This review deals with the nonequilibrium Green’s function (NEGF) method applied to the problems of energy transport due to atomic vibrations (phonons), primarily for small junction systems. We present a pedagogical introduction to the subject, deriving some of the well-known results such as the Laudauer-like formula for heat current in ballistic systems. The main aim of the review is to build the machinery of the method so that it can be applied to other situations, which are not directly treated here. In addition to the above, we consider a number of applications of NEGF, not in routine model system calculations, but in a few new aspects showing the power and usefulness of the formalism. In particular, we discuss the problems of multiple leads, coupled left-right-lead system, and system without a center. We also apply the method to the problem of full counting statistics. In the case of nonlinear systems, we make general comments on the thermal expansion effect, phonon relaxation time, and a certain class of mean-field approximations. Lastly, we examine the relationship between NEGF, reduced density matrix, and master equation approaches to thermal transport.
J. Rammer and H. Smith, Quantum field-theoretical methods in transport theory of metals, Rev. Mod. Phys., 1986, 58(2): 323 https://doi.org/10.1103/RevModPhys.58.323
7
M. Bonitz (Ed.), Progress in Nonequilibrium Green’s Functions, Singapore: World Scientific, 2000
8
M. Bonitz and D. Semkat (Eds.), Progress in Nonequilibrium Green’s Functions (II), Singapore: World Scientific, 2003
9
C. Caroli, R. Combescot, P. Nozieres, and D. Saint-James, Direct calculation of the tunneling current, J. Phys. C, 1971, 4(8): 916
10
Y. Meir and N. S. Wingreen, Landauer formula for the current through an interacting electron region, Phys. Rev. Lett., 1992, 68(16): 2512 https://doi.org/10.1103/PhysRevLett.68.2512
11
A. Prociuk, H. Phillips, and B. D. Dunietz, Modeling transient aspects of coherence-driven electron transport, J. Phys.: Conf. Ser., 2010, 220: 012008
12
U. Aeberhard, Theory and simulation of quantum photovoltaic devices based on the non-equilibrium Green’s function formalism, J. Comput. Electron., 2011, 10(4): 394 https://doi.org/10.1007/s10825-011-0375-6
B. K. Nikolić, K. K. Saha, T. Markussen, and K. S. Thygesen, First-principles quantum transport modeling of thermoelectricity in single-molecule nanojunctions with graphene nanoribbon electrodes, J. Comput. Electron., 2012, 11(1): 78 https://doi.org/10.1007/s10825-012-0386-y
J. Lan, J. S. Wang, C. K. Gan, and S. K. Chin, Edge effects on quantum thermal transport in graphene nanoribbons: Tight-binding calculations, Phys. Rev. B, 2009, 79(11): 115401 https://doi.org/10.1103/PhysRevB.79.115401
17
P. E. Hopkins, P. M. Norris, M. S. Tsegaye, and A. W. Ghosh, Extracting phonon thermal conductance across atomic junctions: Nonequilibrium Green’s function approach compared to semiclassical methods, J. Appl. Phys., 2009, 106(6): 063503 https://doi.org/10.1063/1.3212974
18
Z. X. Xie, K. Q. Chen, and W. Duan, Thermal transport by phonons in zigzag graphene nanoribbons with structural defects, J. Phys.: Condens. Matter, 2011, 23(31): 315302 https://doi.org/10.1088/0953-8984/23/31/315302
19
Z. Tian, K. Esfarjani, and G. Chen, Enhancing phonon transmission across a Si/Ge interface by atomic roughness: First-principles study with the Green’s function method, Phys. Rev. B, 2012, 86(23): 235304 https://doi.org/10.1103/PhysRevB.86.235304
20
M. Bachmann, M. Czerner, S. Edalati-Boostan, and C. Heiliger, Ab initio calculations of phonon transport in ZnO and ZnS, Eur. Phys. J. B, 2012, 85(5): 146 https://doi.org/10.1140/epjb/e2012-20503-y
21
P. S. E. Yeo, K. P. Loh, and C. K. Gan, Strain dependence of the heat transport properties of graphene nanoribbons, Nanotechnology, 2012, 23(49): 495702 https://doi.org/10.1088/0957-4484/23/49/495702
22
P. Brouwer, 2005,
23
H. Kleinert, Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets, 5th Ed., Singapore: World Scientific, 2009
24
J. W. Jiang, J. S. Wang, and B. Li, Thermal expansion in single-walled carbon nanotubes and graphene: Nonequilibrium Green’s function approach, Phys. Rev. B, 2009, 80(20): 205429 https://doi.org/10.1103/PhysRevB.80.205429
25
B. K. Agarwalla, B. Li, and J. S. Wang, Full-counting statistics of heat transport in harmonic junctions: transient, steady states, and fluctuation theorems, Phys. Rev. E, 2012, 85(5 Pt 1): 051142 https://doi.org/10.1103/PhysRevE.85.051142
26
A. Böhm, Quantum Mechanics, Heidelberg: Springer-Verlag, 1979
27
K. Huang, Statistical Mechanics, 2nd Ed., New York: John Wiley & Sons, 1987
28
R. Kubo, Statistical-mechanical theory of irreversible processes (I): General theory and simple applications to magnetic and Conduction Problems, J. Phys. Soc. Jpn., 1957, 12(6): 570 https://doi.org/10.1143/JPSJ.12.570
A. Kamenev, Field Theory of Non-Equilibrium Systems, Cambridge: Cambridge University Press, 2011
38
D. C. Langreth, in: Linear and Nonlinear Electron Transport in Solids, edited by J. T. Devreese and E. van Doren, Plenum, 1976: 3−32 https://doi.org/10.1007/978-1-4757-0875-2_1
39
C. Niu, D. L. Lin, and T. H. Lin, Equation of motion for nonequilibrium Green functions, J. Phys.: Condens. Matter, 1999, 11(6): 1511 https://doi.org/10.1088/0953-8984/11/6/015
40
A. A. Abrikosov, L. P. Gorkov, and I. E. Dzyaloshinski, Methods of Quantum Field Theory in Statistical Physics, Dover Publ., 1963
41
S. Doniach and E. H. Sondheimer, Green’s Functions for Solid State Physicists, W. A. Benjamin, 1974
H. Bruus and K. Flensberg, Many-Body Quantum Theory in Condensed Matter Physics: An introduction, Oxford: Oxford University Press, 2004
44
H. L. Friedman, A Course in Statistical Mechanics, Prentice- Hall, 1985
45
B. K. Agarwalla, Study of full-counting statistics in heat transport in transient and steady state and quantum fuctuation theorems, Ph.D. thesis, National University Singapore, 2013
M. L. Leek, Mathematical details in the application of nonequilibrium Green’s functions (NEGF) and quantum kinetic equations (QKE) to thermal transport, arXiv: 1207.6204, 2012
48
H. Kleinert, A. Pelster, B. Kastening, and M. Bachmann, Recursive graphical construction of Feynman diagrams and their multiplicities in φ4 and φ2A theory, Phys. Rev. E, 2000, 62(2): 1537 https://doi.org/10.1103/PhysRevE.62.1537
R. Landauer, Spatial variation of currents and fields due to localized scatterers in metallic conduction, IBM J. Res. Develop., 1957, 1(3): 223 https://doi.org/10.1147/rd.13.0223
D. Segal, A. Nitzan, and P. Hänggi, Thermal conductance through molecular wires, J. Chem. Phys., 2003, 119(13): 6840 https://doi.org/10.1063/1.1603211
54
N. Mingo and L. Yang, Phonon transport in nanowires coated with an amorphous material: An atomistic Green’s function approach, Phys. Rev. B, 2003, 68(24): 245406 https://doi.org/10.1103/PhysRevB.68.245406
55
A. Dhar and D. Roy, Heat transport in harmonic lattices, J. Stat. Phys., 2006, 125(4): 805
56
A. Dhar and D. Sen, Nonequilibrium Green’s function formalism and the problem of bound states, Phys. Rev. B, 2006, 73(8): 085119 https://doi.org/10.1103/PhysRevB.73.085119
57
J. S. Wang, J. Wang, and N. Zeng, Nonequilibrium Green’s function approach to mesoscopic thermal transport, Phys. Rev. B, 2006, 74(3): 033408 https://doi.org/10.1103/PhysRevB.74.033408
58
T. Yamamoto and K. Watanabe, Nonequilibrium Green’s function approach to phonon transport in defective carbon nanotubes, Phys. Rev. Lett., 2006, 96(25): 255503 https://doi.org/10.1103/PhysRevLett.96.255503
59
W. Zhang, T. S. Fisher, and N. Mingo, The atomistic Green’s function method: An efficient simulation approach for nanoscale phonon transport, Numer. Heat Transf. B, 2007, 51(4): 333 https://doi.org/10.1080/10407790601144755
60
S. G. Das and A. Dhar, Landauer formula for phonon heat conduction: Relation between energy transmittance and transmission coefficient, Eur. Phys. J. B, 2012, 85(11): 372 https://doi.org/10.1140/epjb/e2012-30640-x
61
M. P. L. Sancho, J. M. L. Sancho, and J. Rubio, Quick iterative scheme for the calculation of transfer matrices: Application to Mo(100), J. Phys. F, 1984, 14(5): 1205 https://doi.org/10.1088/0305-4608/14/5/016
62
M. P. L. Sancho, J. M. L. Sancho, and J. Rubio, Highly convergent schemes for the calculation of bulk and surface Green functions, J. Phys. F, 1985, 15(4): 851 https://doi.org/10.1088/0305-4608/15/4/009
63
A. P. Arya, Introduction to Classical Mechanics, Allyn and Bacon, 1990, Chap. 15.5
64
E. C. Cuansing, H. Li, and J. S. Wang, Role of the on-site pinning potential in establishing quasi-steady-state conditions of heat transport in finite quantum systems, Phys. Rev. E, 2012, 86(3): 031132 https://doi.org/10.1103/PhysRevE.86.031132
65
J. S. Wang, N. Zeng, J. Wang, and C. K. Gan, Nonequilibrium Green’s function method for thermal transport in junctions, Phys. Rev. E, 2007, 75(6): 061128 https://doi.org/10.1103/PhysRevE.75.061128
66
J. Wang and J. S. Wang, Mode-dependent energy transmission across nanotube junctions calculated with a lattice dynamics approach, Phys. Rev. B, 2006, 74(5): 054303 https://doi.org/10.1103/PhysRevB.74.054303
67
L. Zhang, P. Keblinski, J. S. Wang, and B. Li, Interfacial thermal transport in atomic junctions, Phys. Rev. B, 2011, 83(6): 064303 https://doi.org/10.1103/PhysRevB.83.064303
M. Büttiker, Absence of backscattering in the quantum Hall effect in multiprobe conductors, Phys. Rev. B, 1988, 38(14): 9375 https://doi.org/10.1103/PhysRevB.38.9375
L. Zhang, J.-S. Wang, and B. Li, Ballistic thermal rectification in nanoscale three-terminal junctions, Phys. Rev. B, 2010, 81(10): 100301(R) https://doi.org/10.1103/PhysRevB.81.100301
73
Z. X. Xie, K. M. Li, L. M. Tang, C. N. Pan, and K. Q. Chen, Nonlinear phonon transport and ballistic thermal rectification in asymmetric graphene-based three terminal junctions, Appl. Phys. Lett., 2012, 100(18): 183110 https://doi.org/10.1063/1.4711204
D. Roy, Crossover from ballistic to diffusive thermal transport in quantum Langevin dynamics study of a harmonic chain connected to self-consistent reservoirs, Phys. Rev. E, 2008, 77(6): 062102 https://doi.org/10.1103/PhysRevE.77.062102
76
M. Bandyopadhyay and D. Segal, Quantum heat transfer in harmonic chains with self-consistent reservoirs: exact numerical simulations, Phys. Rev. E, 2011, 84(1): 011151 https://doi.org/10.1103/PhysRevE.84.011151
H. Li, B. K. Agarwalla, and J. S. Wang, Generalized Caroli formula for the transmission coefficient with lead-lead coupling, Phys. Rev. E, 2012, 86(1): 011141 https://doi.org/10.1103/PhysRevE.86.011141
79
M. Esposito, U. Harbola, and S. Mukamel, Nonequilibrium fluctuations, fluctuation theorems, and counting statistics in quantum systems, Rev. Mod. Phys., 2009, 81(4): 1665 https://doi.org/10.1103/RevModPhys.81.1665
80
M. Campisi, P. Hänggi, and P. Talkner, Quantum fluctuation relations: Foundations and applications, Rev. Mod. Phys., 2011, 83(3): 771 https://doi.org/10.1103/RevModPhys.83.771
H. Li, B. K. Agarwalla, and J. S. Wang, Cumulant generating function formula of heat transfer in ballistic systems with lead-lead coupling, Phys. Rev. B, 2012, 86(16): 165425 https://doi.org/10.1103/PhysRevB.86.165425
85
J. S. Wang, B. K. Agarwalla, and H. Li, Transient behavior of full counting statistics in thermal transport, Phys. Rev. B, 2011, 84(15): 153412 https://doi.org/10.1103/PhysRevB.84.153412
86
A. O. Gogolin and A. Komnik, Towards full counting statistics for the Anderson impurity model, Phys. Rev. B, 2006, 73(19): 195301 https://doi.org/10.1103/PhysRevB.73.195301
87
H. Li, B. K. Agarwalla, B. Li, and J. S. Wang, Cumulants of heat transfer in nonlinear quantum systems, arXiv: 1210.2798, 2012
88
L. S. Levitov and G. B. Lesovik, Charge distribution in quantum shot noise, JETP Lett., 1993, 58: 230
89
L. S. Levitov, H. Lee, and G. B. Lesovik, Electron counting statistics and coherent states of electric current, J. Math. Phys., 1996, 37(10): 4845 https://doi.org/10.1063/1.531672
G. Gallavotti and E. G. D. Cohen, Dynamical ensembles in nonequilibrium statistical mechanics, Phys. Rev. Lett., 1995, 74(14): 2694 https://doi.org/10.1103/PhysRevLett.74.2694
K. Saito and A. Dhar, Generating function formula of heat transfer in harmonic networks, Phys. Rev. E, 2011, 83(4 Pt 1): 041121 https://doi.org/10.1103/PhysRevE.83.041121
N. W. Ashcroft and N. D. Mermin, Solid State Physics, Saunders College, 1976
96
J. W. Jiang, J. S. Wang, and B. Li, Thermal contraction in silicon nanowires at low temperatures, Nanoscale, 2010, 2(12): 2864 https://doi.org/10.1039/c0nr00437e
97
J. W. Jiang and J. S. Wang, Thermal expansion in multiple layers of graphene, arXiv: 1108.5820, 2011
Y. Xu, J. S. Wang, W. Duan, B. L. Gu, and B. Li, Nonequilibrium Green’s function method for phonon-phonon interactions and ballistic-diffusive thermal transport, Phys. Rev. B, 2008, 78(22): 224303 https://doi.org/10.1103/PhysRevB.78.224303
J. T. Lü and J. S. Wang, Coupled electron and phonon transport in one-dimensional atomic junctions, Phys. Rev. B, 2007, 76(16): 165418 https://doi.org/10.1103/PhysRevB.76.165418
103
P. Myöhänen, A. Stan, G. Stefanucci, and R. van Leeuwen, Kadanoff-Baym approach to quantum transport through interacting nanoscale systems: From the transient to the steady-state regime, Phys. Rev. B, 2009, 80(11): 115107 https://doi.org/10.1103/PhysRevB.80.115107
L. Lindsay, D. A. Broido, and N. Mingo, Lattice thermal conductivity of single-walled carbon nanotubes: Beyond the relaxation time approximation and phonon-phonon scattering selection rules, Phys. Rev. B, 2009, 80(12): 125407 https://doi.org/10.1103/PhysRevB.80.125407
106
L. Zhang, J. Thingna, D. He, J.-S. Wang, and B. Li, Nonlinearity enchanced interfacial thermal conducntance and rectification, 2013 (in preparation)
107
D. He, S. Buyukdagli, and B. Hu, Thermal conductivity of anharmonic lattices: effective phonons and quantum corrections, Phys. Rev. E, 2008, 78(6): 061103 https://doi.org/10.1103/PhysRevE.78.061103
108
J. Thingna, Steady-state transport properties of anharmonic systems, Ph.D. thesis, National University Singapore, 2013
109
A. Dhar, K. Saito, and P. Hänggi, Nonequilibrium densitymatrix description of steady-state quantum transport, Phys. Rev. E, 2012, 85(1): 011126 https://doi.org/10.1103/PhysRevE.85.011126
110
H.P. Breuer and F. Petruccione, The Theory of Open Quantum Systems, Oxford: Oxford University Press, 2002
G. Lindblad, On the generators of quantum dynamical semigroups, Commun. Math. Phys., 1976, 48(2): 119 https://doi.org/10.1007/BF01608499
118
T. Mori and S. Miyashita, Dynamics of the density matrix in contact with a thermal bath and the quantum master equation, J. Phys. Soc. Jpn., 2008, 77(12): 124005 https://doi.org/10.1143/JPSJ.77.124005
J. Thingna, J. S. Wang, and P. Hänggi, Generalized Gibbs state with modified Redfield solution: exact agreement up to second order, J. Chem. Phys., 2012, 136(19): 194110 https://doi.org/10.1063/1.4718706
121
B. B. Laird, J. Budimir, and J. L. Skinner, Quantummechanical derivation of the Bloch equations: Beyond the weak-coupling limit, J. Chem. Phys., 1991, 94(6): 4391 https://doi.org/10.1063/1.460626
122
S. Jang, J. Cao, and R. J. Silbey, Fourth-order quantum master equation and its Markovian bath limit, J. Chem. Phys., 2002, 116(7): 2705 https://doi.org/10.1063/1.1445105
F. Shibata, Y. Takahashi, and N. Hashitsume, A generalized stochastic Liouville equation, non-Markovian versus memoryless master equations, J. Stat. Phys., 1977, 17(4): 171 https://doi.org/10.1007/BF01040100
126
G. Nan, Q. Shi, and Z. Shuai, Nonperturbative timeconvolutionless quantum master equation from the path integral approach, J. Chem. Phys., 2009, 130(13): 134106 https://doi.org/10.1063/1.3108521
127
J. Thingna, J. L. García-Palacios, and J. S. Wang, Steadystate thermal transport in anharmonic systems: Application to molecular junctions, Phys. Rev. B, 2012, 85(19): 195452 https://doi.org/10.1103/PhysRevB.85.195452
128
L. A. Wu, C. X. Yu, and D. Segal, Nonlinear quantum heat transfer in hybrid structures: Sufficient conditions for thermal rectification, Phys. Rev. E, 2009, 80(4): 041103 https://doi.org/10.1103/PhysRevE.80.041103