Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2013, Vol. 8 Issue (4): 394-404   https://doi.org/10.1007/s11467-013-0348-2
  RESEARCH ARTICLE 本期目录
Simulation study on cavity growth in ductile metal materials under dynamic loading
Simulation study on cavity growth in ductile metal materials under dynamic loading
Ai-Guo Xu(), Guang-Cai Zhang, Yang-Jun Ying, Xi-Jun Yu
National Key Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, P. O. Box 8009-26, Beijing 100088, China
 全文: PDF(952 KB)   HTML
Abstract

Cavity growth in ductile metal materials under dynamic loading is investigated via the material point method. Two typical cavity effects in the region subjected to rarefaction wave are identified: (i) part of material particles flow away from the cavity in comparison to the initial loading velocity, (ii) local regions show weaker negative or even positive pressures. Neighboring cavities interact via coalescence of isobaric contours. The growth of cavity under tension shows staged behaviors. After the initial slow stage, the volume and the dimensions in both the tensile and transverse directions show linear growth rate with time until the global tensile wave arrives at the upper free surface. It is interesting that the growth rate in the transverse direction is faster than that in the tensile direction. The volume growth rate linearly increases with the initial tensile velocity. After the global tensile wave passed the cavity, both the maximum particle velocity in the tensile direction and the maximum particle velocity in the opposite direction increase logarithmically with the initial tensile speed. The shock wave reflected back from the cavity and compression wave from the free surface induce the initial behavior of interfacial instabilities such as the Richtmyer-Meshkov instability, which is mainly responsible for the irregularity in the morphology of deformed cavity. The local temperatures and distribution of hot spots are determined by the plastic work. Compared with the dynamical process, the heat conduction is much slower.

Key wordsmaterial point method    cavity growth    dynamic loading    interfacial instability
收稿日期: 2013-01-23      出版日期: 2013-08-01
Corresponding Author(s): Xu Ai-Guo,Email:Xu Aiguo@iapcm.ac.cn   
 引用本文:   
. Simulation study on cavity growth in ductile metal materials under dynamic loading[J]. Frontiers of Physics, 2013, 8(4): 394-404.
Ai-Guo Xu, Guang-Cai Zhang, Yang-Jun Ying, Xi-Jun Yu. Simulation study on cavity growth in ductile metal materials under dynamic loading. Front. Phys. , 2013, 8(4): 394-404.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-013-0348-2
https://academic.hep.com.cn/fop/CN/Y2013/V8/I4/394
1 G. T. Gray, P. J. Maudlin, L. M. Hull, Q. K. Zuo, and S. R. Chen, Predicting material strength, damage, and fracture the synergy between experiment and modeling, J. Fail. Anal. Prev. , 2005, 5(3): 7
doi: 10.1361/15477020523725
2 M. M. Carroll, and A. C. Holt, Static and dynamic PoreCollapse relations for ductile porous materials, J. Appl. Phys. , 1972, 27(3): 1626
doi: 10.1063/1.1661372
3 J. N. Johnson, Dynamic fracture and spallation in ductile solids, J. Appl. Phys. , 1981, 52(4): 2812
doi: 10.1063/1.329011
4 R. Becker, The effect of porosity distribution on ductile failure, J. Mech. Phys. Solids , 1987, 35(5): 577
doi: 10.1016/0022-5096(87)90018-4
5 M. Ortiz and A. Molinari, Effect of strain hardening and rate sensitivity on the dynamic growth of a void in a plastic material, J. Appl. Mech. , 1992, 59(1): 48
doi: 10.1115/1.2899463
6 D. J. Benson, An analysis of void distribution effects on the dynamic growth and coalescence of voids in ductile metals, J. Mech. Phys. Solids , 1993, 41(8): 1285
doi: 10.1016/0022-5096(93)90080-Y
7 X. Y. Wu, K. T. Ramesh, and T. W. Wright, The dynamic growth of a single void in a viscoplastic material under transient hydrostatic loading, J. Mech. Phys. Solids , 2003, 51(1): 1
doi: 10.1016/S0022-5096(02)00079-0
8 T. Pardoen, I. Doghri, and F. Delannay, Experimental and numerical comparison of void growth models and void coalescence criteria for the prediction of ductile fracture in copper bars, Acta Mater. , 1998, 46(2): 541
doi: 10.1016/S1359-6454(97)00247-4
9 T. Pardoen and J. W. Hutchinson, An extended model for void growth and coalescence, J. Mech. Phys. Solids , 2000, 48(12): 2467
doi: 10.1016/S0022-5096(00)00019-3
10 V. C. Orsini and M. A. Zikry, Void growth and interaction in crystalline materials, Int. J. Plast. , 2001, 17(10): 1393
doi: 10.1016/S0749-6419(00)00091-7
11 V. Tvergaard and J. W. Hutchinson, Two mechanisms of ductile fracture: Void by void growth versus multiple void interaction, Int. J. Solids Struct. , 2002, 39(13–14): 3581
doi: 10.1016/S0020-7683(02)00168-3
12 T. I. Zohdi, M. Kachanov, and I. Sevostianov, On perfectly plastic flow in porous material, Int. J. Plast. , 2002, 18(12): 1649
doi: 10.1016/S0749-6419(02)00005-0
13 D. R. Curran, L. Seaman, and D. A. Shockey, Dynamic failure of solids, Phys. Rep. , 1987, 147(5–6): 253
doi: 10.1016/0370-1573(87)90049-4
14 E. T. Seppala, J. Belak, and R. Rudd, Onset of void coalescence during dynamic fracture of ductile metals, Phys. Rev. Lett. , 2004, 93(24): 245503
doi: 10.1103/PhysRevLett.93.245503 pmid:15697824
15 A. K. Zurek, W. R. Thissell, J. N. Johnson, D. L. Tonks, and R. Hixson, Micromechanics of spall and damage in tantalum, J. Mater. Process. Technol. , 1996, 60(1–4): 261
doi: 10.1016/0924-0136(96)02340-0
16 A. K. Zurek, J. D. Embury, A. Kelly, W. R. Thissell, R. L. Gustavsen, J. E. Vorthman, and R. S. Hixson, Microstructure of depleted uranium under uniaxial strain conditions, AIP Conf. Proc. , 1998, 429: 423
doi: 10.1063/1.55658
17 D. L. Tonks, A. K. Zurek, and W. R. Thissell, Void coalescence model for ductile damage, AIP Conf. Proc. , 2002, 620: 611
doi: 10.1063/1.1483613
18 J. P. Bandstra, D. M. Goto, and D. A. Koss, Ductile failure as a result of a void-sheet instability: experiment and computational modeling, Mater. Sci. Eng. A , 1998, 249(1–2): 46
doi: 10.1016/S0921-5093(98)00562-0
19 J. P. Bandstra, and D. A. Koss, Modeling the ductile fracture process of void coalescence by void-sheet formation, Mater. Sci. Eng. A , 2001, 319–321: 490
doi: 10.1016/S0921-5093(00)02007-4
20 J. P. Bandstra, D. A. Koss, A. Geltmacher, P. Matic, and R. K. Everett, Modeling void coalescence during ductile fracture of a steel, Mater. Sci. Eng. A , 2004, 366(2): 269
doi: 10.1016/j.msea.2003.08.018
21 M. F. Horstemeyer, M. M. Matalanis, A. M. Sieber, and M. L. Botos, Micromechanical finite element calculations of temperature and void configuration effects on void growth and coalescence, Int. J. Plasticity , 2000, 16(7): 979
doi: 10.1016/S0749-6419(99)00076-5
22 E. T. Seppl?l?, J. Belak, and R. E. Rudd, Three-dimensional molecular dynamics simulations of void coalescence during dynamic fracture of ductile metals, Phys. Rev. B , 2005, 71(6): 064112
doi: 10.1103/PhysRevB.71.064112
23 L. M. Dupuy and R. E. Rudd, Surface identification, meshing and analysis during large molecular dynamics simulations, Model. Simul. Mater. Sci. Eng. , 2006, 14(2): 229
doi: 10.1088/0965-0393/14/2/008
24 W. Pang, G. Zhang, A. G. Xu, and G. Lu, Size effect in void growth and coalescence of face-centered cubic copper crystals, Chin. J. Comp. Phys. , 2011, 28: 540 (in Chinese)
25 W. Pang, P. Zhang, G. Zhang, A. G. Xu, and X. Zhao, The nucleation and growth of nanovoids under high tensile strain rate, Sci. China – Phys. Mech. Astron. , 2012, 42: 464
26 D. Burgess, D. Sulsky, and J. U. Brackbill, Mass matrix formulation of the FLIP particle-in-cell method, J. Comput. Phys. , 1992, 103(1): 1
doi: 10.1016/0021-9991(92)90323-Q
27 S. Bardenhagen, J. Brackbill, and D. Sulsky, The materialpoint method for granular materials, Comput. Methods Appl. Mech. Eng. , 2000, 187(3–4): 529
doi: 10.1016/S0045-7825(99)00338-2
28 N. P. Daphalapurkar, H. Lu, D. Coker, and R. Komanduri, Simulation of dynamic crack growth using the generalized interpolation material point (GIMP) method, Int. J. Fract. , 2007, 143(1): 79
doi: 10.1007/s10704-007-9051-z
29 S. Ma, X. Zhang, and X. M. Qiu, Comparison study of MPM and SPH in modeling hypervelocity impact problems, Int. J. Impact Eng. , 2009, 36(2): 272
doi: 10.1016/j.ijimpeng.2008.07.001
30 X. F. Pan, A. G. Xu, G. C. Zhang, P. Zhang, J. S. Zhu, S. Ma, and X. Zhang, Three-dimensional multi-mesh material point method for solving collision problems, Commun. Theor. Phys. , 2008, 49(5): 1129
doi: 10.1088/0253-6102/49/5/09
31 X. F. Pan, A. G. Xu, G. C. Zhang, and J. Zhu, Generalized interpolation material point approach to high melting explosive with cavities under shock, J. Phys. D , 2008, 41(1): 015401
doi: 10.1088/0022-3727/41/1/015401
32 A. G. Xu, X. F. Pan, G. C. Zhang, and J. Zhu, Materialpoint simulation of cavity collapse under shock, J. Phys.: Condens. Matter , 2007, 19(32): 326212
doi: 10.1088/0953-8984/19/32/326212
33 A. G. Xu, G. Zhang, X. F. Pan, and J. Zhu, Simulation Study of Shock Reaction on Porous Material, Commun. Theor. Phys. , 2009, 51(4): 691
doi: 10.1088/0253-6102/51/4/22
34 A. G. Xu, G. Zhang, P. Zhang, X. F. Pan, and J. Zhu, Dynamics and thermodynamics of porous HMX-like material under shock, Commun. Theor. Phys. , 2009, 52(5): 901
doi: 10.1088/0253-6102/52/5/28
35 A. G. Xu, G. C. Zhang, H. Li, Y. Ying, X. Yu, and J. Zhu, Temperature pattern dynamics in shocked porous materials, Sci. China – Phys. Mech. Astron. , 2010, 53(8): 1466
36 A. G. Xu, G. C. Zhang, Y. Ying, P. Zhang, and J. Zhu, Shock wave response of porous materials: from plasticity to elasticity, Phys. Scr. , 2010, 81(5): 055805
doi: 10.1088/0031-8949/81/05/055805
37 A. G. Xu, G. C. Zhang, H. Li, Y. Ying, and J. Zhu, Dynamical similarity in shock wave response of porous material: From the view of pressure, Comput. Math. Appl. , 2011, 61(12): 3618
doi: 10.1016/j.camwa.2010.10.003
38 F. Auricchio and L. B. da Veiga, On a new integration scheme for von-Mises plasticity with linear hardening, Int. J. Numer. Meth. Eng. , 2003, 56(10): 1375
doi: 10.1002/nme.612
39 B. Zhang, , Explosion Physics, Beijing: Ordance Industry Press of China, 1997
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed