Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2014, Vol. 9 Issue (1): 64-68   https://doi.org/10.1007/s11467-013-0345-5
  本期目录
Hole arrayed metal-insulator-metal structure for surface enhanced Raman scattering by self-assembling polystyrene spheres
Hole arrayed metal-insulator-metal structure for surface enhanced Raman scattering by self-assembling polystyrene spheres
Liang-Ping Xia1,2, Zheng Yang1,3, Shao-Yun Yin1, Wen-Rui Guo2, Jing-Lei Du3, Chun-Lei Du1()
1. Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 401122, China; 2. Institute of Optics and Electronics, Chinese Academy of Sciences, P. O. Box 350, Chengdu 610209, China; 3. Physics Department, Sichuan University, Chengdu 610064, China
 全文: PDF(338 KB)   HTML
Abstract

A fabrication process based on the self-assembling polystyrene spheres is proposed to obtain hole arrayed metal-insulator-metal (HA-MIM) structure for surface enhanced Raman scattering (SERS). The localized field enhancement aroused by the gap resonance in the HA-MIM structure is analyzed by finite-different time domain (FDTD) method. With reference to the theory result, the structure is experimentally fabricated and the Raman scattering spectrum of rhodamine 6G (R6G) is measured by a miniaturized Raman spectrometer. The results shows that the enhancement factor is 3.85 times higher than the control sample with single layered metal hole array. The fabrication process to obtain the HA-MIM SERS substrate is reproducible, fast, large area and low cost.

Key wordsmetal-insulator-metal    surface enhanced Raman scattering    self-assemble    gap resonance
收稿日期: 2013-03-31      出版日期: 2014-02-01
Corresponding Author(s): Du Chun-Lei,Email:cldu@cigit.ac.cn   
 引用本文:   
. Hole arrayed metal-insulator-metal structure for surface enhanced Raman scattering by self-assembling polystyrene spheres[J]. Frontiers of Physics, 2014, 9(1): 64-68.
Liang-Ping Xia, Zheng Yang, Shao-Yun Yin, Wen-Rui Guo, Jing-Lei Du, Chun-Lei Du. Hole arrayed metal-insulator-metal structure for surface enhanced Raman scattering by self-assembling polystyrene spheres. Front. Phys. , 2014, 9(1): 64-68.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-013-0345-5
https://academic.hep.com.cn/fop/CN/Y2014/V9/I1/64
1 L. Xia, S. Yin, H. Gao, Q. Deng, and C. Du, Sensitivity enhancement for surface plasmon resonance imaging biosensor by utilizing gold-silver bimetallic film configuration, Plasmonics , 2011, 6(2): 245
doi: 10.1007/s11468-010-9195-y
2 C. Li, L. Xia, H. Gao, R. Shi, C. Sun, H. Shi, and C. Du, Broadband absorption enhancement in a-Si:H thin-film solar cells sandwiched by pyramidal nanostructured arrays, Opt. Express , 2012, 20(S5): A589
doi: 10.1364/OE.20.00A589
3 A. E. Grow, L. L. Wood, J. L. Claycomb, and P. A. Thompson, New biochip technology for label-free detection of pathogens and their toxins, J. Microbiol. Methods , 2003, 53(2): 2213
doi: 10.1016/S0167-7012(03)00026-5
4 L. Yang, L. Ma, G. Chen, J. Liu, and Z. Tian, Ultrasensitive SERS detection of TNT by imprinting molecular recognition using a new type of stable substrate, Chemistry , 2010, 16(42): 12683
doi: 10.1002/chem.201001053
5 X. T. Wang, W. S. Shi, G. W. She, L. X. Mu, and S. T. Lee, High-performance surface-enhanced Raman scattering sensors based on Ag nanoparticles-coated Si nanowire arrays for quantitative detection of pesticides, Appl. Phys. Lett. , 2010, 96(5): 053104
doi: 10.1063/1.3300837
6 M. Mulvihill, A. Tao, K. Benjauthrit, J. Arnold, and P. Yang, Surface-enhanced Raman spectroscopy for trace arsenic detection in contaminated water, Angew. Chem. , 2008, 120(34): 6556
doi: 10.1002/ange.200800776
7 A. Campion and P. Kambhampati, Surface-enhanced Raman scattering, Chem. Soc. Rev. , 1998, 27(4): 241
doi: 10.1039/a827241z
8 HongxingXu, E. J. Bjerneld, M. K?ll, and L. B?rjesson, Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering, Phys. Rev. Lett. , 1999, 83(21): 4357
doi: 10.1103/PhysRevLett.83.4357
9 K. Kneipp, H. Kneipp, V. B. Kartha, R. Manoharan, G. Deinum, I. Itzkan, R. R. Dasari, and M. S. Feld, Detection and identification of a single DNA base molecule using surface-enhanced Raman scattering (SERS), Phys. Rev. E , 1998, 57(6): R6281
doi: 10.1103/PhysRevE.57.R6281
10 L. Xia, Z. Yang, S. Yin, W. Guo, S. Li, W. Xie, D. Huang, Q. Deng, H. Shi, H. Cui, and C. Du, Surface enhanced Raman scattering substrate with metallic nanogap array fabricated by etching the assembled polystyrene spheres array, Opt. Express , 2013, 21(9): 11349
doi: 10.1364/OE.21.011349
11 M. T. Sun, Z. L. Zhang, H. R. Zheng, and H. X. Xu, In-situ plasmon-driven chemical reactions revealed by high vacuum tip-enhanced Raman spectroscopy, Scientific Reports , 2012, 2: 647
doi: 10.1038/srep00647
12 M. Sun and H. Xu, A novel application of plasmonics: Plasmon-driven surface-catalyzed reactions, Small , 2012, 8(18): 2777
doi: 10.1002/smll.201200572
13 Y. Fang, Y. Li, H. Xu, and M. Sun, Ascertaining p, p_- dimercaptoazobenzene produced from p-aminothiophenol by selective catalytic coupling reaction on silver nanoparticles, Langmuir , 2010, 26(11): 7737
doi: 10.1021/la904479q
14 M. Sun, Y. Fang, Z. Zhang, and H. Xu, Activated vibrational modes and Fermi resonance in tip-enhanced Raman spectroscopy, Phys. Rev. E , 2013, 87(2): 020401
doi: 10.1103/PhysRevE.87.020401
15 J. Li, Y. Huang, Y. Ding, Z. Yang, S. Li, X. Zhou, F. Fan, W. Zhang, Z. Zhou, D. Wu, B. Ren, Z. Wang, and Z. Tian, Shell-isolated nanoparticle-enhanced Raman spectroscopy, Nature , 2010, 464(7287): 392
doi: 10.1038/nature08907
16 M. Jin, V. Pully, C. Otto, A. Berg, and E. T. Carlen, High-density periodic arrays of self-aligned subwavelength nanopyramids for surface-enhanced Raman spectroscopy, J. Phys. Chem. C , 2010, 114(50): 21953
doi: 10.1021/jp106245a
17 K. Li, L. Clime, B. Cui, and T. Veres, Surface enhanced Raman scattering on long-range ordered noble-metal nanocrescent arrays, Nanotechnology , 2008, 19(14): 145305
doi: 10.1088/0957-4484/19/14/145305
18 L. Xia, H. Gao, H. Shi, X. Dong, and C. Du, A wideband absorption enhancement for P3HT: PCBM addressing by silver nanosphere array, J. Comput. Theor. Nanosci. , 2011, 8(1): 27
doi: 10.1166/jctn.2011.1653
19 T. Xu, Y. K. Wu, X. G. Luo, and L. J. Guo, Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging, Nature Communications , 2010, 1:59
doi: 10.1038/ncomms1058
20 D. Woolf, M. Loncar, and F. Capasso, The forces from coupled surface plasmon polaritons in planar waveguides, Opt. Express , 2009, 17(22): 19996
doi: 10.1364/OE.17.019996
21 B. Y. Choi, D. Choi, and L. P. Lee, Metal-insulator-metal optical nanoantenna with equivalent-circuit analysis, Adv. Mater. , 2010, 22(15): 1754
doi: 10.1002/adma.200903443
22 Y. Chu, M. G. Banaee, and K. B. Crozier, Double-resonance plasmon substrates for surface-enhanced Raman Scattering with enhancement at excitation and stokes frequencies, ACS Nano , 2010, 4(5): 5
doi: 10.1021/nn901826q
23 Y. Chu, D. Wang, W. Q. Zhu, and K. B. Crozier, Double resonance surface enhanced Raman scattering substrates: An intuitive coupled oscillator model, Opt. Express , 2011, 19(16): 14919
doi: 10.1364/OE.19.014919
24 H. C. Kim and X. Cheng, SERS-active substrate based on gap surface plasmon polaritons, Opt. Express , 2009, 17(20): 17234
doi: 10.1364/OE.17.017234
25 B. Z. Wang, W. Zhao, A. Chen, and S.-J. Chua, Formation of nanoimprinting mould through use of nanosphere lithography, J. Cryst. Growth , 2006, 288(1): 200
doi: 10.1016/j.jcrysgro.2005.12.051
26 M. G. Nielsen, D. K. Gramotnev, A. Pors, O. Albrektsen, and S. I. Bozhevolnyi, Continuous layer gap plasmon resonators, Opt. Express , 2011, 19(20): 19310
doi: 10.1364/OE.19.019310
27 S. Li, S. Yin, Y. Jiang, C. Yin, Q. Deng, and C. Du, Specific protein detection in multiprotein coexisting environment by using LSPR biosensor, IEEE Transactions on Nanotechnology , 2010, 9(5): 554
doi: 10.1109/TNANO.2010.2050698
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed