Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2013, Vol. 8 Issue (4): 405-411   https://doi.org/10.1007/s11467-013-0331-y
  RESEARCH ARTICLE 本期目录
Structural and elastic properties of Ce2O3 under pressure from LDA+U method
Structural and elastic properties of Ce2O3 under pressure from LDA+U method
Yuan-Yuan Qi, Zhen-Wei Niu, Cai Cheng, Yan Cheng()
Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China
 全文: PDF(309 KB)   HTML
Abstract

We investigate the structural and elastic properties of hexagonal Ce2O3 under pressure using LDA+U scheme in the frame of density functional theory (DFT). The obtained lattice constants and bulk modulus agree well with the available experimental and other theoretical data. The pressure dependences of normalized lattice parameters a/a0 and c/c0, ratio c/a, and normalized primitive volume V/V0 of Ce2O3 are obtained. Moreover, the pressure dependences of elastic properties and three anisotropies of elastic waves of Ce2O3 are investigated for the first time. We find that the negative value of C44 is indicative of the structural instability of the hexagonal structure Ce2O3 at zero temperature and 30 GPa. Finally, the density of states (DOS) of Ce2O3 under pressure is investigated.

Key wordselastic properties    high pressure    density functional theory    Ce2O3    China Dark matter EXperiment (CDEX)    dark matter    poit-contact germanium detector    China Jinping underground Laboratory (CJPL)
收稿日期: 2012-12-26      出版日期: 2013-08-01
Corresponding Author(s): Cheng Yan,Email:cheng@scu.edu.cn   
 引用本文:   
. Structural and elastic properties of Ce2O3 under pressure from LDA+U method[J]. Frontiers of Physics, 2013, 8(4): 405-411.
Yuan-Yuan Qi, Zhen-Wei Niu, Cai Cheng, Yan Cheng. Structural and elastic properties of Ce2O3 under pressure from LDA+U method. Front. Phys. , 2013, 8(4): 405-411.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-013-0331-y
https://academic.hep.com.cn/fop/CN/Y2013/V8/I4/405
1 A. Trovarelli, Catalysis by Ceria and Related Materials, London: Imperial College Press, 2002
1 F. Zwicky, On the masses of nebulae and of clusters of nebulae, Astrophys. J. , 1937, 86: 217
doi: 10.1086/143864
2 M. Kobayashi, and M. Ishii, Excellent radiation-resistivity of cerium-doped gadolinium silicate scintillators, Nucl. Instrum. Methods B , 1991, 61(4): 491
doi: 10.1016/0168-583X(91)95327-A
2 V. Rubin and W. K. J. Ford, Rotation of the Andromeda nebula from a spectroscopic survey of emission regions, Astrophys. J. , 1970, 159: 379
doi: 10.1086/150317
3 H. Kleykamp, The chemical state of the fission products in oxide fuels, J. Nucl. Mater. , 1985, 131(2-3): 221
doi: 10.1016/0022-3115(85)90460-X
3 V. Rubin, W. K. J. Ford, and N. Thonnard, Rotational properties of 21 SC galaxies with a large range of luminosities and radii, from NGC 4605 /R= 4 kpc/ to UGC 2885 /R= 122 kpc/, Astrophys. J. , 1980, 238: 471
doi: 10.1086/158003
4 J. Graciani, A. M. M’arquez, J. J. Plata, Y. Ortega, N. C. Hern’andez, A. Meyer, C. M. Zicovich-Wilson, and J. F. Sanz, Comparative study on the performance of hybrid DFT functionals in highly correlated oxides: The case of CeO2 and Ce2O3, J. Chem. Theory Comput. , 2011, 7(1): 56
