Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2014, Vol. 9 Issue (3): 351-369   https://doi.org/10.1007/s11467-013-0308-x
  Special Issue: Nanoscience and Emerging Nanotechnologies (Edited by C. M. Lieber) 本期目录
Applications of carbon nanotubes in high performance lithium ion batteries
Yang Wu,Jiaping Wang(),Kaili Jiang,Shoushan Fan()
Department of Physics and Tsinghua-Foxconn Nanotechnology Research Center, Tsinghua University, Beijing 100084, China
 全文: PDF(1079 KB)  
Abstract

The development of lithium ion batteries (LIBs) relies on the improvement in the performance of electrode materials with higher capacity, higher rate capability, and longer cycle life. In this review article, the recent advances in carbon nanotube (CNT) anodes, CNT-based composite electrodes, and CNT current collectors for high performance LIBs are concerned. CNT has received considerable attentions as a candidate material for the LIB applications. In addition to a possible choice for anode, CNT has been recognized as a solution in improving the performance of the state-of-the-art electrode materials. The CNT-based composite electrodes can be fabricated by mechanical or chemical approaches. Owing to the large aspect ratio and the high electrical conductivity, CNTs at very low loading can lead to an efficient conductive network. The excellent mechanical strength suggests the great potential in forming a structure scaffold to accommodate nano-sized electrode materials. Accordingly, the incorporation of CNTs will enhance the conductivity of the composite electrodes, mitigate the agglomeration problem, decrease the dependence on inactive binders, and improve the electrochemical properties of both anode and cathode materials remarkably. Freestanding CNT network can be used as lightweight current collectors to increase the overall energy density of LIBs. Finally, research perspectives for exploiting CNTs in high-performance LIBs are discussed.

Key wordslithium ion battery    carbon nanotube    composite    conductive additive    structural scaffold
收稿日期: 2013-01-07      出版日期: 2014-06-26
Corresponding Author(s): Jiaping Wang   
 引用本文:   
. [J]. Frontiers of Physics, 2014, 9(3): 351-369.
Yang Wu, Jiaping Wang, Kaili Jiang, Shoushan Fan. Applications of carbon nanotubes in high performance lithium ion batteries. Front. Phys. , 2014, 9(3): 351-369.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-013-0308-x
https://academic.hep.com.cn/fop/CN/Y2014/V9/I3/351
1 M. Armand and J. M. Tarascon, Building better batteries, Nature, 2008, 451(7179): 652
doi: 10.1038/451652a
2 B. Dunn, H. Kamath, and J. M. Tarascon, Electrical energy storage for the grid: A battery of choices, Science, 2011, 334(6058): 928
doi: 10.1126/science.1212741
3 J. M. Tarascon and M. Armand, Issues and challenges facing rechargeable lithium batteries, Nature, 2001, 414(6861): 359
doi: 10.1038/35104644
4 M. S. Whittingham, Electrical energy storage and intercalation chemistry, Science, 1976, 192(4244): 1126
doi: 10.1126/science.192.4244.1126
5 M. S. Whittingham, Lithium batteries and cathode materials, Chem. Rev., 2004, 104(10): 4271
doi: 10.1021/cr020731c
6 K. Ozawa, Lithium-ion rechargeable batteries with LiCoO2 and carbon electrodes: The LiCoO2/C system, Solid State Ion., 1994, 69(3-4): 212
doi: 10.1016/0167-2738(94)90411-1
7 M. Winter, J. O. Besenhard, M. E. Spahr, and P. Novak, Insertion electrode materials for rechargeable lithium batteries, Adv. Mater., 1998, 10(10): 725
doi: 10.1002/(SICI)1521-4095(199807)10:10<725::AID-ADMA725>3.0.CO;2-Z
8 H. Dai, Carbon nanotubes: opportunities and challenges, Surf. Sci., 2002, 500(1-3): 218
doi: 10.1016/S0039-6028(01)01558-8
9 T. W. Ebbesen, H. J. Lezec, H. Hiura, J. W. Bennett, H. F. Ghaemi, and T. Thio, Electrical conductivity of individual carbon nanotubes, Nature, 1996, 382(6586): 54
doi: 10.1038/382054a0
10 M. F. Yu, O. Lourie, M. J. Dyer, K. Moloni, T. F. Kelly, and R. S. Ruoff, Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load, Science, 2000, 287(5453): 637
doi: 10.1126/science.287.5453.637
11 M. M. J. Treacy, T. W. Ebbesen, and J. M. Gibson, Exceptionally high Young’s modulus observed for individual carbon nanotubes, Nature, 1996, 381(6584): 678
doi: 10.1038/381678a0
12 R. Fong, U. Sacken, and J. R. Dahn, Studies of lithium intercalation into carbons using nonaqueous electrochemical cells, J. Electrochem. Soc., 1990, 137(7): 2009
doi: 10.1149/1.2086855
13 Z. X. Shu, R. S. McMillan, and J. J. Murray, Electrochemical intercalation of lithium into graphite, J. Electrochem. Soc., 1993, 140(4): 922
doi: 10.1149/1.2056228
14 M. S. Dresselhaus and G. Dresselhaus, Intercalation compounds of graphite, Adv. Phys., 1981, 30(2): 139
doi: 10.1080/00018738100101367
15 N. A. Kaskhedikar and J. Maier, Lithium storage in carbon nanostructures, Adv. Mater., 2009, 21(25-26): 2664
doi: 10.1002/adma.200901079
16 M. Armand and P. Touzain, Graphite intercalation compounds as cathode materials, Mater. Sci. Eng., 1977, 31(0): 319
doi: 10.1016/0025-5416(77)90052-0
17 L. Pauling, The structure and properties of graphite and boron nitride, Proc. Natl. Acad. Sci. USA, 1966, 56(6): 1646
doi: 10.1073/pnas.56.6.1646
18 J. R. Dahn, Phase diagram of LixC6, Phys. Rev. B, 1991, 44(17): 9170
doi: 10.1103/PhysRevB.44.9170
19 N. Kambe, M. S. Dresselhaus, G. Dresselhaus, S. Basu, A. R. McGhie, and J. E. Fischer, Intercalate ordering in first stage graphite-lithium, Mater. Sci. Eng., 1979, 40(1): 1
doi: 10.1016/0025-5416(79)90002-8
20 T. Ohzuku, Y. Iwakoshi, and K. Sawai, Formation of lithium-graphite intercalation compounds in nonaqueous electrolytes and their application as a negative electrode for a lithium ion (shuttlecock) cell, J. Electrochem. Soc., 1993, 140(9): 2490
doi: 10.1149/1.2220849
21 K. Persson, Y. Hinuma, Y. S. Meng, A. Van der Ven, and G. Ceder, Thermodynamic and kinetic properties of the Ligraphite system from first-principles calculations, Phys. Rev. B, 2010, 82(12): 125416
doi: 10.1103/PhysRevB.82.125416
22 R. C. Boehm and A. Banerjee, Theoretical study of lithium intercalated graphite, J. Chem. Phys., 1992, 96(2): 1150
doi: 10.1063/1.462202
23 V. A. Nalimova, D. Guerard, M. Lelaurain, and O. V. Fateev, X-ray investigation of highly saturated Ligraphite intercalation compound, Carbon, 1995, 33(2): 177
doi: 10.1016/0008-6223(94)00123-H
24 V. V. Avdeev, V. A. Nalimova, and K. N. Semenenko, The alkali metals in graphite matrixes-new aspects of metallic state chemistry, High Press. Res., 1990, 6(1): 11
doi: 10.1080/08957959008203195
25 Y. Nagata, Y. Ohnishi, H. Hatori, M. Shiraishi, and T. Kajiyama, Carbonization of crystalline polyimide particles, Kobunshi Ronbunshu, 1996, 53(5): 302
doi: 10.1295/koron.53.302
26 A. Yasuda, N. Kawase, F. Banhart, W. Mizutani, T. Shimizu, and H. Tokumoto, Graphitization mechanism during the carbon-nanotube formation based on the in-situ HRTEM observation, J. Phys. Chem. B, 2002, 106(8): 1849
doi: 10.1021/jp012677u
27 R. E. Franklin, Crystallite growth in graphitizing and nongraphitizing carbons, Proc. R. Soc. Lond. A: Math. Phys. Sci., 1951, 209(1097): 196
doi: 10.1098/rspa.1951.0197
28 K. Tatsumi, N. Iwashita, H. Sakaebe, H. Shioyama, S. Higuchi, A. Mabuchi, and H. Fujimoto, The influence of the graphitic structure on the electrochemical characteristics for the anode of secondary lithium batteries, J. Electrochem. Soc., 1995, 142(3): 716
doi: 10.1149/1.2048523
29 N. Takami, A. Satoh, M. Hara, and T. Ohsaki, Structural and kinetic characterization of lithium intercalation into carbon anodes for secondary lithium batteries, J. Electrochem. Soc., 1995, 142(2): 371
doi: 10.1149/1.2044017
30 A. Satoh, N. Takami, and T. Ohsaki, Electrochemical intercalation of lithium into graphitized carbons, Solid State Ion., 1995, 80(3-4): 291
doi: 10.1016/0167-2738(95)00149-Z
31 A. Mabuchi, K. Tokumitsu, H. Fujimoto, and T. Kasuh, Charge-discharge characteristics of the mesocarbon miocrobeads heat-treated at different temperatures, J. Electrochem. Soc., 1995, 142(4): 1041
doi: 10.1149/1.2044128
32 J. R. Dahn, T. Zheng, Y. Liu, and J. S. Xue, Mechanisms for lithium insertion in carbonaceous materials, Science, 1995, 270(5236): 590
doi: 10.1126/science.270.5236.590
33 T. D. Tran, J. H. Feikert, X. Song, and K. Kinoshita, Commercial carbonaceous materials as lithium intercalation anodes, J. Electrochem. Soc., 1995, 142(10): 3297
doi: 10.1149/1.2049977
34 C. Kim, T. Fujino, K. Miyashita, T. Hayashi, M. Endo, and M. S. Dresselhaus, Microstructure and electrochemical properties of boron-doped mesocarbon microbeads, J. Electrochem. Soc., 2000, 147(4): 1257
doi: 10.1149/1.1393346
35 M. K. Song and K. T. No, Substitution effect of carbon with group 13, 14, and 15 elements on lithium intercalation in graphite, J. Electrochem. Soc., 2004, 151(10): A1696
doi: 10.1149/1.1789392
36 T. Zheng, Y. Liu, E. W. Fuller, S. Tseng, U. Sacken, and J. R. Dahn, Lithium insertion in high capacity carbonaceous materials, J. Electrochem. Soc., 1995, 142(8): 2581
doi: 10.1149/1.2050057
37 N. Takami, A. Satoh, T. Ohsaki, and M. Kanda, Lithium insertion and extraction for high-capacity disordered carbons with large hysteresis, Electrochim. Acta, 1997, 42(16): 2537
doi: 10.1016/S0013-4686(96)00446-X
38 S. Iijima, Helical microtubules of graphitic carbon, Nature, 1991, 354(6348): 56
doi: 10.1038/354056a0
39 V. Meunier, J. Kephart, C. Roland, and J. Bernholc, Ab initio investigations of lithium diffusion in carbon nanotube systems, Phys. Rev. Lett., 2002, 88(7): 075506
doi: 10.1103/PhysRevLett.88.075506
40 Z. Zhou, X. P. Gao, J. Yan, D. Y. Song, and M. Morinaga, A first-principles study of lithium absorption in boronor nitrogen-doped single-walled carbon nanotubes, Carbon, 2004, 42(12-13): 2677
doi: 10.1016/j.carbon.2004.06.019
41 C. Garau, A. Frontera, D. Quinonero, A. Costa, P. Ballester, and P. M. Deya, Lithium diffusion in single-walled carbon nanotubes: A theoretical study, Chem. Phys. Lett., 2003, 374(5-6): 548
doi: 10.1016/S0009-2614(03)00748-6
42 T. Kar, J. Pattanayak, and S. Scheiner, Insertion of lithium ions into carbon nanotubes: An ab initio study, J. Phys. Chem. A, 2001, 105(45): 10397
doi: 10.1021/jp011698l
43 G. Maurin, C. Bousquet, F. Henn, P. Bernier, R. Almairac, and B. Simon, Electrochemical intercalation of lithium into multiwall carbon nanotubes, Chem. Phys. Lett., 1999, 312(1): 14
doi: 10.1016/S0009-2614(99)00886-6
44 A. S. Claye, J. E. Fischer, C. B. Huffman, A. G. Rinzler, and R. E. Smalley, Solid-state electrochemistry of the Li single wall carbon nanotube system, J. Electrochem. Soc., 2000, 147(8): 2845
doi: 10.1149/1.1393615
45 B. Gao, C. Bower, J. D. Lorentzen, L. Fleming, A. Kleinhammes, X. P. Tang, L. E. McNeil, Y. Wu, and O. Zhou, Enhanced saturation lithium composition in ball-milled singlewalled carbon nanotubes, Chem. Phys. Lett., 2000, 327(1-2): 69
doi: 10.1016/S0009-2614(00)00851-4
46 G. L. Che, B. B. Lakshmi, E. R. Fisher, and C. R. Martin, Carbon nanotubule membranes for electrochemical energy storage and production, Nature, 1998, 393(6683): 346
doi: 10.1038/30694
47 E. Frackowiak, S. Gautier, H. Gaucher, S. Bonnamy, and F. Beguin, Electrochemical storage of lithium in multiwalled carbon nanotubes, Carbon, 1999, 37(1): 61
doi: 10.1016/S0008-6223(98)00187-0
48 E. Frackowiak and F. Beguin, Electrochemical storage of energy in carbon nanotubes and nanostructured carbons, Carbon, 2002, 40(10): 1775
doi: 10.1016/S0008-6223(02)00045-3
49 B. Gao, A. Kleinhammes, X. P. Tang, C. Bower, L. Fleming, Y. Wu, and O. Zhou, Electrochemical intercalation of single-walled carbon nanotubes with lithium, Chem. Phys. Lett., 1999, 307(3-4): 153
doi: 10.1016/S0009-2614(99)00486-8
50 G. X. Wang, J. H. Ahn, J. Yao, M. Lindsay, H. K. Liu, and S. X. Dou, Preparation and characterization of carbon nanotubes for energy storage, J. Power Sources, 2003, 119-121: 16
doi: 10.1016/S0378-7753(03)00117-4
51 C. Masarapu, V. Subramanian, H. W. Zhu, and B. Q. Wei, Long-cycle electrochemical behavior of multiwall carbon nanotubes synthesized on stainless steel in Li ion batteries, Adv. Funct. Mater., 2009, 19(7): 1008
doi: 10.1002/adfm.200801242
52 S. B. Yang, H. H. Song, X. H. Chen, A. V. Okotrub, and L. G. Bulusheva, Electrochemical performance of arc-produced carbon nanotubes as anode material for lithium-ion batteries, Electrochim. Acta, 2007, 52(16): 5286
doi: 10.1016/j.electacta.2007.02.049
53 K. L. Jiang, Q. Q. Li, and S. S. Fan, Nanotechnology: Spinning continuous carbon nanotube yarns, Nature, 2002, 419(6909): 801
doi: 10.1038/419801a
54 K. L. Jiang, J. P. Wang, Q. Q. Li, L. A. Liu, C. H. Liu, and S. S. Fan, Superaligned carbon nanotube arrays, films, and yarns: A road to applications, Adv. Mater., 2011, 23(9): 1154
doi: 10.1002/adma.201003989
55 H. Zhang, G. P. Cao, and Y. S. Yang, Carbon nanotube arrays and their composites for electrochemicalcapacitors and lithium-ion batteries, Energy Environ. Sci., 2009, 2(9): 932
doi: 10.1039/b906812k
56 S. H. Ng, J. Wang, Z. P. Guo, G. X. Wang, and H. K. Liu, Single wall carbon nanotube paper as anode for lithium-ion battery, Electrochim. Acta, 2005, 51(1): 23
doi: 10.1016/j.electacta.2005.04.045
57 S. Y. Chew, S. H. Ng, J. Z. Wang, P. Novak, F. Krumeich, S. L. Chou, J. Chen, and H. K. Liu, Flexible free-standing carbon nanotube films for model lithium-ion batteries, Carbon, 2009, 47(13): 2976
doi: 10.1016/j.carbon.2009.06.045
58 B. J. Landi, R. A. Dileo, C. M. Schauerman, C. D. Cress, M. J. Ganter, and R. P. Raffaelle, Multi-walled carbon nanotube paper anodes for lithium ion batteries, J. Nanosci. Nanotechnol., 2009, 9(6): 3406
doi: 10.1166/jnn.2009.NS09
59 J. Chen, A. I. Minett, Y. Liu, C. Lynam, P. Sherrell, C. Wang, and G. G. Wallace, Direct growth of flexible carbon nanotube electrodes, Adv. Mater., 2008, 20(3): 566
doi: 10.1002/adma.200701146
60 G. T. Wu, C. S. Wang, X. B. Zhang, H. S. Yang, Z. F. Qi, P. M. He, and W. Z. Li, Structure and lithium insertion properties of carbon nanotubes, J. Electrochem. Soc., 1999, 146(5): 1696
doi: 10.1149/1.1391828
61 J. Zhao, A. Buldum, J. Han, and J. Ping Lu, First-principles study of li-intercalated carbon nanotube ropes, Phys. Rev Lett., 2000, 85(8): 1706
doi: 10.1103/PhysRevLett.85.1706
62 J. Li, C. Wu and L. Guan, Lithium insertion/extraction properties of nanocarbon materials, J. Phys. Chem. C, 2009, 113(42): 18431
doi: 10.1021/jp9061658
63 X. X.Wang, J. N.Wang, H. Chang, and Y. F. Zhang, Preparation of short carbon nanotubes and application as an electrode material in Li-ion batteries, Adv. Funct. Mater., 2007, 17(17): 3613
doi: 10.1002/adfm.200700319
64 D. T. Welna, L. T. Qu, B. E. Taylor, L. M. Dai, and M. F. Durstock, Vertically aligned carbon nanotube electrodes for lithium-ion batteries, J. Power Sources, 2011, 196(3): 1455
doi: 10.1016/j.jpowsour.2010.08.003
65 I. Lahiri, S. W. Oh, J. Y. Hwang, S. Cho, Y. K. Sun, R. Banerjee, and W. Choi, High capacity and excellent stability of lithium ion battery anode using interface-controlled binder-free multiwall carbon nanotubes grown on copper, ACS Nano, 2010, 4(6): 3440
doi: 10.1021/nn100400r
66 I. Mukhopadhyay, N. Hoshino, S. Kawasaki, F. Okino, W. K. Hsu, and H. Touhara, Electrochemical Li insertion in B-doped multiwall carbon nanotubes, J. Electrochem. Soc., 2002, 149(1): A39
doi: 10.1149/1.1426397
67 L. G. Bulusheva, A. V. Okotrub, A. G. Kurenya, H. K. Zhang, H. J. Zhang, X. H. Chen, and H. H. Song, Electrochemical properties of nitrogen-doped carbon nanotube anode in Li-ion batteries, Carbon, 2011, 49(12): 4013
doi: 10.1016/j.carbon.2011.05.043
68 X. L. Li, F. Y. Kang, X. D. Bai, and W. Shen, A novel network composite cathode of LiFePO4/multiwalled carbon nanotubes with high rate capability for lithium ion batteries, Electrochem. Commun., 2007, 9(4): 663
doi: 10.1016/j.elecom.2006.10.050
69 B. Jin, E. M. Jin, K. H. Park, and H. B. Gu, Electrochemical properties of LiFePO4-multiwalled carbon nanotubes composite cathode materials for lithium polymer battery, Electrochem. Commun., 2008, 10(10): 1537
doi: 10.1016/j.elecom.2008.08.001
70 Y. J. Liu, X. H. Li, H. J. Guo, Z. X. Wang, W. J. Peng, Y. Yang, and R. F. Liang, Effect of carbon nanotube on the electrochemical performance of C-LiFePO4/graphite battery, J. Power Sources, 2008, 184(2): 522
doi: 10.1016/j.jpowsour.2008.03.017
71 Y. Feng, The preparation and electrochemical performances of LiFePO4-multiwalled nanotubes composite cathode materials for lithium ion batteries, Mater. Chem. Phys., 2010, 121(1-2): 302
doi: 10.1016/j.matchemphys.2010.01.038
72 T. Muraliganth, A. V. Murugan, and A. Manthiram, Nanoscale networking of LiFePO4 nanorods synthesized by a microwave-solvothermal route with carbon nanotubes for lithium ion batteries, J. Mater. Chem., 2008, 18(46): 5661
doi: 10.1039/b812165f
73 G. P. Wang, Q. T. Zhang, Z. L. Yu, and M. Z. Qu, The effect of different kinds of nano-carbon conductive additives in lithium ion batteries on the resistance and electrochemical behavior of the LiCoO2 composite cathodes, Solid State Ion., 2008, 179(7-8): 263
74 K. Sheem, Y. H. Lee, and H. S. Lim, High-density positive electrodes containing carbon nanotubes for use in Li-ion cells, J. Power Sources, 2006, 158(2): 1425
doi: 10.1016/j.jpowsour.2005.10.077
75 J. H. Park, S. Y. Lee, J. H. Kim, S. Ahn, J. S. Park, and Y. U. Jeong, Effect of conducting additives on the properties of composite cathodes for lithium-ion batteries, J. Solid State Electrochem., 2010, 14(4): 593
doi: 10.1007/s10008-009-0814-5
76 J. H. Lee, G. S. Kim, Y. M. Choi, W. Il Park, J. A. Rogers, and U. Paik, Comparison of multiwalled carbon nanotubes and carbon black as percolative paths in aqueous-based natural graphite negative electrodes with high-rate capability for lithium-ion batteries, J. Power Sources, 2008, 184(1): 308
