Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2014, Vol. 9 Issue (1): 3-16   https://doi.org/10.1007/s11467-013-0356-2
  本期目录
Plasmon point spread functions: How do we model plasmon-mediated emission processes?
Plasmon point spread functions: How do we model plasmon-mediated emission processes?
Katherine A. Willets()
Department of Chemistry, University of Texas at Austin, Welch Hall 1.202, 105 E 24TH ST. STOP A5300, Austin, TX 78712, USA
 全文: PDF(751 KB)   HTML
Abstract

A major challenge with studying plasmon-mediated emission events is the small size of plasmonic nanoparticles relative to the wavelength of light. Objects smaller than roughly half the wavelength of light will appear as diffraction-limited spots in far-field optical images, presenting a significant experimental challenge for studying plasmonic processes on the nanoscale. Super-resolution imaging has recently been applied to plasmonic nanosystems and allows plasmon-mediated emission to be resolved on the order of ~5 nm. In super-resolution imaging, a diffraction-limited spot is fit to some model function in order to calculate the position of the emission centroid, which represents the location of the emitter. However, the accuracy of the centroid position strongly depends on how well the fitting function describes the data. This Perspective discusses the commonly used two-dimensional Gaussian fitting function applied to super-resolution imaging of plasmon-mediated emission, then introduces an alternative model based on dipole point spread functions. The two fitting models are compared and contrasted for super-resolution imaging of nanoparticle scattering/luminescence, surface-enhanced Raman scattering, and surface-enhanced fluorescence.

Key wordspoint spread function    dipole    super-resolution    surface-enhanced Raman scattering (SERS)    plasmon
收稿日期: 2013-04-01      出版日期: 2014-02-01
Corresponding Author(s): Willets Katherine A.,Email:kwillets@cm.utexas.edu   
 引用本文:   
. Plasmon point spread functions: How do we model plasmon-mediated emission processes?[J]. Frontiers of Physics, 2014, 9(1): 3-16.
Katherine A. Willets. Plasmon point spread functions: How do we model plasmon-mediated emission processes?. Front. Phys. , 2014, 9(1): 3-16.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-013-0356-2
https://academic.hep.com.cn/fop/CN/Y2014/V9/I1/3
1 K. A. Willets and R. P. Van Duyne, Localized surface plasmon resonance spectroscopy and sensing, Annu. Rev. Phys. Chem. , 2007, 58(1): 267
doi: 10.1146/annurev.physchem.58.032806.104607
2 N. J. Halas, S. Lal, W. S. Chang, S. Link, and P. Nordlander, Plasmons in strongly coupled metallic nanostructures, Chem. Rev. , 2011, 111(6): 3913
doi: 10.1021/cr200061k
3 J. A. Dionne and H. A. Atwater, Plasmonics: Metal-worthy methods and materials in nanophotonics, MRS Bull. , 2012, 37(8): 717
doi: 10.1557/mrs.2012.171
4 S. Lal, J. H. Hafner, N. J. Halas, S. Link, and P. Nordlander, Noble metal nanowires: From plasmon waveguides to passive and active devices, Acc. Chem. Res. , 2012, 45(11): 1887
doi: 10.1021/ar300133j
5 S. A. Maier, Plasmonics: Metal nanostructures for subwavelength photonic devices, IEEE J. Sel. Top. Quantum Electron. , 2006, 12(6): 1214
doi: 10.1109/JSTQE.2006.879582
6 M. Righini, P. Ghenuche, S. Cherukulappurath, V. Myroshnychenko, F. J. García de Abajo, and R. Quidant, Nanooptical trapping of Rayleigh particles and Escherichia coli bacteria with resonant optical antennas, Nano Lett. , 2009, 9(10): 3387
doi: 10.1021/nl803677x
7 K. C. Toussaint, M. Liu, M. Pelton, J. Pesic, M. J. Guffey, P.Guyot-Sionnest, and N. F. Scherer, Plasmon resonancebased optical trapping of single and multiple Au nanoparticles, Opt. Express , 2007, 15(19): 12017
doi: 10.1364/OE.15.012017
8 A. J. Haes, C. L. Haynes, A. D. McFarland, G. C. Schatz, R. P. van Duyne, and S. Zou, Plasmonic materials for surfaceenhanced sensing and spectroscopy, MRS Bull. , 2005, 30(5): 368
doi: 10.1557/mrs2005.100
9 R. S. Golightly, W. E. Doering, and M. J. Natan, Surfaceenhanced Raman spectroscopy and homeland security: A perfect match? ACS Nano , 2009, 3(10): 2859
doi: 10.1021/nn9013593
10 P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, Surface-enhanced Raman spectroscopy, Annu. Rev. Anal. Chem. , 2008, 1(1): 601
doi: 10.1146/annurev.anchem.1.031207.112814
11 M. Moskovits, Surface-enhanced Raman scattering, Topics in Applied Physics , 2006, 103: 1
doi: 10.1007/3-540-33567-6_1
12 E. Fort and S. Gresillon, Surface enhanced fluorescence, J. Phys. D , 2008, 41(1): 013001/1
13 C. D. Geddes, K. Aslan, I. Gryczynski, J. Malicka, and J. R. Lakowicz, Noble metal nanostructure for metal-enhanced fluorescence, Annual Reviews in Fluorescence , 2004, 1: 365
14 K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment, J. Phys. Chem. B , 2003, 107(3): 668
doi: 10.1021/jp026731y
15 K. L. Wustholz, A. I. Henry, J. M. McMahon, R. G. Freeman, N. Valley, M. E. Piotti, M. J. Natan, G. C. Schatz, and R. P.Van Duyne, Structure-activity relationships in gold nanoparticle dimers and trimers for surface-enhanced Raman spectroscopy, J. Am. Chem. Soc. , 2010, 132(31): 10903
doi: 10.1021/ja104174m
16 T. Shegai, Z. Li, T. Dadosh, Z. Zhang, H. Xu, and G. Haran, Managing light polarization via plasmon-molecule interactions within an asymmetric metal nanoparticle trimer, Proc. Natl. Acad. Sci. USA , 2008, 105(43): 16448
doi: 10.1073/pnas.0808365105
17 T. Shegai, B. Brian, V. D. Miljkovi?, and M. K?ll, Angular distribution of surface-enhanced Raman scattering from individual Au nanoparticle aggregates, ACS Nano , 2011, 5(3): 2036
doi: 10.1021/nn1031406
18 S. M. Stranahan and K. A. Willets, Super-resolution optical imaging of single-molecule SERS hot spots, Nano Lett. , 2010, 10(9): 3777
doi: 10.1021/nl102559d
19 H. Cang, A. Labno, C. Lu, X. Yin, M. Liu, C. Gladden, Y. Liu, and X. Zhang, Probing the electromagnetic field of a 15-nanometre hotspot by single molecule imaging, Nature , 2011, 469(7330): 385
doi: 10.1038/nature09698
20 T. Huang and X. H.Nancy Xu, Multicolored nanometreresolution mapping of single protein-ligand binding complexes using far-field photostable optical nanoscopy (PHOTON), Nanoscale , 2011, 3(9): 3567
doi: 10.1039/c1nr10182j
21 M. L. Weber and K. A. Willets, Correlated super-resolution optical and structural studies of surface-enhanced Raman scattering hot spots in silver colloid aggregates, J. Phys. Chem. Lett. , 2011, 2(14): 1766
doi: 10.1021/jz200784e
22 F. Balzarotti and F. D. Stefani, Plasmonics meets far-field optical nanoscopy, ACS Nano , 2012, 6(6): 4580
doi: 10.1021/nn302306m
23 M. Davies, A. Wochnik, F. Feil, C. Jung, C. Br?uchle, C. Scheu, and J. Michaelis, Synchronous emission from nanometric silver particles through plasmonic coupling on silver nanowires, ACS Nano , 2012, 6(7): 6049
doi: 10.1021/nn3011224
24 J. W. Ha, K. Marchuk, and N. Fang, Focused orientation and position imaging (FOPI) of single anisotropic plasmonic nanoparticles by total internal reflection scattering microscopy, Nano Lett. , 2012, 12(8): 4282
doi: 10.1021/nl301972t
25 T. Huang, L. M. Browning, and X. H. N.Xu, Far-field photostable optical nanoscopy (PHOTON) for real-time superresolution single-molecular imaging of signaling pathways of single live cells, Nanoscale , 2012, 4(9): 2797
doi: 10.1039/c2nr11739h
26 H. Lin, S. P. Centeno, L. Su, B. Kenens, S. Rocha, M. Sliwa, J. Hofkens, and H. Uji-i, Mapping of surface-enhanced fluorescence on metal nanoparticles using super-resolution photoactivation localization microscopy, ChemPhysChem , 2012, 13(4): 973
doi: 10.1002/cphc.201100743
27 L. B. Sagle, L. K. Ruvuna, J. M. Bingham, C. Liu, P. S. Cremer, and R. P. Van Duyne, Single plasmonic nanoparticle tracking studies of solid supported bilayers with ganglioside lipids, J. Am. Chem. Soc. , 2012, 134(38): 15832
doi: 10.1021/ja3054095
28 E. J. Titus, M. L. Weber, S. M. Stranahan, and K. A. Willets, Super-resolution SERS imaging beyond the singlemolecule limit: An isotope-edited approach, Nano Lett. , 2012, 12(10): 5103
doi: 10.1021/nl3017779
29 M. L. Weber, J. P. Litz, D. J. Masiello, and K. A. Willets, Super-resolution imaging reveals a difference between SERS and luminescence centroids, ACS Nano , 2012, 6(2): 1839
doi: 10.1021/nn205080q
30 X. Zhou, N. M. Andoy, G. Liu, E. Choudhary, K. S. Han, H. Shen, and P. Chen, Quantitative super-resolution imaging uncovers reactivity patterns on single nanocatalysts, Nat. Nanotechnol. , 2012, 7(4): 237
doi: 10.1038/nnano.2012.18
31 N. M. Andoy, X. Zhou, E. Choudhary, H. Shen, G. Liu, and P. Chen, Single-molecule catalysis mapping quantifies site-specific activity and uncovers radial activity gradient on single 2D nanocrystals, J. Am. Chem. Soc. , 2013, 135(5): 1845
doi: 10.1021/ja309948y
32 L. Wei, C. Liu, B. Chen, P. Zhou, H. Li, L. Xiao, and E. S. Yeung, Analytical Chemistry , 2013, Ahead of Print
33 K. Marchuk, J. W. Ha, and N. Fang, Three-dimensional high-resolution rotational tracking with superlocalization reveals conformations of surface-bound anisotropic nanoparticles, Nano Lett. , 2013, 13(3): 1245
doi: 10.1021/nl304764w
34 K. L. Blythe, K. M. Mayer, M. L. Weber, and K. A. Willets, Ground state depletion microscopy for imaging interactions between gold nanowires and fluorophore-labeled ligands, Phys. Chem. Chem. Phys. , 2013, 15(12): 4136
doi: 10.1039/c2cp43152a
35 W. E. Moerner, Microscopy beyond the diffraction limit using actively controlled single molecules, J. Microsc. , 2012, 246(3): 213
doi: 10.1111/j.1365-2818.2012.03600.x
36 K. A. Willets, S. M. Stranahan, and M. L. Weber, Shedding light on surface-enhanced Raman scattering hot spots through single-molecule super-resolution imaging, J. Phys. Chem. Lett. , 2012, 3(10): 1286
doi: 10.1021/jz300110x
37 A. Yildiz, J. N. Forkey, S. A. McKinney, T. Ha, Y. E. Goldman, and P. R. Selvin, Myosin V walks hand-over-hand: Single fluorophore imaging with 1.5-nm localization, Science , 2003, 300(5628): 2061
doi: 10.1126/science.1084398
38 G. P. Wiederrecht, Near-field optical imaging of noble metal nanoparticles, Eur. Phys. J.: Appl. Phys. , 2004, 28(1): 3
doi: 10.1051/epjap:2004170
39 K. I. Willig, B. Harke, R. Medda, and S. W. Hell, STED microscopy with continuous wave beams, Nat. Methods , 2007, 4(11): 915
doi: 10.1038/nmeth1108
40 Y. Sivan, Y. Sonnefraud, S. Kena-Cohen, J. B. Pendry, and S. A. Maier, ACS Nano , 2012, Ahead of Print
41 F. Wei and Z. Liu, Plasmonic structured illumination microscopy, Nano Lett. , 2010, 10(7): 2531
doi: 10.1021/nl1011068
42 E. H. Hellen and D. Axelrod, Fluorescence emission at dielectric and metal-film interfaces, J. Opt. Soc. Am. B , 1987, 4(3): 337
doi: 10.1364/JOSAB.4.000337
43 R. M. Dickson, D. J. Norris, and W. E. Moerner, Simultaneous imaging of individual molecules aligned both parallel and perpendicular to the optic axis, Phys. Rev. Lett. , 1998, 81(24): 5322
doi: 10.1103/PhysRevLett.81.5322
44 M. Bohmer and J. Enderlein, Orientation imaging of single molecules by wide-field epifluorescence microscopy, J. Opt. Soc. Am. B , 2003, 20(3): 554
doi: 10.1364/JOSAB.20.000554
45 J. Enderlein, E. Toprak, and P. R. Selvin, Polarization effect on position accuracy of fluorophore localization, Opt. Express , 2006, 14(18): 8111
doi: 10.1364/OE.14.008111
46 S. Stallinga and B. Rieger, Accuracy of the gaussian point spread function model in 2D localization microscopy, Opt. Express , 2010, 18(24): 24461
doi: 10.1364/OE.18.024461
47 E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M.W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, Imaging intracellular fluorescent proteins at nanometer resolution, Science , 2006, 313(5793): 1642
doi: 10.1126/science.1127344
48 M. J. Rust, M. Bates, and X. Zhuang, Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM), Nat. Methods , 2006, 3(10): 793
doi: 10.1038/nmeth929
49 K. Lidke, B. Rieger, T. Jovin, and R. Heintzmann, Superresolution by localization of quantum dots using blinking statistics, Opt. Express , 2005, 13(18): 7052
doi: 10.1364/OPEX.13.007052
50 J. F?lling, M. Bossi, H. Bock, R. Medda, C. A. Wurm, B. Hein, S. Jakobs, C. Eggeling, and S. W. Hell, Fluorescence nanoscopy by ground-state depletion and single-molecule return, Nat. Methods , 2008, 5(11): 943
doi: 10.1038/nmeth.1257
51 C. Steinhauer, C. Forthmann, J. Vogelsang, and P. Tinnefeld, Superresolution microscopy on the basis of engineered dark states, J. Am. Chem. Soc. , 2008, 130(50): 16840
doi: 10.1021/ja806590m
52 K. A. Willets and S. M. Stranahan, Single molecule spectroscopy and superresolution imaging V, in:Proceedings of SPIE 2012, 8228: 82280P-82280P-8
doi: 10.1117/12.908952
53 A. P. Bartko and R. M. Dickson, Imaging three-dimensional single molecule orientations, J. Phys. Chem. B , 1999, 103(51): 11237
doi: 10.1021/jp993364q
54 B. Sick, B. Hecht, and L. Novotny, Orientational imaging of single molecules by annular illumination, Phys. Rev. Lett. , 2000, 85(21): 4482
doi: 10.1103/PhysRevLett.85.4482
55 M. A. Lieb, J. M. Zavislan, and L. Novotny, Single-molecule orientations determined by direct emission pattern imaging, J. Opt. Soc. Am. B , 2004, 21(6): 1210
doi: 10.1364/JOSAB.21.001210
56 D. Patra, I. Gregor, and J. Enderlein, Image analysis of defocused single-molecule images for three-dimensional molecule orientation studies, J. Phys. Chem. A , 2004, 108(33): 6836
doi: 10.1021/jp048188m
57 J. Engelhardt, J. Keller, P. Hoyer, M. Reuss, T. Staudt, and S. W. Hell, Molecular orientation affects localization ac-curacy in superresolution far-field fluorescence microscopy, Nano Lett. , 2011, 11(1): 209
doi: 10.1021/nl103472b
58 K. I. Mortensen, L. S. Churchman, J. A. Spudich, and H. Flyvbjerg, Optimized localization analysis for singlemolecule tracking and super-resolution microscopy, Nat. Methods , 2010, 7(5): 377
doi: 10.1038/nmeth.1447
59 A. V. Abraham, S. Ram, J. Chao, E. S. Ward, and R. J. Ober, Quantitative study of single molecule location estimation techniques, Opt. Express , 2009, 17(26): 23352
doi: 10.1364/OE.17.023352
60 R. Parthasarathy, Rapid, accurate particle tracking by calculation of radial symmetry centers, Nat. Methods , 2012, 9(7): 724
doi: 10.1038/nmeth.2071
61 S. Wolter, A. L?schberger, T. Holm, S. Aufmkolk, M. C. Dabauvalle, S. van de Linde, and M. Sauer, rapidSTORM: Accurate, fast open-source software for localization microscopy, Nat. Methods , 2012, 9(11): 1040
doi: 10.1038/nmeth.2224
62 L. Zhu, W. Zhang, D. Elnatan, and B. Huang, Faster STORM using compressed sensing, Nat. Methods , 2012, 9(7): 721
doi: 10.1038/nmeth.1978
63 J. Chao, S. Ram, E. S. Ward, and R. J. Ober, Ultrahigh accuracy imaging modality for super-localization microscopy, Nat. Methods , 2013, 10(4): 335
doi: 10.1038/nmeth.2396
64 L. Xiao, Y. X. Qiao, Y. He, and E. S. Yeung, Three dimensional orientational imaging of nanoparticles with darkfield microscopy, Anal. Chem. , 2010, 82(12): 5268
doi: 10.1021/ac1006848
65 T. Li, Q. Li, Y. Xu, X. J. Chen, Q. F. Dai, H. Liu, S. Lan, S. Tie, and L. J. Wu, Three-dimensional orientation sensors by defocused imaging of gold nanorods through an ordinary wide-field microscope, ACS Nano , 2012, 6(2): 1268
doi: 10.1021/nn203979n
66 F. Wackenhut, A. Virgilio Failla, T. Zuechner, M. Steiner, and A. J. Meixner, Three-dimensional photoluminescence mapping and emission anisotropy of single gold nanorods, Appl. Phys. Lett. , 2012, 100(26): 263102/1
67 T. Motegi, H. Nabika, Y. Niidome, and K. Murakoshi, Observation of defocus images of a single metal nanorod, J. Phys. Chem. C , 2013, 117(6): 2535
doi: 10.1021/jp3065008
68 N. G. Khlebtsov, A. G. Mel’nikov, V. A. Bogatyrev, A. V. Alekseeva, and B. N. Khlebtsov, Depolarization of light scattered by gold nanospheres and nanorods, Opt. Spectrosc. , 2006, 100(3): 448
doi: 10.1134/S0030400X06030234
69 K. A. Koen, M. L. Weber, K. M. Mayer, E. Fernandez, and K. A. Willets, Spectrally-resolved polarization anisotropy of single plasmonic nanoparticles excited by total internal reflection, J. Phys. Chem. C , 2012, 116(30): 16198
doi: 10.1021/jp301878e
70 O. Schubert, J. Becker, L. Carbone, Y. Khalavka, T. Provalska, I. Zins, and C. S?nnichsen, Mapping the polarization pattern of plasmon modes reveals nanoparticle symmetry, Nano Lett. , 2008, 8(8): 2345
doi: 10.1021/nl801179a
71 L. K. Ausman and G. C. Schatz, On the importance of incorporating dipole reradiation in the modeling of surface enhanced Raman scattering from spheres, J. Chem. Phys. , 2009, 131(8): 084708/1
72 H. Xu and M. K?ll, Polarization-dependent surfaceenhanced Raman spectroscopy of isolated silver nanoaggregates, ChemPhysChem , 2003, 4(9): 1001
doi: 10.1002/cphc.200200544
73 S. M. Stranahan, E. J. Titus, and K. A. Willets, SERS orientational imaging of silver nanoparticle dimers, J. Phys. Chem. Lett. , 2011, 2(21): 2711
doi: 10.1021/jz201133p
74 S. M. Stranahan, E. J. Titus, and K. A. Willets, Discriminating nanoparticle dimers from higher order aggregates through wavelength-dependent SERS orientational imaging, ACS Nano , 2012, 6(2): 1806
doi: 10.1021/nn204866c
75 D. W. Brandl, N. A. Mirin, and P. Nordlander, Plasmon modes of nanosphere trimers and quadrumers, J. Phys.Chem. B , 2006, 110(25): 12302
doi: 10.1021/jp0613485
76 Z. Li, T. Shegai, G. Haran, and H. Xu, Multiple-particle nanoantennas for enormous enhancement and polarization control of light emission, ACS Nano , 2009, 3(3): 637
doi: 10.1021/nn800906c
77 T. Ming, H. Chen, R. Jiang, Q. Li, and J. Wang, Plasmoncontrolled fluorescence: Beyond the intensity enhancement, J. Phys. Chem. Lett. , 2012, 3(2): 191
doi: 10.1021/jz201392k
78 S. Kuhn, U. Hakanson, L. Rogobete, and V. Sandoghdar, Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna, Phys. Rev. Lett. , 2006, 97(1): 017402/1
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed