A review of direct numerical simulations of astrophysical detonations and their implications
A review of direct numerical simulations of astrophysical detonations and their implications
Suzanne T. Parete-Koon1(), Christopher R. Smith2(), Thomas L. Papatheodore2(), O. E. Bronson Messer1,2()
1. National Center for Computational Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6354, USA; 2. Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996-1200, USA
Multi-dimensional direct numerical simulations (DNS) of astrophysical detonations in degenerate matter have revealed that the nuclear burning is typically characterized by cellular structure caused by transverse instabilities in the detonation front. Type Ia supernova modelers often use onedimensional DNS of detonations as inputs or constraints for their whole star simulations.While these one-dimensional studies are useful tools, the true nature of the detonation is multi-dimensional. The multi-dimensional structure of the burning influences the speed, stability, and the composition of the detonation and its burning products, and therefore, could have an impact on the spectra of Type Ia supernovae. Considerable effort has been expended modeling Type Ia supernovae at densities above 1×107 g·cm-3 where the complexities of turbulent burning dominate the flame propagation. However, most full star models turn the nuclear burning schemes off when the density falls below 1×107 g·cm-3 and distributed burning begins. The deflagration to detonation transition (DDT) is believed to occur at just these densities and consequently they are the densities important for studying the properties of the subsequent detonation. This work will review the status of DNS studies of detonations and their possible implications for Type Ia supernova models. It will cover the development of Detonation theory from the first simple Chapman–Jouguet (CJ) detonation models to the current models based on the time-dependent, compressible, reactive flow Euler equations of fluid dynamics.
Corresponding Author(s):
Parete-Koon Suzanne T.,Email:suzanne@phy.ornl.gov; Smith Christopher R.,Email:csmith55@utk.edu; Papatheodore Thomas L.,Email:tpapathe@utk.edu; Bronson Messer O. E.,Email:bronson@ornl.gov
引用本文:
. A review of direct numerical simulations of astrophysical detonations and their implications[J]. Frontiers of Physics, 2013, 8(2): 189-198.
Suzanne T. Parete-Koon, Christopher R. Smith, Thomas L. Papatheodore, O. E. Bronson Messer. A review of direct numerical simulations of astrophysical detonations and their implications. Front. Phys. , 2013, 8(2): 189-198.
D. Kasen, F. R?pke, and S. Woosley, Nature , 2009, 460: 869 doi: 10.1038/nature08256
5
E. S. Oran, V. N. Gamezo, and D. A. Kessler, Tech. Rep. RL/MR/6400–11-9332, Naval Research Laboratory , 2011
6
A. Y. Poludnenko, T. A. Gardiner, and E. S. Oran, Phys. Rev. Lett. , 2011, 107(5): 054501 doi: 10.1103/PhysRevLett.107.054501
7
F. Timmes and S. Woosley, Astrophys. J. , 1992, 396: 649 doi: 10.1086/171746
8
A. Calder, D. Townsley, I. Seitenzahl, F. Peng, O. Messer, N. Vladimirova, E. Brown, J. Truran, and D. Lamb, Astrophys. J. , 2007, 656: 313 doi: 10.1086/510709
9
D. Chapman, Philosophical Magazine , 1899, 47: 90
10
J. Jouguet, J. Math. Pure Appl. , 1905, 1: 347
11
B. Fryxell, E. A. Muller, and D. Arnett, Max Plank Institute for Astrophysics, Pre-print , 1989: 449
12
W. Fickett and W. Davis, Detonation: Theory and Experiment, Courier Dover , 1979
13
Y. Zeldovitch, Zh. Eksp. Teor. Fiz. , 1940, 10: 524
14
J. von Neumann, OSRD Reports , 1942: 549: 1
15
W. D?ring, Annalen der Physik , 1943: 435
16
F. X. Timmes and F. D. Swesty, Astrophys. J. Suppl. , 2000, 126: 501 doi: 10.1086/313304
17
L. D. Landau and E. M. Lifhshitz, Fluid Mechanics, Pergamon Press , 1959
18
D. Arnett, Supernovae and Nucleosynthesis: An Investigation of the History of Matter, from the Big Bang to the Present , Princeton: Princeton University Press, 1996
19
B. Fryxell, K. Olsen, P. Ricker, F. Timmes, M. Zingale, D. Lamb, P. MacNeice, R. Rosner, J. Truran, and H. Tufo, Astrophys. J. Suppl. , 2000, 131: 273 doi: 10.1086/317361
20
E. S. Oran and J. P. Boris, Numerical Simulation of Reactive Flow , Cambridge: Cambridge University Press, 1987
21
J. P. Boris, A. M. Landsberg, E. S. Oran, and J. H. Gardner, LCPFCT-A Flux-Corrected Transport Algorithm for Solving Generalized Continuity Equations, Tech. Rep., Naval Research Lab , 1993
A. M. Khokhlov, Astrophys. J. , 1993, 419: 200 doi: 10.1086/173475
43
J. Boisseau, J. Wheeler, E. Oran, and A. Khokhlov, Astrophys. J. , 1996, 471: L99 doi: 10.1086/310338
44
V. N. Gamezo, J. Wheeler, A. Khokhlov, and E. Oran, Astrophys. J. , 1999, 512: 827 doi: 10.1086/306784
45
A. C. Calder, B. C. Curtis, L. J. Dursi, B. Fryxell, G. Henry, P. MacNeice, K. Olson, P. Ricker, R. Rosner, F. X. Timmes, , in: Super Computing Gordon Bell Prize Paper , 2000
46
D. N. Williams, L. Bauwens, and E. S. Oran, Symposium on Combustion and Flame, and Explosion Phenomena , 1996, 26: 2991
47
S. Parete-Koon, C. Smith, M. Guidry, R. Hix, and O. Messer, J. Phys. , 2012 (in press)
C. A. Meakin, I. Sietenzahl, D. Townsley, G. C. J. IV, J. Truran, and D. Lamb, Astrophys. J. , 2009, 693: 1188 doi: 10.1088/0004-637X/693/2/1188
50
A. M. Khokhlov, Astrophys. J. , 1995, 449: 695 doi: 10.1086/176091
51
M. Zingale, S. Woosley, C. A. Rendleman, M. Day, and J. B. Bell, Astrophys. J. , 2005, 632: 1021 doi: 10.1086/433164
52
A. P. Jackson, A. C. Calder, D. M. Townsley, D. A. Chamulak, E. F. Brown, and F. X. Timmes, Astrophys. J. , 2010, 720: 99 doi: 10.1088/0004-637X/720/1/99
53
D. M. Townsley, A. P. Jackson, A. C. Calder, D. A. Chamulak, E. F. Brown, and F. X. Timmes, Astrophys. J. , 2009, 701: 1582, 1604