doi: 10.1016/j.jpowsour.2008.05.090
77 X. L. Li, F. Y. Kang, and W. C. Shen, Multiwalled carbon nanotubes as a conducting additive in a LiNi0.7Co0.3O2cathode for rechargeable lithium batteries, Carbon, 2006, 44(7): 1334
doi: 10.1016/j.carbon.2005.12.017
78 X. L. Li, F. Y. Kang, and W. C. Shen, A comparative investigation on multiwalled carbon nanotubes and carbon black as conducting additive in LiNi0.7Co0.3O2, Electrochem. Solid-State Lett., 2006, 9(3): A126
doi: 10.1149/1.2161442
79 A. Varzi, C. Taubert, M. Wohlfahrt-Mehrens, M. Kreis, and W. Schutz, Study of multi-walled carbon nanotubes for lithium-ion battery electrodes, J. Power Sources, 2011, 196(6): 3303
doi: 10.1016/j.jpowsour.2010.11.101
80 J. Y. Eom, J. W. Park, H. S. Kwon, and S. Rajendran, Electrochemical insertion of lithium into multiwalled carbon nanotube/silicon composites produced by ballmilling, J. Electrochem. Soc., 2006, 153(9): A1678
doi: 10.1149/1.2213528
81 C. Sotowa, G. Origi, M. Takeuchi, Y. Nishimura, K. Takeuchi, I. Y. Jang, Y. J. Kim, T. Hayashi, Y. A. Kim, M. Endo, and M. S. Dresselhaus, The reinforcing effect of combined carbon nanotubes and acetylene blacks on the positive electrode of lithium-ion batteries, ChemSusChem, 2008, 1(11): 911
doi: 10.1002/cssc.200800170
82 X. B. Zhang, K. L. Jiang, C. Teng, P. Liu, L. Zhang, J. Kong, T. H. Zhang, Q. Q. Li, and S. S. Fan, Spinning and processing continuous yarns from 4-inch wafer scale superaligned carbon nanotube arrays, Adv. Mater., 2006, 18(12): 1505
doi: 10.1002/adma.200502528
83 K. Liu, Y. H. Sun, L. Chen, C. Feng, X. F. Feng, K. L. Jiang, Y. G. Zhao, and S. S. Fan, Controlled growth of super-aligned carbon nanotube arrays for spinning continuous unidirectional sheets with tunable physical properties, Nano Lett., 2008, 8(2): 700
doi: 10.1021/nl0723073
84 K. Wang, Y. Wu, S. Luo, X. F. He, J. P. Wang, K. L. Jiang, and S. S. Fan, J. Power Sources, 2012 (submitted)
85 S. Luo, K. Wang, J. Wang, K. Jiang, Q. Li, and S. Fan, Binder-free LiCoO2 /carbon nanotube cathodes for high-performance lithium ion batteries, Adv. Mater., 2012, 24(17): 2294
doi: 10.1002/adma.201104720
86 M. D. Lima, S. Fang, X. Lepro, C. Lewis, R. Ovalle-Robles, J. Carretero-Gonzalez, E. Castillo-Martinez, M. E. Kozlov, J. Oh, N. Rawat, C. S. Haines, M. H. Haque, V. Aare, S. Stoughton, A. A. Zakhidov, and R. H. Baughman, Biscrolling nanotube sheets and functional guests into yarns, Science, 2011, 331(6013): 51
doi: 10.1126/science.1195912
87 Z. Chen, D. Q. Zhang, X. L. Wang, X. L. Jia, F. Wei, H. X. Li, and Y. F. Lu, High-performance energy-storage architectures from carbon nanotubes and nanocrystal building blocks, Adv. Mater., 2012, 24(15): 2030
doi: 10.1002/adma.201104238
88 O. Toprakci, H. A. K. Toprakci, L. W. Ji, G. J. Xu, Z. Lin, and X. W. Zhang, Carbon nanotube-loaded electrospun LiFePO4 /carbon composite nanofibers As stable and binder-free cathodes for rechargeable lithium-ion batteries, ACS Appl. Mater. Interfaces, 2012, 4(3): 1273
doi: 10.1021/am201527r
89 P. G. Bruce, B. Scrosati, and J. M. Tarascon, Nanomaterials for rechargeable lithium batteries, Angew. Chem. Int. Ed., 2008, 47(16): 2930
doi: 10.1002/anie.200702505
90 C. M. Hayner, X. Zhao, and H. H. Kung, Materials for rechargeable lithium-ion batteries, Annu. Rev. Chem. Biomol. Eng., 2012, 3: 445
doi: 10.1146/annurev-chembioeng-062011-081024
91 S. -D. Seo, G. -H. Lee, A. -H. Lim, K. -M. Min, J. -C. Kim, H. -W. Shim, K. -S. Park, and D. -W. Kim, Direct assembly of tin-MWCNT 3D-networked anode for rechargeable lithium ion batteries, RSC Advances, 2012, 2(8): 3315
doi: 10.1039/c2ra00943a
92 W. X. Chen, J. Y. Lee, and Z. Liu, Electrochemical lithiation and de-lithiation of carbon nanotube-Sn2Sb nanocomposites, Electrochem. Commun., 2002, 4(3): 260
doi: 10.1016/S1388-2481(02)00268-0
93 M. S. Park, S. A. Needham, G. X. Wang, Y. M. Kang, J. S. Park, S. X. Dou, and H. K. Liu, Nanostructured SnSb/carbon nanotube composites synthesized by reductive precipitation for lithium-ion batteries, Chem. Mater., 2007, 19(10): 2406
doi: 10.1021/cm0701761
94 O. Crosnier, T. Brousse, X. Devaux, P. Fragnaud, and D. M. Schleich, New anode systems for lithium ion cells, J. Power Sources, 2001, 94(2): 169
doi: 10.1016/S0378-7753(00)00599-1
95 J. O. Besenhard, J. Yang, and M. Winter, Will advanced lithium-alloy anodes have a chance in lithium-ion batteries? J. Power Sources, 1997, 68(1): 87
doi: 10.1016/S0378-7753(96)02547-5
96 T. P. Kumar, R. Ramesh, Y. Y. Lin, and G. T. K. Fey, Tin-filled carbon nanotubes as insertion anode materials for lithium-ion batteries, Electrochem. Commun., 2004, 6(6): 520
doi: 10.1016/j.elecom.2004.03.009
97 Y. Wang and J. Y. Lee, One-step, confined growth of bimetallic tin–antimony nanorods in carbon nanotubes grown in situ for reversible Li+ ion storage, Angew. Chem. Int. Ed., 2006, 45(42): 7039
doi: 10.1002/anie.200602071
98 L. Huang, J. S. Cai, Y. He, F. S. Ke, and S. G. Sun, Structure and electrochemical performance of nanostructured Sn–Co alloy/carbon nanotube composites as anodes for lithium ion batteries, Electrochem. Commun., 2009, 11(5): 950
doi: 10.1016/j.elecom.2009.02.032
99 K. D. Kepler, J. T. Vaughey, and M. M. Thackeray, LixCu6Sn5(0<x<13): An intermetallic insertion electrode for rechargeable lithium batteries, Electrochem. Solid-State Lett., 1999, 2(7): 307
doi: 10.1149/1.1390819
100 C. K. Chan, R. N. Patel, M. J. O’Connell, B. A. Korgel, and Y. Cui, Solution-grown silicon nanowires for lithium-ion battery anodes, ACS Nano, 2010, 4(3): 1443
doi: 10.1021/nn901409q
101 C. Martin, O. Crosnier, R. Retoux, D. Belanger, D. M. Schleich, and T. Brousse, Chemical coupling of carbon nanotubes and silicon nanoparticles for improved negative electrode performance in lithium-ion batteries, Adv. Funct. Mater., 2011, 21(18): 3524
doi: 10.1002/adfm.201002100
102 G. Chen, Z. Y. Wang, and D. G. Xia, One-Pot Synthesis of Carbon Nanotube@SnO2–Au Coaxial Nanocable for Lithium-Ion Batteries with High Rate Capability, Chem. Mater., 2008, 20(22): 6951
doi: 10.1021/cm801853c
103 Z. H. Wen, Q. Wang, Q. Zhang, and J. H. Li, In Situ growth of mesoporous SnO2 on multiwalled carbon nanotubes: A novel composite with porous-tube structure as anode for lithium batteries, Adv. Funct. Mater., 2007, 17(15): 2772
doi: 10.1002/adfm.200600739
104 L. Noerochim, J. Z. Wang, S. L. Chou, H. J. Li, and H. K. Liu, SnO2-coated multiwall carbon nanotube composite anode materials for rechargeable lithium-ion batteries, Electrochim. Acta, 2010, 56(1): 314
doi: 10.1016/j.electacta.2010.08.078
105 H. X. Zhang, C. Feng, Y. C. Zhai, K. L. Jiang, Q. Q. Li, and S. S. Fan, Cross-stacked carbon nanotube sheets uniformly loaded with SnO2 nanoparticles: A novel binder-free and high-capacity anode material for lithium-ion batteries, Adv. Mater., 2009, 21(22): 2299
doi: 10.1002/adma.200802290
106 J. Xie and V. K. Varadan, Synthesis and characterization of high surface area tin oxide/functionalized carbon nanotubes composite as anode materials, Mater. Chem. Phys., 2005, 91(2-3): 274
doi: 10.1016/j.matchemphys.2004.11.033
107 G. M. An, N. Na, X. R. Zhang, Z. J. Miao, S. D. Miao, K. L. Ding, and Z. M. Liu, SnO2 /carbon nanotube nanocomposites synthesized in supercritical fluids: highly efficient materials for use as a chemical sensor and as the anode of a lithium-ion battery, Nanotechnology, 2007, 18(43): 435707
doi: 10.1088/0957-4484/18/43/435707
108 Y. B. Fu, R. B. Ma, Y. Shu, Z. Cao, and X. H. Ma, Preparation and characterization of SnO2/carbon nanotube composite for lithium ion battery applications, Mater. Lett., 2009, 63(22): 1946
doi: 10.1016/j.matlet.2009.06.017
109 G. D. Du, C. Zhong, P. Zhang, Z. P. Guo, Z. X. Chen, and H. K. Liu, Tin dioxide/carbon nanotube composites with high uniform SnO2 loading as anode materials for lithium ion batteries, Electrochim. Acta, 2010, 55(7): 2582
doi: 10.1016/j.electacta.2009.12.031
110 C. H. Xu, J. Sun, and L. Gao, Synthesis of multiwalled carbon nanotubes that are both filled and coated by SnO2 nanoparticles and their high performance in lithium-ion batteries, J. Phys. Chem. C, 2009, 113(47): 20509
doi: 10.1021/jp909740h
111 Z. Y. Wang, G. Chen, and D. G. Xia, Coating of multiwalled carbon nanotube with SnO2 films of controlled thickness and its application for Li-ion battery, J. Power Sources, 2008, 184(2): 432
doi: 10.1016/j.jpowsour.2008.03.028
112 P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, and J.-M. Tarascon, Nano-sized transition-metal oxides as negativeelectrode materials for lithium-ion batteries, Nature, 2000, 407(6803): 496
doi: 10.1038/35035045
113 J. Cabana, L. Monconduit, D. Larcher, and M. R. Palacin, Beyond intercalation-based Li-ion batteries: The state of the art and challenges of electrode materials reacting through conversion reactions, Adv. Mater., 2010, 22(35): E170
doi: 10.1002/adma.201000717
114 C. M. Ban, Z. C. Wu, D. T. Gillaspie, L. Chen, Y. F. Yan, J. L. Blackburn, and A. C. Dillon, Nanostructured Fe3O4/SWNT electrode: Binder-free and high-rate Li-ion anode, Adv. Mater., 2010, 22(20): E145
doi: 10.1002/adma.200904285
115 A. L. M. Reddy, M. M. Shaijumon, S. R. Gowda, and P. M. Ajayan, Coaxial MnO2 /carbon nanotube array electrodes for high-performance lithium batteries, Nano Lett., 2009, 9(3): 1002
doi: 10.1021/nl803081j
116 F. Teng, S. Santhanagopalan, and D. D. Meng, Microstructure control of MnO2/CNT hybrids under in-situ hydrothermal conditions, Solid State Sci., 2010, 12(9): 1677
doi: 10.1016/j.solidstatesciences.2010.07.026
117 Z. Wang, D. Luan, S. Madhavi, Y. Hu, and X. W. Lou, Assembling carbon-coated α-Fe2O3 hollow nanohorns on the CNT backbone for superior lithium storage capability, Energy Environ. Sci., 2012, 5(1): 5252
doi: 10.1039/c1ee02831f
118 Y. He, L. Huang, J. S. Cai, X. M. Zheng, and S. G. Sun, Structure and electrochemical performance of nanostructured Fe3O4/carbon nanotube composites as anodes for lithium ion batteries, Electrochim. Acta, 2010, 55(3): 1140
doi: 10.1016/j.electacta.2009.10.014
119 H. Xia, M. O. Lai, and L. Lu, Nanoflaky MnO2/carbon nanotube nanocomposites as anode materials for lithium-ion batteries, J. Mater. Chem., 2010, 20(33): 6896
doi: 10.1039/c0jm00759e
120 G. X. Wang, X. P. Shen, J. N. Yao, D. Wexler, and J. Ahn, Hydrothermal synthesis of carbon nanotube/cobalt oxide core-shell one-dimensional nanocomposite and application as an anode material for lithium-ion batteries, Electrochem. Commun., 2009, 11(3): 546
doi: 10.1016/j.elecom.2008.12.048
121 A. R. Armstrong, G. Armstrong, J. Canales, R. Garcia, and P. G. Bruce, Lithium-ion intercalation into TiO2-B nanowires, Adv. Mater., 2005, 17(7): 862
doi: 10.1002/adma.200400795
122 P. Liu, S. H. Lee, C. e. Tracy, Y. Yan, and J. Turner, Preparation and lithium insertion properties of mesoporous vanadium oxide, Adv. Mater., 2002, 14(1): 27
doi: 10.1002/1521-4095(20020104)14:1<27::AID-ADMA27>3.0.CO;2-6
123 C. M. Julien, Lithium intercalated compounds, Mater. Sci. Eng. Rep., 2003, 40(2): 47
doi: 10.1016/S0927-796X(02)00104-3
124 Y. S. Hu, L. Kienle, Y. G. Guo, and J. Maier, High lithium electroactivity of nanometer-sized rutile TiO2, Adv. Mater., 2006, 18(11): 1421
doi: 10.1002/adma.200502723
125 Z. X. Yang, G. D. Du, Z. P. Guo, X. B. Yu, Z. X. Chen, T. L. Guo, and H. K. Liu, TiO2(B)@carbon composite nanowires as anode for lithium ion batteries with enhanced reversible capacity and cyclic performance, J. Mater. Chem., 2011, 21(24): 8591
doi: 10.1039/c0jm03873c
126 L. Shen, C. Yuan, H. Luo, X. Zhang, K. Xu, and F. Zhang, In situ growth of Li4Ti5O12 on multi-walled carbon nanotubes: novel coaxial nanocables for high rate lithium ion batteries, J. Mater. Chem., 2011, 21(3): 761
doi: 10.1039/c0jm02316g
127 J. J. Huang, and Z. Y. Jiang, The preparation and characterization of Li4Ti5O12/carbon nano-tubes for lithium ion battery, Electrochim. Acta, 2008, 53(26): 7756
doi: 10.1016/j.electacta.2008.05.031
128 F. F. Cao, Y. G. Guo, S. F. Zheng, X. L. Wu, L. Y. Jiang, R. R. Bi, L. J. Wan, and J. Maier, Symbiotic coaxial nanocables: Facile synthesis and an efficient and elegant morpholog-ical solution to the lithium storage problem, Chem. Mater., 2010, 22(5): 1908
doi: 10.1021/cm9036742
129 D. H. Lee, D. W. Kim, and J. G. Park, Enhanced rate capabilities of nanobrookite with electronically conducting MWCNT networks, Cryst. Growth Des., 2008, 8(12): 4506
doi: 10.1021/cg800481a
130 J. S. Sakamoto and B. Dunn, Vanadium oxide-carbon nanotube composite electrodes for use in secondary lithium batteries, J. Electrochem. Soc., 2002, 149(1): A26
doi: 10.1149/1.1425791
131 X. Jia, Z. Chen, A. Suwarnasarn, L. Rice, X.Wang, H. Sohn, Q. Zhang, B. M. Wu, F. Wei, and Y. Lu, High-performance flexible lithium-ion electrodes based on robust network architecture, Energy Environ. Sci., 2012, 5(5): 6845
doi: 10.1039/c2ee03110h
132 X. M. Liu, Z. D. Huang, S. Oh, P. C. Ma, P. C. H. Chan, G. K. Vedam, K. Kang, and J. K. Kim, Sol-gel synthesis of multiwalled carbon nanotube-LiMn2O4 nanocomposites as cathode materials for Li-ion batteries, J. Power Sources, 2010, 195(13): 4290
doi: 10.1016/j.jpowsour.2010.01.068
133 J. Xu, G. Chen, and X. Li, Electrochemical performance of LiFePO4 cathode material coated with multi-wall carbon nanotubes, Mater. Chem. Phys., 2009, 118(1): 9
doi: 10.1016/j.matchemphys.2009.07.019
134 Y. Zhou, J. Wang, Y. Hu, R. O’Hayre, and Z. Shao, A porous LiFePO4 and carbon nanotube composite, Chem. Commun., 2010, 46(38): 7151
doi: 10.1039/c0cc01721c
135 C. Ban, Z. Li, Z. Wu, M. J. Kirkham, L. Chen, Y. S. Jung, E. A. Payzant, Y. Yan, M. S. Whittingham, and C. Dillon, Extremely durable high-rate capability of a LiNi0.4Mn0.4Co0.2O2 cathode enabled with single-walled carbon nanotubes, Adv. Energy Mater., 2011, 1(1): 58
doi: 10.1002/aenm.201000001
136 J. J. Chen and M. S. Whittingham, Hydrothermal synthesis of lithium iron phosphate, Electrochem. Commun., 2006, 8(5): 855
doi: 10.1016/j.elecom.2006.03.021
137 L. Wang, Y. D. Huang, R. R. Jiang, and D. Z. Jia, Nano-LiFePO4/MWCNT cathode materials prepared by roomtemperature solid-state reaction and microwave heating, J. Electrochem. Soc., 2007, 154(11): A1015
doi: 10.1149/1.2776231
138 Y. Q. Qiao, J. P. Tu, Y. J. Mai, L. J. Cheng, X. L.Wang, and C. D. Gu, Enhanced electrochemical performances of multiwalled carbon nanotubes modified Li3V2(PO4)3/C cathode material for lithium-ion batteries, J. Alloys Compd., 2011, 509(25): 7181
doi: 10.1016/j.jallcom.2011.04.048
139 K. Evanoff, J. Khan, A. A. Balandin, A. Magasinski, W. J. Ready, T. F. Fuller, and G. Yushin, Towards ultrathick battery electrodes: Aligned carbon nanotube-enabled architecture, Adv. Mater., 2012, 24(4): 533
doi: 10.1002/adma.201103044
140 X. Chen, H. Zhu, Y. C. Chen, Y. Shang, A. Cao, L. Hu, and G. W. Rubloff, MWCNT/V2O5 core/shell sponge for high areal capacity and power density Li-ion cathodes, ACS Nano, 2012, 6(9): 7948
doi: 10.1021/nn302417x
141 D. R. Rolison, J. W. Long, J. C. Lytle, A. E. Fischer, C. P. Rhodes, T. M. McEvoy, M. E. Bourg, and A. M. Lubers, Multifunctional 3D nanoarchitectures for energy storage and conversion, Chem. Soc. Rev., 2008, 38(1): 226
doi: 10.1039/b801151f
142 I. S. Hwang, J. C. Kim, S. D. Seo, S. Lee, J. H. Lee, and D. W. Kim, A binder-free Genanoparticle anode assembled on multiwalled carbon nanotube networks for Li-ion batteries, Chem. Commun., 2012, 48(56): 7061
doi: 10.1039/c2cc32901h
143 W. Wang and P. N. Kumta, Nanostructured hybrid silicon/carbon nanotube heterostructures: Reversible highcapacity lithium-ion anodes, ACS Nano, 2010, 4(4): 2233
doi: 10.1021/nn901632g
144 L. F. Cui, L. B. Hu, J. W. Choi, and Y. Cui, Light-weight free-standing carbon nanotube-silicon films for anodes of lithium ion batteries, ACS Nano, 2010, 4(7): 3671
doi: 10.1021/nn100619m
145 Y. Wu, Y. Wei, J. P. Wang, K. L. Jiang, and S. S. Fan, Nano Lett., 2012 (submitted)
146 B. A. Johnson and R. E. White, Characterization of commercially available lithium-ion batteries, J. Power Sources, 1998, 70(1): 48
doi: 10.1016/S0378-7753(97)02659-1
147 P. Arora, R. E. White, and M. Doyle, Capacity fade mechanisms and side reactions in lithium-ion batteries, J. Electrochem. Soc., 1998, 145(10): 3647
doi: 10.1149/1.1838857
148 J. W. Braithwaite, A. Gonzales, G. Nagasubramanian, S. J. Lucero, D. E. Peebles, J. A. Ohlhausen, and W. R. Cieslak, Corrosion of lithium-ion battery current collectors, J. Electrochem. Soc., 1999, 146(2): 448
doi: 10.1149/1.1391627
149 A. Kiebele and G. Gruner, Carbon nanotube based battery architecture, Appl. Phys. Lett., 2007, 91(14): 144104
doi: 10.1063/1.2795328
150 Y. X. Zhou, L. B. Hu, and G. Gruner, A method of printing carbon nanotube thin films, Appl. Phys. Lett., 2006, 88(12): 123109
doi: 10.1063/1.2187945
151 L. B. Hu, J. W. Choi, Y. Yang, S. Jeong, F. La Mantia, L. F. Cui, and Y. Cui, Highly conductive paper for energy-storage devices, Proc. Natl. Acad. Sci. USA, 2009, 106(51): 21490
doi: 10.1073/pnas.0908858106
152 N. Singh, C. Galande, A. Miranda, A. Mathkar, W. Gao, A. L. M. Reddy, A. Vlad, and P. M. Ajayan, Paintable battery, Sci. Rep., 2012, 2:481
153 L. B. Hu, H. Wu, F. La Mantia, Y. A. Yang<?Pub Caret?>, and Y. Cui, Thin, flexible secondary li-ion paper batteries, ACS Nano, 2010, 4(10): 5843
doi: 10.1021/nn1018158
154 B. J. Landi, M. J. Ganter, C. D. Cress, R. A. DiLeo, and R. P. Raffaelle, Carbon nanotubes for lithium ion batteries, Energy Environ. Sci., 2009, 2(6): 638
doi: 10.1039/b904116h
155 K. Wang, S. Luo, Y. Wu, X. F. He, F. Zhao, J. P. Wang, K. L. Jiang, and S. S. Fan, Super-aligned carbon nanotube films as current collectors for lightweight and flexible lithium ion batteries, Adv. Funct. Mater., 2013, 23(7): 846
doi: 10.1002/adfm.201202412
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed