This article reviews the Higgs searches at the Tevatron, as presented over the summer of 2012; both standard model (SM) and beyond the standard model (BSM) results are discussed as detailed (arXiv: 1207.0449; Phys. Rev. Lett., 2012, 109: 071804; Phys. Rev. D, 2012, 85: 032005).We discuss the combination of searches by the CDF and D0 Collaborations for the standard model Higgs boson in the mass range 100-200 GeV/c2 produced in the the gg→H, WH, ZH, tt ˉH, and vector boson fusion production modes, and decaying in the H→bb ˉ, H→W + W-, H→ZZ, H→τ+τ-, and H→γγ modes. The data, collected at the Fermilab Tevatron collider inpp ˉ collisions at s = 1.96 TeV, correspond to integrated luminosities of up to 10 fb-1. In the absence of signal, we expect to exclude the regions 100<mH<120 GeV/c2 and 139<mH<184 GeV/c2. We exclude, at the 95% C.L., two regions: 100<mH<103 GeV/c2, and 147<mH<180 GeV/c2. We observe a signi.cant excess of events in the mass range between 115 and 140 GeV/c2. The local signi.cance corresponds to 3.0 standard deviations at mH =120 GeV/c2; the global signi.cance (incorporating the lookelsewhere e.ect) for such an excess anywhere in the full mass range investigated is approximately 2.5 standard deviations. Furthermore, we separately combine searches for H→bb ˉ, H→W + W-and H→γγ. We find that the excess is concentrated in the H→bbˉ channel, appearing in the searches over a broad range of mH; the maximum local significance of 3.3 standard deviations corresponds to a global significance of approximately 3.1 standard deviations. The observed signal strengths in all channels are consistent with the expectation for a standard model Higgs boson at mH = 125 GeV/c2. The production of neutral Higgs bosons in association with b-quarks can be significantly enhanced in various beyond the standard model scenarios, including Supersymmetry. The recent combination of such searches from the two collaborations is discussed.
Corresponding Author(s):
Davies, on behalf of the CDF and D0 Collaborations Gavin J.,Email:g.j.davies@imperial.ac.uk
引用本文:
. Higgs boson searches at the Tevatron[J]. Frontiers of Physics, 2013, 8(3): 270-284.
Gavin J. Davies, on behalf of the CDF and D0 Collaborations. Higgs boson searches at the Tevatron. Front. Phys. , 2013, 8(3): 270-284.
T. Aaltonen, . [CDF and D0 Collaborations], arXiv: 1204.0042 , 2012
12
T. Aaltonen, . [CDF and D0 Collaborations], Phys. Rev. D , 2012, 86: 092003 doi: 10.1103/PhysRevD.86.092003
13
The ALEPH, CDF, D0, DELPHI, L3, OPAL, and SLD Collaborations, the LEP ElectroweakWorking Group, the Tevatron Electroweak Working Group, and the SLD Electroweak and Heavy Flavor Working Groups, arXiv: 1012.2367v2 , 2011
14
The ALEPH, DELPHI, L3 and OPAL Collaborations, and the LEP Working Group for Higgs Boson Searches, Phys. Lett. B , 2003, 565: 61
CDF and D0 use cylindrical coordinate systems with origins in the centers of the detectors, where θ and ? are the polar and azimuthal angles, respectively, and pseudora pidity is η= .ln tan(θ/2). The missing ET (E?T) is defined by E?T = -ΣiETin^i, i = calorimeter tower number, where n^i is a unit vector perpendicular to the beam axis and pointing at the ith calorimeter tower. E?T is corrected for high-energy muons and also jet energy corrections.We define E?T = |E?T|.The transverse momentum pTis defined to be psin θ.
20
T. Sj?strand, S. Mrenna, and P. Skands, J. High Energy Phys. , 2006, 05: 026. We use pythia version 6.216 to generate the Higgs boson signals.
21
H. L. Lai, J. Huston, S. Kuhlmann, J. Morfin, F. Olness, J. F. Owens, J. Pumplin, and W. K. Tung, Eur. Phys. J. C , 2000, 12(3): 375 doi: 10.1007/s100529900196
22
J. Pumplin, , J. High Energy Phys. , 2002, 07: 012
23
C. Anastasiou, R. Boughezal, and F. Petriello, J. High Energy Phys. , 2009, 04: 003
J. Baglio and A. Djouadi, J. High Energy Phys. , 2010, 10: 064
26
O. Brein, R. V. Harlander, M. Weisemann, and T. Zirke, Eur. Phys. J. C , 2012, 72(2): 1868 doi: 10.1140/epjc/s10052-012-1868-6
27
P. Bolzoni, F. Maltoni, S. O. Moch, and M. Zaro, Phys. Rev. Lett. , 2010, 105(1): 011801 doi: 10.1103/PhysRevLett.105.011801
28
M. Ciccolini, A. Denner, and S. Dittmaier, Phys. Rev. Lett. , 2007, 99(16): 161803 doi: 10.1103/PhysRevLett.99.161803
29
M. Ciccolini, A. Denner, and S. Dittmaier, Phys. Rev. D , 2008, 77(1): 013002 doi: 10.1103/PhysRevD.77.013002
30
A. D. Martin, W. J. Stirling, R. S. Thorne, and G. Watt, Eur. Phys. J. C , 2009, 63(2): 189 doi: 10.1140/epjc/s10052-009-1072-5
31
S. Alekhin, . [PDF4LHC Working Group], arXiv: 1101.0536 , 2011
32
M. Botje, . [PDF4LHC Working Group], arXiv: 1101.0538 , 2011
33
C. Anastasiou, G. Dissertori, M. Grazzini, F. St?ckli, and B. R. Webber, J. High Energy Phys. , 2009, 08: 099
34
S. Dittmaier, . [LHC Higgs Cross Section Working Group], arXiv: 1201.3084 , 2012
35
A. Djouadi, J. Kalinowski, and M. Spira, Comput. Phys. Commun. , 1998, 108(1): 56 doi: 10.1016/S0010-4655(97)00123-9
36
A. Bredenstein, A. Denner, S. Dittmaier, and M. M. Weber, Phys. Rev. D , 2006, 74(1): 013004 doi: 10.1103/PhysRevD.74.013004
37
A. Bredenstein, A. Denner, S. Dittmaier, A. Mück, and M. M. Weber, J. High Energy Phys. , 2007, 02: 080
38
G. Bozzi, S. Catani, D. de Florian, and M. Grazzini, Phys. Lett. B , 2003, 564(1-2): 65 doi: 10.1016/S0370-2693(03)00656-7
39
G. Bozzi, S. Catani, D. de Florian, and M. Grazzini, Nucl. Phys. B , 2006, 737(1-2): 73 doi: 10.1016/j.nuclphysb.2005.12.022
40
M. Mangano, M. Moretti, F. Piccinini, R. Pittau, and A. Polosa, J. High Energy Phys. , 2003, 07: 001
41
S. Frixione and B. R. Webber, J. High Energy Phys. , 2002, 06: 029
42
G. Corcella, I. G. Knowles, G. Marchesini, S. Moretti, K. Odagiri, P. Richardson, M. H. Seymour, and B. R. Webber, J. High Energy Phys. , 2001, 01: 010
43
A. Pukhov, E. Boos, M. Dubinin, V. Edneral, V. Ilyin, D. Kovalenko, A. Kryukov, V. Savrin, S. Shichanin, and A. Semenov, arXiv: hep-ph/9908288 , 1999
44
E. Boos, V. Bunichev, M. Dubinin, L. Dudko, V. Ilyin, A. Kryukov, V. Edneral, V. Savrin, A. Semenov, and A. Sherstnev, Nucl. Instrum. Methods Phys. Res.: Sect. A , 2004, 534: 250 doi: 10.1016/j.nima.2004.07.096
45
E. E. Boos, V. E. Bunichev, L. V. Dudko, V. I. Savrin, and A. V. Sherstnev, Phys. At. Nucl. , 2006, 69(8): 1317 doi: 10.1134/S1063778806080084
R. Hamberg, W. L. van Neerven, and T. Matsuura, Nucl. Phys. B , 1991, 359(2-3): 343; Erratum, Nucl. Phys. B , 2002, 644: 403 doi: 10.1016/S0550-3213(02)00814-3
50
A heavy-.avor jet is a reconstructed cluster of calorimeter energies associated with particles produced in the hadronization and decay of a bottom or charm quark.
51
A B-tagged jet is one identified to have originated from the decay of a heavy .avor quark.
V. M. Abazov, . [D0 Collaboration], Nucl. Instrum. Methods Phys. Res.: Sect. A , 2006, 565: 463 doi: 10.1016/j.nima.2006.05.248
55
M. Abolins, ., Nucl. Instrum. Methods Phys. Res.: Sect. A , 2008, 584: 75 doi: 10.1016/j.nima.2007.10.014
56
R. Angstadt, ., Nucl. Instrum. Methods Phys. Res.: Sect. A , 2010, 622: 298 doi: 10.1016/j.nima.2010.04.148
57
For a recent review, see: P. C. Bhat, Ann. Rev. Nucl. Part. Sci. , 2011, 61(1): 281. The specific details of each analysis’s MVA are described in the respective references . doi: 10.1146/annurev.nucl.012809.104427
58
V. M. Abazov, , Nucl. Instrum. Methods Phys. Res.: Sect. A , 2010, 620: 490 doi: 10.1016/j.nima.2010.03.118
59
J. Freeman, . Nucl. Instrum. Methods Phys. Res.: Sect. A , 2013, 697: 64 doi: 10.1016/j.nima.2012.09.021