doi: 10.1021/ct100430q
4 V. Rubin, D. Burstein, W. K. J. Ford, and N. Thonnard, Rotation velocities of 16 SA galaxies and a comparison of Sa, Sb, and SC rotation properties, Astrophys. J. , 1985, 289: 81
doi: 10.1086/162866
5 T. Yamamoto, H. Momida, T. Hamada, T. Uda, and T. Ohno, First-principles study of dielectric properties of cerium oxide, Thin Solid Films , 2005, 486(1–2): 136
doi: 10.1016/j.tsf.2004.11.240
5 D. Clowe, M. Bradac, A. H. Gonzalez, M. Markevitch, S. W. Randall, C. Jones, and D. Zaritsky, A direct empirical proof of the existence of dark matter, Astrophys. J. , 2006, 648(2): L109
doi: 10.1086/508162
6 O. L. Anderson, A simplified method for calculating the debye temperature from elastic constants, J. Phys. Chem. Solids , 1963, 24(7): 909
doi: 10.1016/0022-3697(63)90067-2
6 J. Beringer, . [Particle Data Group], The review of particle physics, Phys. Rev. D , 2012, 86: 010001
doi: 10.1103/PhysRevD.86.010001
7 A. I. Shelykh, A. V. Prokofiev, and B. T. Melekh, Fiz. Tverd. Tela, 1996, 38: 91
7 Planck Collaboration, Planck 2013 results. XVI. Cosmological parameters , arXiv: 1303.5076v1 , 2013
8 A. V. Prokofiev, A. I. Shelykh, and B. T. Melekh, Periodicity in the band gap variation of Ln2X3 (X= O, S, Se) in the lanthanide series, J. Alloy. Comp. , 1996, 242(1–2): 41
doi: 10.1016/0925-8388(96)02293-1
8 V. Trimble, Existence and nature of dark matter in the universe, Annu. Rev. Astron. Astrophys. , 1987, 25(1): 425
doi: 10.1146/annurev.aa.25.090187.002233
9 V. I. Anisimov, J. Zaanen, and O. K. Andersen, Band theory and Mott insulators: Hubbard U instead of Stoner I, Phys. Rev. B , 1991, 44(3): 943
doi: 10.1103/PhysRevB.44.943
9 G. Jungman, M. Kamionkowski, and K. Griest, Supersymmetric dark matter, Phys. Rep. , 1996, 267(5–6): 195
doi: 10.1016/0370-1573(95)00058-5
10 D. A. Andersson, S. I. Simak, B. Johansson, I. A. Abrikosov, and N. V. Skorodumova, Modeling of CeO2, Ce2O3, and CeO2txin the LDA+U formalism, Phys. Rev. B , 2007, 75(3): 0351 09
doi: 10.1103/PhysRevB.75.035109
10 L. Bergstrom, Dark matter candidates, New J. Phys. , 2009, 11(10): 105006
doi: 10.1088/1367-2630/11/10/105006
11 C. Loschen, J. Carrasco, K. M. Neyman, and F. Illas, Firstprinciples LDA+U and GGA+U study of cerium oxides: Dependence on the effective U parameter, Phys. Rev. B , 2007, 75(3): 0351 15
doi: 10.1103/PhysRevB.75.035115
11 J. L. Feng, Dark matter candidates from particle physics and methods of detection, arXiv: 1003.0904 , 2010
12 J. L. F. Da Silva, Stability of the Ce2O3 phases: A DFT+U investigation, Phys. Rev. B , 2007, 76(19): 193108
doi: 10.1103/PhysRevB.76.193108
12 R. J. Gaitskell, Direct detection of dark matter, Ann. Rev. Nucl. Part. Sci. , 2004, 54(1): 315
doi: 10.1146/annurev.nucl.54.070103.181244
13 L. V. Pourovskii, B. Amadon, S. Biermann, and A. Georges, Self-consistency over the charge density in dynamical meanfield theory: A linear muffin-tin implementation and some physical implications, Phys. Rev. B , 2007, 76(23): 235101
13 X.G. He, H. C. Tsai, T. Li, and X. Q. Li, Scalar darkmatter effects in Higgs and top quark decays, Mod. Phys. Lett. A , 2007, 22(25n28): 2121
14 B. Amadon, A self-consistent DFT+ DMFT scheme in the projector augmented wave method: applications to cerium, Ce2O3 and Pu2O3 with the Hubbard I solver and comparison to DFT+ U, J. Phys.: Condens. Matter , 2012, 24(7): 0756 04
14 X. He, T. Li, X. Q. Li, J. Tandean, and H. C. Tsai, Constraints on scalar dark matter from direct experimental searches, Phys. Rev. D , 2009, 79(2): 023521
doi: 10.1103/PhysRevD.79.023521
15 H. Jiang, R. I. Gomez-Abal, P. Rinke, and M. Scheffler, Localized and itinerant states in lanthanide oxides united by GW@LDA+U, Phys. Rev. Lett. , 2009, 102(12): 126403
15 Beylyaev, M. T. Frandsen, S. Sarkar, and F. Sannino, Mixed dark matter from Technicolor, Phys. Rev. D , 2011, 83(1): 015007, and the references therein
doi: 10.1103/PhysRevD.83.015007
16 P. J. Hay, R. L. Martin, J. Uddin, and G. E. Scuseria, Theoretical study of CeO2 and Ce2O3 using a screened hybrid density functional, J. Chem. Phys. , 2006, 125(3): 0347 12
16 H. P. An, S. L. Chen, R. N. Mohapatra, S. Nussinov, and Y. Zhang, Energy dependence of direct detection cross-section for asymmetric mirror dark matter, Phys. Rev. D , 2010, 82: 023533, arXiv: 1004.3296
17 A. D. Becke, A new mixing of Hartree–Fock and local density-functional theories, J. Chem. Phys. , 1993, 98(2): 1372
17 J.-W. Cui, H.-J. He, L.-C. Lu, and F.-R. Yin, Spontaneous mirror parity violation, common origin of matter and dark matter, and the LHC Signatures, Phys. Rev. D , 2012, 85: 096003, arXiv: 1110.6893
18 M. Gilloz, A. von Manteuffel, P. Schwaller, and D. Wyler, The little skyrmion: new dark matter for little Higgs models, J. High Energy Phys. , 2011, 1103: 48, and references therein, arXiv: 1012.5288v2
19 M. C. Payne, M. P. Teter, D. C. Allen, T. A. Arias, and J. D. Joannopoulos, Iterative minimization techniques for ab initio total-energy calculations: Molecular dynamics and conjugate gradients, Rev. Mod. Phys. , 1992, 64(4): 1045
19 J. Lavalle, J. M. Alimi, and A. Fu?zfa, Cosmic ray positron excess: Is the dark matter solution a good bet? AIP Conf. Proc. , 2010, 24: 398
20 V. Milman, B. Winkler, J. A. White, C. J. Packard, M. C. Payne, E. V. Akhmatskaya, and R. H. Nobes, Electronic structure, properties, and phase stability of inorganic crystals: A pseudopotential plane-wave study, Int. J. Quantum Chem. , 2000, 77(5): 895
20 R. Yang, J. Chang, and J. Wu, A possible explanation for the electron/positron excess of ATIC/PAMELA, Res. Astro. Astrophys. , 2010, 10(1): 39, and references therein
21 S. H. Vosko, L. Wilk, and M. Nusair, Accurate spindependent electron liquid correlation energies for local spin density calculations: A critical analysis, Can. J. Phys. , 1980, 58(8): 1200
21 M. Amenomori, . [Tibet AS-gamma Collaboration], Cosmic-ray energy spectrum around the knee observed with the Tibet air-shower experiment, Astrophys. Space Sci. Trans. , 2011, 7(1): 15
22 H. J. Monkhorst and J. D. Pack, Special points for Brillouinzone integrations, Phys. Rev. B , 1976, 13(12): 5188
22 M. Aguilar, . [AMS Collaboration], First result from the alpha magnetic spectrometer on the international space station: Precision measurement of the positron fraction in primary cosmic rays of 0.5–350 GeV, Phys. Rev. Lett. , 2013, 110(14): 141102
23 D. C.Wallace, Thermodynamics of Crystals, New York: Wiley, 1972
23 K. Bernabei, P. Belli, F. Cappella, R. Cerulli, C. J. Dai, A. d’ngelo, H. L. He, A. Incicchitti, H. H. Kuang, J. M. Ma, F. Montecchia, F. Nozzoli, D. Prosperi, X. D. Sheng, and Z. P. Ye, First results from DAMA/LIBRA and the combined results with DAMA/NaI, Eur. Phys. J. C , 2008, 56(3): 333
24 W. Voigt, Lehrbuch der Kristallphysik, Leipzig: Taubner, 1928
24 K. Bernabei, P. Belli, F. Cappella, R. Cerulli, C. J. Dai, A. d’ngelo, H. L. He, A. Incicchitti, H. H. Kuang, X. H. Ma, F. Montecchia, F. Nozzoli, D. Prosperi, X. D. Sheng, R. G. Wang, and Z. P. Ye, New results from DAMA/LIBRA, Eur. Phys. J. C , 2010, 67(1–2): 39
25 A. Reuss, Berechnung der Flieβgrenze von Mischkristallen auf Grund der Plastizit?tsbedingung für Einkristalle, Z. Angew. Math. Mech. , 1929, 9(1): 49
25 C. Aalseth, P. S. Barbeau, N. S. Bowden, B. Cabrera Palmer, , Results from a search for light-mass dark matter with a p-type point contact germanium detector, Phys. Rev. Lett. , 2011, 106(13): 131301
26 K. B. Panda, and K. S. Ravi Chandran, Determination of elastic constants of titanium diboride (TiB2) from first principles using FLAPW implementation of the density functional theory, Comput. Mater. Sci. , 2006, 35(2): 134
doi: 10.1016/j.commatsci.2005.03.012
26 P. Brink, Z. Ahmed, D. S. Akerib, C. N. Bailey, , The cryogenic dark matter search (CDMS): Present status and future, AIP Conf. Proc. , 2009, 1182: 260
doi: 10.1063/1.3293795
27 Y. J. Hao, X. R. Chen, H. L. Cui, and Y. L. Bai, Firstprinciples calculations of elastic constants of c-BN, Physica B , 2006, 382(1–2): 118
doi: 10.1016/j.physb.2006.02.005
27 G. Angloher, . [CRESST Collaboration], Results from 730 kg days of the CRESST-II dark matter search, arXiv: 1109.0702 , 2011
28 Z. L. Liu, X. R. Chen, and Y. L. Wang, First-principles calculations of elastic properties of LiBC, Physica B , 2006, 381(1–2): 139
doi: 10.1016/j.physb.2005.12.264
28 J. Angle, . [XENON10 Collaboration], Search for light dark matter in XENON10 data, Phys. Rev. Lett. , 2011, 107: 051301
doi: 10.1103/PhysRevLett.107.051301 pmid:21867059
29 X. F. Li, G. F. Ji, F. Zhao, X. R. Chen, and D. Alfè, Firstprinciples calculations of elastic and electronic properties of NbB2 under pressure, J. Phys.: Condens. Matter , 2009, 21(2): 0255 05
doi: 10.1088/0953-8984/21/2/025505
29 R. Agnese, . [CDMS Collaboration], Dark matter search results using the silicon detectors of CDMS II, arXiv: 1304.4279v2, 2013
30 X. L. Yuan, D. Q. Wei, Y. Cheng, G. F. Ji, Q. M. Zhang, and Z. Z. Gong, Pressure effects on elastic and thermodynamic properties of Zr3Al intermetallic compound, Comput. Mater. Sci. , 2012, 58: 125
doi: 10.1016/j.commatsci.2012.02.019
30 M. T. Frandsen, F. Kahlhoefer, C. McCabe, S. Sarkar, and K. Schmidt-Hoberg, The unbearable lightness of being: CDMS versus XENON, arXiv: 1304.6066v1 , 2013
31 P. Wang, C. G. Piao, R. Y. Meng, Y. Cheng, and G. F. Ji, Elastic and electronic properties of YNi2B2C under pressure from first principles, Physica B , 2012, 407: 227
doi: 10.1016/j.physb.2011.10.035
31 X. G. He and J. Tandean, Low-mass dark-matter hint from CDMS II, Higgs boson at LHC, and Darkon models, arXiv: 1304.6058v1 , 2013
32 P. Wang, Y. Cheng, X. H. Zhu, X. R. Chen, and G. F. Ji, First principles investigations on elastic and electronic properties of BaHfN2 under pressure, J. Alloy. Comp. , 2012, 526:74
doi: 10.1016/j.jallcom.2012.02.118
32 E. Aprile, . [XENON100 Collaboration], Dark matter results from 225 live days of XENON100 data, arXiv: 1207.5988v2 , 2013
33 H. Barnighausen and G. Schiller, The crystal structure of A-Ce2O3, J. Less Common Met. , 1985, 110(1–2): 385
doi: 10.1016/0022-5088(85)90347-9
33 J. Angle, . [XENON Collaboration], Limits on spin-dependent WIMP-nucleon cross-sections from the XENON10 experiment, Phys. Rev. Lett. , 2008, 101(9): 091301
doi: 10.1103/PhysRevLett.101.091301
34 F. Birch, Finite elastic strain of cubic crystals, Phys. Rev. , 1947, 71(11): 809
doi: 10.1103/PhysRev.71.809
34 M. T. Ressell, M. Aufderheide, S. Bloom, K. Griest, G. Mathews, and D. Resler, Nuclear shell model calculations of neutralino-nucleus cross-sections for 29Si and 73Ge, Phys. Rev. D , 1993, 48(12): 5519
doi: 10.1103/PhysRevD.48.5519 pmid:10016218
35 G. V. Sin’ko and N. A. Smirnov, Ab initio calculations of elastic constants and thermodynamic properties of bcc, fcc, and hcp Al crystals under pressure, J. Phys.: Condens. Matter , 2002, 14(29): 6989
doi: 10.1088/0953-8984/14/29/301
35 G. Griest, Cross-sections, relic abundance, and detection rates for neutralino dark matter, Phys. Rev. D , 1988, 15(8): 2357
doi: 10.1103/PhysRevD.38.2357
36 S. F. Pugh, Philos. Mag. , 1954, 45: 833
36 C. L. Shan, Effects of residue background events in direct dark matter detection experiments on the estimation of the spin-independent WIMP-nucleon coupling, arXiv: 1103.4049v2 , 2011
37 M. A. Auld, Acoustic Fields and Waves in Solids, Vol. I, New York: Wiley, 1973
37 C. L. Shan, Estimating the spin-independent WIMP-nucleon coupling from direct dark matter detection data, arXiv: 1103.0481v2 , 2011
38 G. Steinle-Neumann, L. Stixrude, and R. E. Cohen, Firstprinciples elastic constants for the hcp transition metals Fe, Co, and Re at high pressure, Phys. Rev. B , 1999, 60(2): 791
doi: 10.1103/PhysRevB.60.791
38 V. Barger, W.-Y. Keung, and G. Shaughnessy, Spin dependence of dark matter scattering, Phys. Rev. D , 2008, 78: 056007, arXiv: 0806.1962
doi: 10.1103/PhysRevD.78.056007
39 M. Born and K. Huang, Dynamical Theory of Crystal Lattices, Oxford: Clarendon, 1954
39 Y. Tzeng and T. T. S. Kuo, Dark matter-nucleus scattering, 14th International Conference on Particles and Nuclei (PANIC 96): C96-05-22, 479
41 M. T. Ressell and D. J. Dean, Spin-dependent neutralinonucleus scattering for A127 nuclei, Phys. Rev. C , 1997, 56(1): 535
doi: 10.1103/PhysRevC.56.535
42 J. Engel, S. Pittel, and P. Vogel, Nuclear physics of dark matter detection, Int. J. Mod. Phys. E , 1992, 1: 1
doi: 10.1142/S0218301392000023
43 J. Engel, Nuclear form factors for the scattering of weakly interacting massive particles, Phys. Lett. B , 1991, 264(1–2): 114
doi: 10.1016/0370-2693(91)90712-Y
44 Q. Yue, J. P. Cheng, Y. J. Li, J. Li, and Z. J. Wang, Detection of WIMPs using low threshold HPGe detector, High Energy Physics and Nuclear Physics , 2004, 28(8): 877 (in Chinese)
45 X. Li, Q. Yue, Y. J. Li, J. Li, ., Status of ULE-HPGe detector experiment for dark matter search, High Energy Physics and Nuclear Physics , 2007, 31(6): 564 (in Chinese)
46 S. T. Lin, . [TEXONO Collaboration], New limits on spin-independent and spin-dependent couplings of low-mass WIMP dark matter with a germanium detector at a threshold of 220 eV, Phys. Rev. D , 2009, 79(6): 061101(R)
doi: 10.1103/PhysRevD.79.061101
48 C. E. Aalseth, . [CoGeNT Collaboration], Search for an annual modulation in a p-type point contact germanium dark matter detector, Phys. Rev. Lett. , 2011, 107(14): 141301
doi: 10.1103/PhysRevLett.107.141301
49 Majorana Collaboration, http://www.npl.washington.edu/ majorana/
50 GERDA Collaboration, http://www.mpi-hd.mpg.de/gerda/
51 K. J. Kang, J. P. Cheng, Y. H. Chen, Y. J. Li, M. B. Shen, S. Y. Wu, and Q. Yue, Status and prospects of a deep underground laboratory in China, J. Phys.: Conf. Ser. , 2010, 203(1): 012028
doi: 10.1088/1742-6596/203/1/012028
52 D. Normile, Chinese scientists hope to make deepest, darkest dreams come true, Science , 2009, 324(5932): 1246
doi: 10.1126/science.324_1246 pmid:19498133
53 G. Heusser, Low-radioactivity background techniques, Ann. Rev. Nucl. Part. Sci. , 1995, 45(1): 543
doi: 10.1146/annurev.ns.45.120195.002551
54 Canberra, http://www.canberra.com/
55 Chinalco Luoyang Copper Co, Ltd, http://www.lycopper.cn
56 ORTEC, http://www.ortec-online.com
57 Y. C. Wu, . [CDEX Collaboration], Measurement of cosmic ray flux in China Jinping underground laboratory, arXiv: 1305.0899 , 2013
58 Saphymo, http://saphymo.de
59 P. N. Luke, F. S. Goulding, N. W. Madden, and R. H. Pehl, Low capacitance large volume shaped-.eld germanium detector, IEEE Trans. Nucl. Sci. , 1989, 36(1): 926
doi: 10.1109/23.34577
60 P. S. Barbeau, J. I. Collar, and O. Tench, Large-mass ultralow noise germanium detectors: performance and applications in neutrino and astroparticle physics, J. Cosmol. Astropart. Phys. , 2007, 09: 009
61 AMPTEK, http://www.amptek.com
62 TEK, http://www.tek.com
63 CDMS Collaboration, http://cdms.berkeley.edu
64 XENON Collaboration, http://xenon.astro.columbia.edu
65 CRESST Collaboration, http://www.cresst.de
67 M. G. Marino, Dark matter physics with P-type pointcontact germanium detectors: Extending the physics reach of the Majorana experiment, Ph.D. Dissertation, University of Washington , 2010
68 From a talk given by J. F. Wilkerson in Tsinghua University in 2011
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed