Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2014, Vol. 9 Issue (1): 120-127   https://doi.org/10.1007/s11467-013-0365-1
  本期目录
Firing rates of coupled noisy excitable elements
Firing rates of coupled noisy excitable elements
Shuai Liu1,2, Zhi-Wei He1,2, Meng Zhan1()
1. Wuhan Center for Magnetic Resonance, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China; 2. University of the Chinese Academy of Sciences, Beijing 100049, China
 全文: PDF(309 KB)   HTML
Abstract

The dynamics of coupled excitable FitzHugh–Nagumo systems under external noisy driving is studied. Different from most of previous work focusing on the noise-induced regularity in the framework of coherence resonance, here the average frequency (or firing rate) of coupled excitable elements is of much more concern. We find that (i) their frequencies first increase and then decrease with the increase of the coupling, and there is a clear crossover from a rush increase to a smooth increase with the increase of noise strength, and (ii) for nonidentical cases, all elements transit to an identical frequency simultaneously only after a certain coupling strength is achieved. These first-increase-thendecrease non-monotonic frequency behavior and isochronous frequency synchronization are believed to be two basic behaviors in coupled noisy excitable systems.

Key wordscoupled excitable elements    firing rate    noise    coherence resonance
收稿日期: 2013-05-10      出版日期: 2014-02-01
Corresponding Author(s): Zhan Meng,Email:zhanmeng@wipm.ac.cn   
 引用本文:   
. Firing rates of coupled noisy excitable elements[J]. Frontiers of Physics, 2014, 9(1): 120-127.
Shuai Liu, Zhi-Wei He, Meng Zhan. Firing rates of coupled noisy excitable elements. Front. Phys. , 2014, 9(1): 120-127.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-013-0365-1
https://academic.hep.com.cn/fop/CN/Y2014/V9/I1/120
1 A. T. Winfree, The Geometry of Biological Time, New York: Springer-Verlag, 1980
2 S. H. Strogatz, Nonlinear dynamics and chaos: With applications to physics, biology, chemistry, and engineering, Massachusetts: Perseus Books Publishing, 1994
3 A. Pikovsky, M. Rosenblum, and J. Kurths, Synchronization: A Universal Concept in Nonlinear Sciences, Cambridge: Cambridge University Press, 2001
doi: 10.1017/CBO9780511755743
4 T. B. Kepler, E. Marder, and L. F. Abbott, The effect of electrical coupling on the frequency of model neuronal oscillators, Science , 1990, 248(4951): 83
doi: 10.1126/science.2321028
5 S. Yamaguchi, H. Isejima, T. Matsuo, R. Okura, K. Yagita, M. Kobayashi, and H. Okamura, Synchronization of cellular clocks in the suprachiasmatic nucleus, Science , 2003, 302(5649): 1408
doi: 10.1126/science.1089287
6 M. R. Boyett, H. Honjo, and I. Kodama, The sinoatrial node, a heterogeneous pacemaker structure, Cardiovasc. Res ., 2000, 47(4): 658
doi: 10.1016/S0008-6363(00)00135-8
7 R. Benzi, A. Sutera, and A. Vulpiani, The mechanism of stochastic resonance, J. Phys. Math. Gen. , 1981, 14(11): L453
doi: 10.1088/0305-4470/14/11/006
8 L. Gammaitoni, P. Hanggi, P. Jung, and F. Marchesoni, Stochastic resonance, Rev. Mod. Phys. , 1998, 70(1): 223
doi: 10.1103/RevModPhys.70.223
9 T. Wellens, V. Shatokhin, and A. Buchleitner, Stochastic resonance, Rep. Prog. Phys. , 2004, 67(1): 45
doi: 10.1088/0034-4885/67/1/R02
10 B. Lindner, J. Garcia-Ojalvo, A. Neiman, and L. Schimansky-Geier, Effects of noise in excitable systems, Phys. Rep. , 2004, 392(6): 321
doi: 10.1016/j.physrep.2003.10.015
11 X. J. Zhang, H. Qian, and M. Qian, Stochastic theory of nonequilibrium steady states and its applications (Part I), Phys. Rep. , 2012, 510(1-2): 1
doi: 10.1016/j.physrep.2011.09.002
12 H. Ge, H. Qian, and M. Qian, Stochastic theory of nonequilibrium steady states. Part II: Applications in chemical biophysics, Phys. Rep. , 2012, 510(3): 87
doi: 10.1016/j.physrep.2011.09.001
13 G. Hu, T. Ditzinger, C. Z. Ning, and H. Haken, Twodimensional vortex lattice melting, Phys. Rev. Lett. , 1993, 71(3): 807
doi: 10.1103/PhysRevLett.71.432
14 A. S. Pikovsky and J. Kurths, Coherence resonance in a noise-driven excitable system, Phys. Rev. Lett. , 1997, 78(5): 775
doi: 10.1103/PhysRevLett.78.775
15 J. F. Lindner, B. K. Meadows, W. L. Ditto, M. E. Inchiosa, and A. R. Bulsara, Array enhanced stochastic resonance and spatiotemporal synchronization, Phys. Rev. Lett. , 1995, 75(1): 3
doi: 10.1103/PhysRevLett.75.3
16 B. Hu and C. S. Zhou, Phase synchronization in coupled nonidentical excitable systems and array-enhanced coherence resonance, Phys. Rev. E , 2000, 61(2): R1001
doi: 10.1103/PhysRevE.61.R1001
17 C. S. Zhou, J. Kurths, and B. Hu, Array-enhanced coherence resonance: Nontrivial effects of heterogeneity and spatial independence of noise, Phys. Rev. Lett. , 2001, 87(9): 098101
doi: 10.1103/PhysRevLett.87.098101
18 P. S. Landa and P. V. E. McClintock, Vibrational resonance, J. Phys. Math. Gen. , 2000, 33(45): L433
doi: 10.1088/0305-4470/33/45/103
19 E. Ullner, A. Zaikin, J. Garcia-Ojalvo, R. Bascones, and J. Kurths, Vibrational resonance and vibrational propagation in excitable systems, Phys. Lett. A , 2003, 312(5-6): 348
doi: 10.1016/S0375-9601(03)00681-9
20 C. G. Yao and M. Zhan, Signal transmission by vibrational resonance in one-way coupled bistable systems, Phys. Rev. E , 2010, 81(6): 061129
doi: 10.1103/PhysRevE.81.061129
21 C. G. Yao, Y. Liu, and M. Zhan, Frequency-resonanceenhanced vibrational resonance in bistable systems, Phys. Rev. E , 2011, 83(6): 061122
doi: 10.1103/PhysRevE.83.061122
22 C. J. Tessone, C. R. Mirasso, R. Toral, and J. D. Gunton, Diversity-induced resonance, Phys. Rev. Lett. , 2006, 97(19): 194101
doi: 10.1103/PhysRevLett.97.194101
23 S. F. Brandt, B. K. Dellen, and R. Wessel, Synchronization from disordered driving forces in arrays of coupled oscillators, Phys. Rev. Lett. , 2006, 96(3): 034104
doi: 10.1103/PhysRevLett.96.034104
24 C. G. Yao and M. Zhan, Simple electronic circuit model for diversity-induced resonance, Phys. Lett. A , 2010, 374(24): 2446
doi: 10.1016/j.physleta.2010.04.010
25 G. V. D.Sande, G. Verschaffelt, J. Danckaert, and C. R. Mirasso, Phys. Rev. E , 2005, 72: 016113
doi: 10.1103/PhysRevE.72.016113
26 P. Balenzuela, J. Garcia-Ojalvo, E. Manjarrez, L. Martinez, and C. R. Mirasso, Ghost resonance in a pool of heterogeneous neurons, Biosystems , 2007, 89(1-3): 166
doi: 10.1016/j.biosystems.2006.04.014
27 W. Y. Chiang, P. Y. Lai, and C. K. Chan, Frequency enhancement in coupled noisy excitable elements, Phys. Rev. Lett. , 2011, 106(25): 254102
doi: 10.1103/PhysRevLett.106.254102
28 P. Dayan and L. F. Abbott, Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems, Massachusetts: The MIT Press, 2001
29 K. Pakdaman, S. Tanabe, and T. Shimokawa, Coherence resonance and discharge time reliability in neurons and neuronal models, Neural Netw. , 2001, 14(6-7): 895
doi: 10.1016/S0893-6080(01)00025-9
30 H. Z. Risken, The Fokker–Planck Equation, Berlin: Springer-Verlag, 1989
doi: 10.1007/978-3-642-61544-3
31 Y. Kuramoto, Chemical Oscillations,Waves and Turbulence, Berlin: Springer-Verlag, 1984
doi: 10.1007/978-3-642-69689-3
32 Z. G. Zheng, G. Hu, and B. Hu, Phase slips and phase synchronization of coupled oscillators, Phys. Rev. Lett. , 1998, 81(24): 5318
doi: 10.1103/PhysRevLett.81.5318
33 Z. H. Liu, Y. C. Lai, and F. C. Hoppensteadt, Phase clustering and transition to phase synchronization in a large number of coupled nonlinear oscillators, Phys. Rev. E , 2001, 63(5): 055201 (R)
doi: 10.1103/PhysRevE.63.055201
34 Y. Wu, J. H. Xiao, G. Hu, and M. Zhan, Synchronizing large number of nonidentical oscillators with small coupling, Europhys. Lett , 2012, 97(4): 40005
doi: 10.1209/0295-5075/97/40005
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed