×107 g·cm-3 and distributed burning begins. The deflagration to detonation transition (DDT) is believed to occur at just these densities and consequently they are the densities important for studying the properties of the subsequent detonation. This work will review the status of DNS studies of detonations and their possible implications for Type Ia supernova models. It will cover the development of Detonation theory from the first simple Chapman–Jouguet (CJ) detonation models to the current models based on the time-dependent, compressible, reactive flow Euler equations of fluid dynamics.

Key wordssupernova    detonations    direct numerical simulations
收稿日期: 2012-11-16      出版日期: 2013-04-01
Corresponding Author(s): Parete-Koon Suzanne T.,Email:suzanne@phy.ornl.gov; Smith Christopher R.,Email:csmith55@utk.edu; Papatheodore Thomas L.,Email:tpapathe@utk.edu; Bronson Messer O. E.,Email:bronson@ornl.gov   
 引用本文:   
. A review of direct numerical simulations of astrophysical detonations and their implications[J]. Frontiers of Physics, 2013, 8(2): 189-198.
Suzanne T. Parete-Koon, Christopher R. Smith, Thomas L. Papatheodore, O. E. Bronson Messer. A review of direct numerical simulations of astrophysical detonations and their implications. Front. Phys. , 2013, 8(2): 189-198.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-013-0279-y
https://academic.hep.com.cn/fop/CN/Y2013/V8/I2/189
1 W. Arnett, Astrophysics and Space Sciences , 1969, 5: 180
doi: 10.1007/BF00650291
2 S. Woosley and T. Weaver, Ann. Rev. Astron. Astrophys. , 1986, 24: 205
doi: 10.1146/annurev.aa.24.090186.001225
3 A. Filippenko, Ann. Rev. Astron. Astrophys. , 1997, 35: 309
doi: 10.1146/annurev.astro.35.1.309
4 D. Kasen, F. R?pke, and S. Woosley, Nature , 2009, 460: 869
doi: 10.1038/nature08256
5 E. S. Oran, V. N. Gamezo, and D. A. Kessler, Tech. Rep. RL/MR/6400–11-9332, Naval Research Laboratory , 2011
6 A. Y. Poludnenko, T. A. Gardiner, and E. S. Oran, Phys. Rev. Lett. , 2011, 107(5): 054501
doi: 10.1103/PhysRevLett.107.054501
7 F. Timmes and S. Woosley, Astrophys. J. , 1992, 396: 649
doi: 10.1086/171746
8 A. Calder, D. Townsley, I. Seitenzahl, F. Peng, O. Messer, N. Vladimirova, E. Brown, J. Truran, and D. Lamb, Astrophys. J. , 2007, 656: 313
doi: 10.1086/510709
9 D. Chapman, Philosophical Magazine , 1899, 47: 90
10 J. Jouguet, J. Math. Pure Appl. , 1905, 1: 347
11 B. Fryxell, E. A. Muller, and D. Arnett, Max Plank Institute for Astrophysics, Pre-print , 1989: 449
12 W. Fickett and W. Davis, Detonation: Theory and Experiment, Courier Dover , 1979
13 Y. Zeldovitch, Zh. Eksp. Teor. Fiz. , 1940, 10: 524
14 J. von Neumann, OSRD Reports , 1942: 549: 1
15 W. D?ring, Annalen der Physik , 1943: 435
16 F. X. Timmes and F. D. Swesty, Astrophys. J. Suppl. , 2000, 126: 501
doi: 10.1086/313304
17 L. D. Landau and E. M. Lifhshitz, Fluid Mechanics, Pergamon Press , 1959
18 D. Arnett, Supernovae and Nucleosynthesis: An Investigation of the History of Matter, from the Big Bang to the Present , Princeton: Princeton University Press, 1996
19 B. Fryxell, K. Olsen, P. Ricker, F. Timmes, M. Zingale, D. Lamb, P. MacNeice, R. Rosner, J. Truran, and H. Tufo, Astrophys. J. Suppl. , 2000, 131: 273
doi: 10.1086/317361
20 E. S. Oran and J. P. Boris, Numerical Simulation of Reactive Flow , Cambridge: Cambridge University Press, 1987
21 J. P. Boris, A. M. Landsberg, E. S. Oran, and J. H. Gardner, LCPFCT-A Flux-Corrected Transport Algorithm for Solving Generalized Continuity Equations, Tech. Rep., Naval Research Lab , 1993
22 P. Colella and P. Woodward, J. Comput. Phys. , 1984, 54: 174
doi: 10.1016/0021-9991(84)90143-8
23 G. Sharpe, Mon. Not. R. Astron. Soc. , 1999, 310: 1039
doi: 10.1046/j.1365-8711.1999.03023.x
24 W. Hix, A. M. Khokhlov, J. C. Wheeler, and F. Thielemann, Astrophys. J. , 1998, 503: 332
doi: 10.1086/305968
25 F. X. Timmes, R. D. Hoffman, and S. E. Woosley, Astrophys. J. Suppl. , 2000a, 129: 377
doi: 10.1086/313407
26 W. R. Hix, S. T. Parete-Koon, C. Freiburghaus, and F.-K. Thielemann, Astrophys. J. , 2007, 667: 476
doi: 10.1086/520672
27 M. W. Guidry, J. Comput. Phys. , 1012, 232: 5266
28 S. Godunov, Matematicheskii Sbornik , 1959, 47: 165
29 C. Arnold, Ph.D. thesis, University of Michigan , 1985
30 P. Lax and B. Wendroff, Communications on Pure and Applied Mathematics , 1960, 13: 217
doi: 10.1002/cpa.3160130205
31 P. Lax and B. Wendroff, Communications on Pure and Applied Mathematics , 1964, 17: 381
doi: 10.1002/cpa.3160170311
32 R. A. Gentry, R. E. Martin, and B. J. Daley, J. Comput. Phys. , 1966, 1: 87
doi: 10.1016/0021-9991(66)90014-3
33 F. Thielemann, 1985 (private communication)
34 Y. N. Denisav and Y. K. Troshin, Dokl. Akad. Nauk SSSR (Phys.-Chem. Sec.) , 1959, 125: 110
35 B. V. Voitsekhovsky, V. V. Mitrofanov, and M. E. Topchian, Izd. Akad. Nauk SSSR , 1963
36 I. Dominguez and A. Khokhlov, Astrophys. J. , 2011, 730: 87
doi: 10.1088/0004-637X/730/2/87
37 F. Timmes, R. Hoffman, and S. Woosley, Astrophys. J. , 2000b, 129: 377
doi: 10.1086/313407
38 J. E. Shepherd, in: Proceedings of the Combustion Institute , 2009
39 D. Stewart and A. Kasimov, Journal of Propulsion and Power , 2006, 22: 1230
doi: 10.2514/1.21586
40 A. Khokhlov, Mon. Not. R. Astron. Soc. , 1989, 239: 785
41 J. H. Lee, Annual Review of Fluid Mechanics , 1984, 16: 311
doi: 10.1146/annurev.fl.16.010184.001523
42 A. M. Khokhlov, Astrophys. J. , 1993, 419: 200
doi: 10.1086/173475
43 J. Boisseau, J. Wheeler, E. Oran, and A. Khokhlov, Astrophys. J. , 1996, 471: L99
doi: 10.1086/310338
44 V. N. Gamezo, J. Wheeler, A. Khokhlov, and E. Oran, Astrophys. J. , 1999, 512: 827
doi: 10.1086/306784
45 A. C. Calder, B. C. Curtis, L. J. Dursi, B. Fryxell, G. Henry, P. MacNeice, K. Olson, P. Ricker, R. Rosner, F. X. Timmes, , in: Super Computing Gordon Bell Prize Paper , 2000
46 D. N. Williams, L. Bauwens, and E. S. Oran, Symposium on Combustion and Flame, and Explosion Phenomena , 1996, 26: 2991
47 S. Parete-Koon, C. Smith, M. Guidry, R. Hix, and O. Messer, J. Phys. , 2012 (in press)
48 A. Maier and J. Niemeyer, Astron. Astrophys. , 2006, 451: 207
doi: 10.1051/0004-6361:20054094
49 C. A. Meakin, I. Sietenzahl, D. Townsley, G. C. J. IV, J. Truran, and D. Lamb, Astrophys. J. , 2009, 693: 1188
doi: 10.1088/0004-637X/693/2/1188
50 A. M. Khokhlov, Astrophys. J. , 1995, 449: 695
doi: 10.1086/176091
51 M. Zingale, S. Woosley, C. A. Rendleman, M. Day, and J. B. Bell, Astrophys. J. , 2005, 632: 1021
doi: 10.1086/433164
52 A. P. Jackson, A. C. Calder, D. M. Townsley, D. A. Chamulak, E. F. Brown, and F. X. Timmes, Astrophys. J. , 2010, 720: 99
doi: 10.1088/0004-637X/720/1/99
53 D. M. Townsley, A. P. Jackson, A. C. Calder, D. A. Chamulak, E. F. Brown, and F. X. Timmes, Astrophys. J. , 2009, 701: 1582, 1604
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed