Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2013, Vol. 8 Issue (5): 516-539   https://doi.org/10.1007/s11467-013-0382-0
  REVIEW ARTICLE 本期目录
On physics beyond standard model
On physics beyond standard model
Yang Hu (胡杨)1, You-Kai Wang (王由凯)2, Peng-Fei Yin (殷鹏飞)3, Shou-Hua Zhu (朱守华)1,4()
1. Institute of Theoretical Physics & State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, China; 2. State Key Laboratory of Theoretical Physics and Kavli Institute for Theoretical Physics China (KITPC), Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China; 3. Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; 4. Center for High Energy Physics, Peking University, Beijing 100871, China
 全文: PDF(909 KB)   HTML
Abstract

In this review we do not try to cover all the aspects of physics beyond the standard model (BSM), instead our latest understandingon the BSM will be presented: i) The Higgs sector is likely related to BSM, which can be confirmed at current running large hadron collider (LHC) or the future colliders. Furthermore we pointed out that spontaneous CP violation can be closely related to the lightness of the Higgs boson. ii) Top quark forward-backward asymmetry, which was measured by Tevatron, might be the sign of BSM. We proposed a new color-octet particle ZC to account for the observation and ZC can be further studied at the LHC. iii) If dark matter (DM) is utilized to accommodate astrophysical observations, it ought to be observed at the high energy LHC and DM produced at colliders should be the smoking gun signal. iv) Lithium puzzle might also be the sign of the BSM. We briefly review the newly proposed solution to Lithium puzzle, i.e., the existence of non-thermal component during the big bang nuclei-synthesis (BBN). The possible origins of the non-thermal component can be dark matter or the new accelerating mechanism of normal particles.

Key wordsHiggs boson    physics beyond standard model    dark matter    top quark    CP violation
收稿日期: 2013-07-01      出版日期: 2013-10-01
Corresponding Author(s): Shou-Hua Zhu (朱守华),Email:shzhu@pku.edu.cn   
 引用本文:   
. On physics beyond standard model[J]. Frontiers of Physics, 2013, 8(5): 516-539.
Yang Hu (胡杨), You-Kai Wang (王由凯), Peng-Fei Yin (殷鹏飞), Shou-Hua Zhu (朱守华). On physics beyond standard model. Front. Phys. , 2013, 8(5): 516-539.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-013-0382-0
https://academic.hep.com.cn/fop/CN/Y2013/V8/I5/516
1 S. H. Zhu, Recent progress in physics beyond the standard model, Front. Phys. , 2013, 8(3): 241
doi: 10.1007/s11467-013-0335-7
2 G. Aad, . [ATLAS Collaboration], Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B , 2012, 716: 1, arXiv: 1207.7214
doi: 10.1016/j.physletb.2012.08.020
3 S. Chatrchyan, . [CMS Collaboration], Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B , 2012, 716: 30, 1207.7235
4 T. Li, X. Wan, Y.-K. Wang, and S.-H. Zhu, Constraints on the universal varying Yukawa couplings: from SM-like to fermiophobic, J. High Energy Phys. , 2012, 1209: 086, arXiv: 1203.5083 [hep-ph]
5 S. H. Zhu, Complex vacuum and lightness of Higgs boson, arXiv: 1211.2370 [hep-ph] , 2012
6 A. Sakharov, Quark-muonic currents and violation of CP invariance, Pisma Zh. Eksp. Teor. Fiz. , 1967, 5: 32
7 A. Riotto and M. Trodden, Recent progress in baryogenesis, Ann. Rev. Nucl. Part. Sci. , 1999, 49: 35, arXiv: hepph/ 9901362
8 T. Lee, A theory of spontaneous T violation, Phys. Rev. D , 1973, 8(4): 1226
doi: 10.1103/PhysRevD.8.1226
9 T. Lee, CP nonconservation and spontaneous symmetry breaking, Phys. Rep. , 1974, 9(2): 143
doi: 10.1016/0370-1573(74)90020-9
10 C. Huang and S. H. Zhu, Erratum: BXsτ+τ- in a CP spontaneously broken two Higgs doublet model, Phys. Rev. D , 2000, 61(1): 015011, arXiv: hep-ph/9905463
11 C. S. Huang, W. Liao, Q. S. Yan, and S. H. Zhu, Rare decay BXsι+ι- in a CP spontaneously broken two Higgs doublet model, Eur. Phys. J. C , 2002, 25(1): 103, arXiv: hep-ph/0110147
12 S. Weinberg, Gauge theory of CP nonconservation, Phys. Rev. Lett. , 1976, 37(11): 657
doi: 10.1103/PhysRevLett.37.657
13 G. C. Branco, Spontaneous CP nonconservation and natural flavor conservation: A minimal model, Phys. Rev. D , 1980, 22(11): 2901
doi: 10.1103/PhysRevD.22.2901
14 K. Shizuya and S. Tye, Higgs-particle mixing and CP violation, Phys. Rev. D , 1981, 23(7): 1613
doi: 10.1103/PhysRevD.23.1613
15 S. Zhu, Complete next-to-leading order QCD corrections to charged Higgs boson associated production with top quark at the CERN large hadron collider, Phys. Rev. D , 2003, 67(7): 075006, arXiv: hep-ph/0112109
doi: 10.1103/PhysRevD.67.075006
16 Q.-H. Cao, X. Wan, X.-P. Wang and S.-H. Zhu, Searching for charged Higgs boson in polarized top quark, Phys. Rev. D , 2013, 87: 055022, arXiv:1301.6608 [hep-ph]
doi: 10.1103/PhysRevD.87.055022
17 T. Aaltonen, . [CDF Collaboration], Measurement of the top quark forward-backward production asymmetry and its dependence on event kinematic properties, Phys. Rev. D , 2013, 87: 092002, arXiv: 1211.1003
doi: 10.1103/PhysRevD.87.092002
18 V. M. Abazov, . [D0 Collaboration], Measurement of leptonic asymmetries and top quark polarization in tˉt production, arXiv: 1207.0364, 2012
19 T. Aaltonen, . [CDF Collaboration], Angular cross section for tˉt production, Conf. Note , 2013: 10974
20 G. Aad, . [ATLAS Collaboration], ATLAS measurement of the top quark pair production charge asymmetry in proton-proton collisions at s = 7 TeV using the ATLAS detector, ATLAS-CONF-2013-078
21 S. Chatrchyan, . [CMS Collaboration], Inclusive and differential measurements of the tˉt charge asymmetry in proton-proton collisions at s = 7 TeV, Phys. Lett. B , 2012, 717: 129, arXiv: 1207.0065 [hep-ex]
22 J. H. Kuhn and G. Rodrigo, Charge asymmetry of heavy quarks at hadron colliders, Phys. Rev. D , 1999, 59(5): 054017, arXiv: hep-ph/9807420
doi: 10.1103/PhysRevD.59.054017
23 W. Bernreuther and Z. G. Si, Distributions and correlations for top quark pair production and decay at the Tevatron and LHC, Nucl. Phys. B , 2010, 837(1-2): 90, arXiv: 1003.392
24 V. Ahrens, A. Ferroglia, M. Neubert, B. D. Pecjak, and L. L. Yang, The top-pair forward-backward asymmetry beyond NLO, Phys. Rev. D , 2011, 84(7): 074004, arXiv: 1106.6051
doi: 10.1103/PhysRevD.84.074004
25 M. Czakon, P. Fiedler, A. Mitov, and J. Rojo, Further exploration of top pair hadroproduction at NNLO, arXiv: 1305.3892, 2013
26 S. Jung, H. Murayama, A. Pierce, and J. D.Wells, Top quark forward-backward asymmetry from new t-channel physics, Phys. Rev. D , 2010, 81(1): 015004, arXiv: 0907.4112
doi: 10.1103/PhysRevD.81.015004
27 K. Cheung, W. Y. Keung, and T. C. Yuan, Top quark forward-backward asymmetry, Phys. Lett. B , 2009, 682(3): 287, 0908.258
28 P. H. Frampton, J. Shu, and K. Wang, Axigluon as possible explanation for pp ˉtt ˉ forward-backward asymmetry, Phys. Lett. B , 2010, 683(4-5): 294, arXiv: 0911.295
29 J. Shu, K. Wang, and G. Zhu, A revisit to top quark forwardbackward asymmetry, Phys. Rev. D , 2012, 85: 034008, arXiv: 1104.0083
doi: 10.1103/PhysRevD.85.034008
30 B. Xiao, Y. Wang, and S. Zhu, Forward-backward asymmetry and differential cross section of top quark in flavor violating Z_ model at O(αs2αx), Phys. Rev. D , 2010, 82(3): 034026, arXiv: 1006.2510
doi: 10.1103/PhysRevD.82.034026
31 S. Chatrchyan, . [CMS Collaboration], Search for samesign top-quark pair production ats =7 TeV and limits on flavour changing neutral currents in the top sector, J. High Energy Phys. , 2011, 1108: 005, arXiv: 1106.2142
32 B. Xiao, Y. K. Wang, Z. Q. Zhou, and S. Zhu, Edge charge asymmetry in top pair production at the LHC , Phys. Rev. D 2011, 83(5): 057503, arXiv: 1101.250
33 H. Wang, Y. Wang, B. Xiao, and S.-H. Zhu, New coloroctet axial vector boson revisited, Phys. Rev. D , 2011, 84(9): 094019, 1107.576
34 T. Li, X. Wan, Y. K. Wang, and S.-H. Zhu, Distinguishing the color octet axial-vector-like particle for top quark asymmetry via color flow method at the LHC, arXiv: 1306.3586, 2013
35 J. Gallicchio and M. D. Schwartz, Seeing in color: Jet superstructure, Phys. Rev. Lett. , 2010, 105(2): 022001, arXiv: 1001.5027
doi: 10.1103/PhysRevLett.105.022001
36 F. Zwicky, Spectral displacement of extra galactic nebulae, Helv. Phys. Acta , 1933, 6: 110
37 H. W. Babcock, The rotation of the andromeda nebula, Lick. Observatory. Bulletin , 1939, 19: 41
38 V. C. Rubin, W. K. Jr. Ford, and N. Thonnard, Rotational properties of 21 SC galaxies with a large range of luminosities and radii, from NGC 4605/R=4kpc/to UGC 2885/R=122kpc,Astrophys. J. , 1980, 238: 471
39 V. C. Rubin, D. Burstein, W. K. Jr. Ford, and N. Thonnard, Rotation velocities of 16 SA galaxies and a comparison of Sa, Sb, and SC rotation properties, Astrophys. J. , 1985, 289: 81
doi: 10.1086/162866
40 D. Clowe, M. Bradac, A. H. Gonzalez, M. Markevitch, S. W. Randall, C. Jones, and D. Zaritsky, A direct empirical proof of the existence of dark matter, Astrophys. J. , 2006, 648(2): L109, arXiv: astro-ph/0608407
doi: 10.1086/508162
41 G. Hinshaw, . [WMAP Collaboration], Nine-year wilkinson microwave anisotropy probe (WMAP) observations: Cosmological parameter results, arXiv: 1212.5226 [astroph. CO]
42 P. A. R. Ade, . [Planck Collaboration], Planck 2013 results. XVI. Cosmological parameters, arXiv: 1303.5076 [astro-ph.CO]
43 A. G. Riess, . [Supernova Search Team Collaboration], Observational evidence from supernovae for an accelerating universe and a cosmological constant, Astron. J. , 1998, 116(3): 1009, arXiv: astro-ph/9805201
doi: 10.1086/300499
44 S. Perlmutter, . [Supernova Cosmology Project Collaboration], Measurements of Omega and Lambda from 42 high redshift supernovae, Astrophys. J. , 1999, 517(2): 565, arXiv: astro-ph/9812133
doi: 10.1086/307221
45 B. A. Reid, W. J. Percival, D. J. Eisenstein, L. Verde, ., Cosmological constraints from the clustering of the sloan digital sky survey DR7 luminous red galaxies, Mon. Not. Roy. Astron. Soc. , 2010, 404: 60, arXiv: 0907.1659 [astro-ph.CO]
46 B. A. Reid, L. Samushia, M. White, W. J. Percival, ., The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: Measurements of the growth of structure and expansion rate at z=0.57 from anisotropic clustering, arXiv: 1203.6641 [astro-ph.CO], 2012
47 M. Taoso, G. Bertone, and A. Masiero, Dark matter candidates: A ten-point test, J. cosmol. Astropart. Phys. , 2008, 0803: 022, arXiv: 0711.4996 [astro-ph]
48 G. Bertone, D. Hooper, and J. Silk, Particle dark matter: Evidence, candidates and constraints, Phys. Rep. , 2005, 405(5-6): 279, arXiv: hep-ph/0404175
doi: 10.1016/j.physrep.2004.08.031
49 E. W. Kolb and M. S. Turner, The Early Universe, New York: Addison-Wesley, 1990
50 G. Jungman, M. Kamionkowski, and K. Griest, Supersymmetric dark matter, Phys. Rep. , 1996, 267(5-6): 195, arXiv: hep-ph/9506380
doi: 10.1016/0370-1573(95)00058-5
51 D. Hooper and S. Profumo, Dark matter and collider phenomenology of universal extra dimensions, Phys. Rep. , 2007, 453(2-4): 29, arXiv: hep-ph/0701197
52 S. Dodelson and L. M. Widrow, Sterile-neutrinos as dark matter, Phys. Rev. Lett. , 1994, 72(1): 17, arXiv: hepph/ 9303287
53 X. D. Shi and G. M. Fuller, A New dark matter candidate: Nonthermal sterile neutrinos, Phys. Rev. Lett. , 1999, 82(14): 2832, arXiv: astro-ph/9810076
doi: 10.1103/PhysRevLett.82.2832
54 S. J. Asztalos, L. J. Rosenberg, K. van Bibber, P. Sikivie, and K. Zioutas, Searches for astrophysical and cosmological axions, Ann. Rev. Nucl. Part. Sci. , 2006, 56(1): 293
doi: 10.1146/annurev.nucl.56.080805.140513
55 M. W. Goodman and E. Witten, Detectability of certain dark matter candidates, Phys. Rev. D , 1985, 31(12): 3059
doi: 10.1103/PhysRevD.31.3059
56 R. Bernabei, . [DAMA Collaboration], First results from DAMA/LIBRA and the combined results with DAMA/NaI, Eur. Phys. J. C , 2008, 56: 333, arXiv: 0804.2741 [astro-ph]
doi: 10.1140/epjc/s10052-008-0662-y
57 C. E. Aalseth, . [CoGeNT Collaboration], Results from a search for light-mass dark matter with a P-type point contact germanium detector, Phys. Rev. Lett. , 2011, 106: 131301, arXiv: 1002.4703 [astro-ph.CO]
doi: 10.1103/PhysRevLett.106.131301
58 G. Angloher, M. Bauer, I. Bavykina, A. Bento, , Results from 730 kg days of the CRESST-II dark matter search, Eur Phys. J. C , 2012, 72: 1971, arXiv: 1109.0702 [astro-ph.CO]
59 C. Savage, G. Gelmini, P. Gondolo, and K. Freese, Compatibility of DAMA/LIBRA dark matter detection with other searches, J. Cosmol. Astropart. Phys. , 2009, 0904: 010, arXiv: 0808.3607 [astro-ph]
60 S. Chang, A. Pierce, and N. Weiner, Using the energy spectrum at DAMA/LIBRA to probe light dark matter, Phys. Rev. D , 2009, 79: 115011, arXiv: 0808.0196 [hep-ph]
doi: 10.1103/PhysRevD.79.115011
61 J. Angle, . [XENON10 Collaboration], A search for light dark matter in XENON10 data, Phys. Rev. Lett. , 2011,107: 051301, arXiv: 1104.3088 [astro-ph.CO]
doi: 10.1103/PhysRevLett.107.051301
62 E. Aprile, . [XENON100 Collaboration], Dark matter results from 225 live days of XENON100 data, Phys. Rev. Lett. , 2012, 109: 181301, arXiv: 1207.5988 [astro-ph.CO]
doi: 10.1103/PhysRevLett.109.181301
63 D. Hooper, J. I. Collar, J. Hall, D. McKinsey, and C. Kelso, A consistent dark matter interpretation for CoGeNT and DAMA/LIBRA, Phys. Rev. D , 2010, 82: 123509, arXiv: 1007.1005 [hep-ph]
doi: 10.1103/PhysRevD.82.123509
64 P. J. Fox, J. Liu, and N. Weiner, Integrating out astrophysical uncertainties, Phys. Rev. D , 2011, 83: 103514, arXiv: 1011.1915 [hep-ph]
doi: 10.1103/PhysRevD.83.103514
65 T. Schwetz, Direct detection data and possible hints for lowmass WIMPs, PoS IDM , 2011, 2010: 070, arXiv: 1011.5432 [hep-ph]
66 D. Tucker-Smith and N. Weiner, Inelastic dark matter, Phys. Rev. D , 2001, 64(4): 043502, arXiv: hep-ph/0101138
doi: 10.1103/PhysRevD.64.043502
67 S. Chang, G. D. Kribs, D. Tucker-Smith, and N. Weiner, Inelastic dark matter in light of DAMA/LIBRA, Phys. Rev. D , 2009, 79: 043513, arXiv: 0807.2250 [hep-ph]
doi: 10.1103/PhysRevD.79.043513
68 J. L. Feng, J. Kumar, D. Marfatia, and D. Sanford, Isospinviolating dark matter, Phys. Lett. B , 2011, 703: 124, arXiv: 1102.4331 [hep-ph]
doi: 10.1016/j.physletb.2011.07.083
69 Z. Ahmed, . [CDMS-II Collaboration], Dark matter search results from the CDMS II experiment, Science , 2010, 327: 1619, arXiv: 0912.3592 [astro-ph.CO]
doi: 10.1126/science.1186112
70 Z. Ahmed, . [CDMS-II Collaboration], Results from a low-energy analysis of the CDMS II germanium data, Phys Rev. Lett. , 2011, 106: 131302, arXiv: 1011.2482 [astroph. CO]
doi: 10.1103/PhysRevLett.106.131302
71 E. Armengaud, . [EDELWEISS Collaboration], Final results of the EDELWEISS-II WIMP search using a 4-kg array of cryogenic germanium detectors with interleaved electrodes, Phys. Lett. B , 2011, 702: 329, arXiv: 1103.4070 [astro-ph.CO]
doi: 10.1016/j.physletb.2011.07.034
72 M. Felizardo, T. A. Girard, T. Morlat, A. C. Fernandes, , Final analysis and results of the phase II SIMPLE dark matter search, Phys. Rev. Lett. , 2012, 108: 201302, arXiv: 1106.3014 [astro-ph.CO]
doi: 10.1103/PhysRevLett.108.201302
73 D. Y. Akimov, H. M. Araujo, E. J. Barnes, V. A. Belov, , WIMP-nucleon cross-section results from the second science run of ZEPLIN-III, Phys. Lett. B , 2012, 709: 14, arXiv: 1110.4769 [astro-ph.CO]
doi: 10.1016/j.physletb.2012.01.064
74 O. Buchmueller, , Higgs and supersymmetry, Eur. Phys. J. C , 2012, 72: 2020, arXiv: 1112.3564 [hep-ph]
doi: 10.1140/epjc/s10052-012-2020-3
75 C. Strege, , Updated global fits of the cMSSM including the latest LHC SUSY and Higgs searches and XENON100 data, J. Cosmol. Astropart. Phys. , 2012, 1203: 030, arXiv: 1112.4192 [hep-ph]
76 A. Fowlie, , The CMSSM favoring new territories: The impact of new LHC limits and a 125 GeV Higgs, Phys. Rev. D , 2012, 86: 075010, arXiv:1206.0264 [hep-ph]
doi: 10.1103/PhysRevD.86.075010
77 E. Aprile [XENON1T Collaboration], The XENON1T dark matter search experiment, arXiv: 1206.6288 [astro-ph.IM] , 2012
78 E. Aprile, . [XENON100 Collaboration], Limits on spindependent WIMP-nucleon cross sections from 225 live days of XENON100 data, arXiv: 1301.6620 [astroph.CO] , 2013
79 J. Angle, E. Aprile, F. Arneodo, L. Baudis, , Limits on spin-dependent WIMP-nucleon crosssections from the XENON10 experiment, Phys. Rev. Lett. , 2008, 101: 091301, arXiv: 0805.2939 [astro-ph]
doi: 10.1103/PhysRevLett.101.091301
80 Z. Ahmed, . [CDMS Collaboration], Search for weakly interacting massive particles with the first five-tower data from the cryogenic dark matter search at the Soudan underground laboratory, Phys. Rev. Lett. , 2009, 102: 011301, arXiv: 0802.3530 [astro-ph]
doi: 10.1103/PhysRevLett.102.011301
81 S. Archambault, . [PICASSO Collaboration], Constraints on low-mass WIMP interactions on 19F from PICASSO, Phys. Lett. B , 2012, 711: 153, arXiv: 1202.1240 [hep-ex]
doi: 10.1016/j.physletb.2012.03.078
82 E. Behnke, . [COUPP Collaboration], First dark matter search results from a 4-kg CF3I bubble chamber operated in a deep underground site, Phys. Rev. D , 2012, 86: 052001, arXiv: 1204.3094 [astro-ph.CO]
doi: 10.1103/PhysRevD.86.052001
83 S. C. Kim, H. Bhang, J. H. Choi, W. G. Kang, , New limits on interactions between weakly interacting massive particles and nucleons obtained with CsI(Tl) crystal detectors, Phys. Rev. Lett. , 2012, 108: 181301, arXiv: 1204.2646 [astro-ph.CO]
doi: 10.1103/PhysRevLett.108.181301
84 M. G. Aartsen, . [IceCube Collaboration], Search for dark matter annihilations in the Sun with the 79-string Ice- Cube detector, Phys. Rev. Lett. , 2013, 110: 131302, arXiv: 1212.4097 [astro-ph.HE]
doi: 10.1103/PhysRevLett.110.131302
85 E. A. Baltz and J. Edsjo, Positron propagation and fluxes from neutralino annihilation in the halo, Phys. Rev. D , 1998, 59(2): 023511, arXiv: astro-ph/9808243
doi: 10.1103/PhysRevD.59.023511
86 I. V. Moskalenko and A. W. Strong, Production and propagation of cosmic ray positrons and electrons, Astrophys. J. , 1998, 493(2): 694, arXiv: astro-ph/9710124
doi: 10.1086/305152
87 I. V. Moskalenko and A. W. Strong, Positrons from particle dark-matter annihilation in the galactic halo: propagation green’s functions, Phys. Rev. D , 1999, 60(6): 063003, arXiv: astro-ph/9905283
doi: 10.1103/PhysRevD.60.063003
88 A. W. Strong, I. V. Moskalenko, and V. S. Ptuskin, Cosmicray propagation and interactions in the Galaxy, Ann. Rev. Nucl. Part. Sci. , 2007, 57(1): 285, arXiv: astro-ph/0701517
89 S. W. Barwick, . [HEAT Collaboration], Measurements of the cosmic ray positron fraction from 1 GeV to 50 GeV, Astrophys. J. , 1997, 482: L191, arXiv: astro-ph/9703192
doi: 10.1086/310706
90 S. Coutu, , Positron measurements with the HEAT-pinstrument, in: International Cosmic Ray Conference (2001), Vol. 5 of International Cosmic Ray Conference, p. 1687
91 M. Aguilar, . [AMS-01 Collaboration], Cosmic-ray positron fraction measurement from 1 GeV to 30 GeV with AMS-01, Phys. Lett. B , 2007, 646: 145, arXiv: astroph/ 0703154 [astro-ph]
92 O. Adriani, . [PAMELA Collaboration], An anomalous positron abundance in cosmic rays with energies 1.5-100 GeV, Nature , 2009, 458: 607, arXiv: 0810.4995 [astro-ph]
doi: 10.1038/nature07942
93 M. Aguilar, . [AMS Collaboration], First result from the alpha magnetic spectrometer on the international space station: Precision measurement of the positron fraction in primary cosmic rays of 0.5-350 GeV, Phys. Rev. Lett. , 2013, 110(14): 141102
doi: 10.1103/PhysRevLett.110.141102
94 J. Chang, J. H. Adams, H. S. Ahn, G. L. Bashindzhagyan, M. Christl, O. Ganel, T. G. Guzik, J. Isbert, K. C. Kim, E. N. Kuznetsov, M. I. Panasyuk, A. D. Panov, W. K. H. Schmidt, E. S. Seo, N. V. Sokolskaya, J. W. Watts, J. P. Wefel, J. Wu, and V. I. Zatsepin, An excess of cosmic ray electrons at energies of 300-800 GeV, Nature , 2008, 456(7220): 362
doi: 10.1038/nature07477
95 M. Ackermann, . [Fermi LAT Collaboration], Fermi LAT observations of cosmic-ray electrons from 7 GeV to 1 TeV, Phys. Rev. D , 2010, 82: 092004, 1008.3999 [astro-ph.HE]
96 F. Aharonian, . [HESS Collaboration], The energy spectrum of cosmic-ray electrons at TeV energies, Phys. Rev. Lett. , 2008, 101: 261104, arXiv: 0811.3894 [astro-ph]
doi: 10.1103/PhysRevLett.101.261104
97 F. Aharonian, . [HESS Collaboration], Probing the ATIC peak in the cosmic-ray electron spectrum with HESS, Astron. Astrophys. , 2009, 508: 561, arXiv: 0905.0105 [astroph. HE]
doi: 10.1051/0004-6361/200913323
98 M. Ackermann, . [Fermi LAT Collaboration], Measurement of separate cosmic-ray electron and positron spectra with the Fermi large area telescope, Phys. Rev. Lett. , 2012, 108: 011103, arXiv: 1109.0521 [astro-ph.HE]
doi: 10.1103/PhysRevLett.108.011103
99 O. Adriani, . [PAMELA Collaboration], The cosmic-ray electron flux measured by the PAMELA experiment between 1 and 625 GeV, Phys. Rev. Lett. , 2011, 106: 201101, arXiv: 1103.2880 [astro-ph.HE]
doi: 10.1103/PhysRevLett.106.201101
100 O. Adriani, G. C. Barbarino, G. A. Bazilevskaya, R. Bellotti, , A new measurement of the antiproton-to-proton flux ratio up to 100 GeV in the cosmic radiation, Phys. Rev. Lett. , 2009, 102: 051101, arXiv: 0810.4994 [astro-ph]
101 M. Cirelli, M. Kadastik, M. Raidal and A. Strumia, Modelindependent implications of the e+, e-, anti-proton cosmic ray spectra on properties of Dark Matter, Nucl. Phys. B , 2009, 813: 1, arXiv: 0809.2409 [hep-ph]
doi: 10.1016/j.nuclphysb.2008.11.031
102 T. Delahaye, R. Lineros, F. Donato, N. Fornengo and P. Salati, Positrons from dark matter annihilation in the galactic halo: Theoretical uncertainties, Phys. Rev. D , 2008, 77: 063527, arXiv: 0712.2312 [astro-ph]
doi: 10.1103/PhysRevD.77.063527
103 T. Delahaye, F. Donato, N. Fornengo, J. Lavalle, R. Lineros, P. Salati and R. Taillet, Galactic secondary positron flux at the Earth, Astron. Astrophys. , 2009, 501: 821, arXiv: 0809.5268 [astro-ph]
doi: 10.1051/0004-6361/200811130
104 J. Liu, Q. Yuan, X. J. Bi, H. Li and X. Zhang, A Markov chain Monte Carlo study on dark matter property related to the cosmic e± excesses, Phys. Rev. D , 2010, 81: 023516, arXiv: 0906.3858 [astro-ph.CO]
doi: 10.1103/PhysRevD.81.023516
105 J. Liu, Q. Yuan, X. J. Bi, H. Li, and X. Zhang, Cos-RayMC: A global fitting method in studying the properties of the new sources of cosmic e± excesses, Phys. Rev. D , 2012, 85: 043507, arXiv: 1106.3882 [astro-ph.CO]
doi: 10.1103/PhysRevD.85.043507
106 Q. Yuan, X. J. Bi, G. M. Chen, Y.Q. Guo, S. J. Lin, and X. Zhang, Implications of the AMS-02 positron fraction in cosmic rays, arXiv: 1304.1482 [astro-ph.HE] , 2013
107 D. Hooper, A. Stebbins, and K. M. Zurek, Excesses in cosmic ray positron and electron spectra from a nearby clump of neutralino dark matter, Phys. Rev. D , 2009, 79: 103513, arXiv: 0812.3202 [hep-ph]
doi: 10.1103/PhysRevD.79.103513
108 X.-J. Bi, R. Brandenberger, P. Gondolo, T.-J. Li, Q. Yuan, and X.-M. Zhang, Non-thermal production of WIMPs, cosmic e± excesses and gamma-rays from the galactic center, Phys. Rev. D , 2009, 80: 103502, arXiv: 0905.1253 [hep-ph]
doi: 10.1103/PhysRevD.80.103502
109 D. Feldman, Z. Liu, and P. Nath, PAMELA positron excess as a signal from the hidden sector, Phys. Rev. D , 2009, 79: 063509, arXiv: 0810.5762 [hep-ph]
doi: 10.1103/PhysRevD.79.063509
110 M. Ibe, H. Murayama, and T. T. Yanagida, Breit-Wigner enhancement of dark matter annihilation, Phys. Rev. D , 2009, 79: 095009: arXiv: 0812.0072 [hep-ph]
doi: 10.1103/PhysRevD.79.095009
111 W.-L. Guo and Y.-L. Wu, Enhancement of dark matter annihilation via Breit-Wigner resonance, Phys. Rev. D , 2009, 79: 055012, arXiv: 0901.1450 [hep-ph]
doi: 10.1103/PhysRevD.79.055012
112 M. Pospelov and A. Ritz, Astrophysical signatures of secluded dark matter, Phys. Lett. B , 2009, 671: 391, arXiv: 0810.1502 [hep-ph]
doi: 10.1016/j.physletb.2008.12.012
113 N. Arkani-Hamed, D. P. Finkbeiner, T. R. Slatyer, and N. Weiner, A theory of dark matter, Phys. Rev. D , 2009, 79: 015014, arXiv: 0810.0713 [hep-ph]
doi: 10.1103/PhysRevD.79.015014
114 P.-F. Yin, Q. Yuan, J. Liu, J. Zhang, X.-J. Bi, S.-H. Zhu, and X.-M. Zhang, PAMELA data and leptonically decaying dark matter, Phys. Rev. D , 2009, 79: 023512, arXiv: 0811.0176 [hep-ph]
doi: 10.1103/PhysRevD.79.023512
115 K. Ishiwata, S. Matsumoto, and T. Moroi, Cosmic-ray positron from superparticle dark matter and the PAMELA anomaly, Phys. Lett. B , 2009, 675: 446, arXiv: 0811.0250 [hep-ph]
doi: 10.1016/j.physletb.2009.04.049
116 A. Ibarra and D. Tran, Decaying dark matter and the PAMELA anomaly, J. Cosmol. Astropart. Phys. , 2009, 0902: 021, arXiv: 0811.1555 [hep-ph]
117 C.-R. Chen, M. M. Nojiri, F. Takahashi, and T. T. Yanagida, Decaying hidden gauge boson and the PAMELA and ATIC/PPB-BETS anomalies, Prog. Theor. Phys. , 2009, 122: 553, arXiv: 0811.3357 [astro-ph]
doi: 10.1143/PTP.122.553
118 A. Arvanitaki, S. Dimopoulos, S. Dubovsky, P. W. Graham, R. Harnik, and S. Rajendran, Astrophysical probes of unification, Phys. Rev. D , 2009, 79: 105022, arXiv: 0812.2075 [hep-ph]
doi: 10.1103/PhysRevD.79.105022
119 D. Hooper, P. Blasi, and P. D. Serpico, Pulsars as the sources of high energy cosmic ray positrons, J. Cosmol. Astropart. Phys. , 2009, 0901: 025, arXiv: 0810.1527 [astro-ph]
120 H. Yuksel, M. D. Kistler, and T. Stanev, TeV gamma rays from geminga and the origin of the GeV positron excess, Phys. Rev. Lett. , 2009, 103: 051101, arXiv: 0810.2784 [astroph]
doi: 10.1103/PhysRevLett.103.051101
121 S. Profumo, Dissecting cosmic-ray electron-positron data with Occam’s Razor: The role of known Pulsars, Central Eur. J. Phys. , 2011, 10: 1, arXiv: 0812.4457 [astro-ph]
doi: 10.2478/s11534-011-0099-z
122 D. Malyshev, I. Cholis, and J. Gelfand, Pulsars versus dark matter interpretation of ATIC/PAMELA, Phys. Rev. D , 2009, 80: 063005, arXiv: 0903.1310 [astro-ph.HE]
doi: 10.1103/PhysRevD.80.063005
123 T. Linden and S. Profumo, Probing the pulsar origin of the anomalous positron fraction with AMS-02 and atmospheric cherenkov telescopes, arXiv: 1304.1791 [astro-ph.HE] , 2013
124 I. Cholis and D. Hooper, Dark matter and pulsar origins of the rising cosmic ray positron fraction in light of new data from AMS, arXiv: 1304.1840 [astro-ph.HE] , 2013
125 P. F. Yin, Z. H. Yu, Q. Yuan, and X. J. Bi, Pulsar interpretation for the AMS-02 result, arXiv: 1304.4128 [astro-ph.HE] , 2013
126 L. Bergstrom, P. Ullio, and J. H. Buckley, Observability of gamma-rays from dark matter neutralino annihilations in the Milky Way halo, Astropart. Phys. , 1998, 9(2): 137, arXiv: astro-ph/9712318
doi: 10.1016/S0927-6505(98)00015-2
127 J. F. Navarro, C. S. Frenk, and S. D. M. White, The Structure of cold dark matter halos, Astrophys. J. , 1996, 462: 563, arXiv: astro-ph/9508025
doi: 10.1086/177173
128 M. Ackermann, . [Fermi-LAT Collaboration], Constraining dark matter models from a combined analysis of milky way satellites with the Fermi large area telescope, Phys. Rev. Lett. , 2011, 107: 241302, arXiv: 1108.3546 [astro-ph.HE]
doi: 10.1103/PhysRevLett.107.241302
129 A. Geringer-Sameth and S. M. Koushiappas, Exclusion of canonical WIMPs by the joint analysis of Milky Way dwarfs with Fermi, Phys. Rev. Lett. , 2011, 107: 241303, arXiv: 1108.2914 [astro-ph.CO]
doi: 10.1103/PhysRevLett.107.241303
130 I. Cholis and P. Salucci, Extracting limits on Dark Matter annihilation from gamma-ray observations towards dwarf spheroidal galaxies, Phys. Rev. D , 2012, 86: 023528, arXiv: 1203.2954 [astro-ph.HE]
doi: 10.1103/PhysRevD.86.023528
131 M. N. Mazziotta, F. Loparco, F. de Palma, and N. Giglietto, A model independent analysis of the Fermi Large Area Telescope gamma-ray data from the Milky Way dwarf galaxies and halo to constrain dark matter scenarios, arXiv: 1203.6731 [astro-ph.IM] , 2012
132 Y.-L. S. Tsai, Q. Yuan, and X. Huang, A generic method to constrain the dark matter model parameters from Fermi observations of dwarf spheroids, J. Cosmol. Astropart. Phys. , 2013, 1303: 018, arXiv: 1212.3990 [astro-ph.HE]
133 M. Ackermann, . [Fermi-LAT Collaboration], GeV gamma-ray flux upper limits from clusters of galaxies, arXiv: 1006.0748 [astro-ph.HE] , 2010
134 Q. Yuan, P.-F. Yin, X.-J. Bi, X.-M. Zhang, and S.-H. Zhu, Gamma rays and neutrinos from dark matter annihilation in galaxy clusters, Phys. Rev. D , 2010, 82: 023506, arXiv: 1002.0197 [astro-ph.HE]
doi: 10.1103/PhysRevD.82.023506
135 L. Dugger, T. E. Jeltema, and S. Profumo, Constraints on decaying dark matter from fermi observations of nearby galaxies and clusters, J. Cosmol. Astropart. Phys. , 2010, 1012: 015, arXiv: 1009.5988 [astro-ph.HE]
136 S. Ando and D. Nagai, Fermi-LAT constraints on dark matter annihilation cross section from observations of the Fornax cluster, J. Cosmol. Astropart. Phys. , 2012, 1207: 017, arXiv: 1201.0753 [astro-ph.HE]
137 J. Ke, M. Luo, L. Wang, and G. Zhu, Gamma-rays from nearby clusters: Constraints on selected decaying dark matter models, Phys. Lett. B , 2011, 698: 44, arXiv: 1101.5878 [hep-ph]
doi: 10.1016/j.physletb.2011.02.055
138 X. Huang, G. Vertongen, and C. Weniger, Probing dark matter decay and annihilation with Fermi LAT observations of nearby galaxy clusters, J. Cosmol. Astropart. Phys. , 2012, 1201: 042, arXiv: 1110.1529 [hep-ph]
139 M. Ackermann, . [LAT Collaboration], Constraints on the galactic Halo dark matter from Fermi-LAT diffuse measurements, Astrophys. J. , 2012, 761: 91, arXiv: 1205.6474 [astro-ph.CO]
doi: 10.1088/0004-637X/761/2/91
140 J. Zhang, Q. Yuan, and X.-J. Bi, Galactic diffuse gamma rays-recalculation based on the new measurements of cosmic electron spectrum, Astrophys. J. , 2010, 720: 9, arXiv: 0908.1236 [astro-ph.HE]
doi: 10.1088/0004-637X/720/1/9
141 M. Papucci and A. Strumia, Robust implications on Dark Matter from the first FERMI sky gamma map, J. Cosmol. Astropart. Phys. , 2010, 1003: 014, arXiv: 0912.0742 [hepph]
142 L. Zhang, C. Weniger, L. Maccione, J. Redondo, and G. Sigl, Constraining decaying dark matter with Fermi LAT gammarays, J. Cosmol. Astropart. Phys. , 2010, 1006: 027, arXiv: 0912.4504[astro-ph.HE]
143 P. D. Serpico and D. Hooper, Gamma-rays from dark matter annihilation in the central region of the galaxy, New J. Phys. , 2009, 11: 105010, arXiv: 0902.2539 [hep-ph]
doi: 10.1088/1367-2630/11/10/105010
144 J. Ellis, K. A. Olive, and V. C. Spanos, Galactic-centre gamma rays in CMSSM dark matter scenarios, J. Cosmol. Astropart. Phys. , 2011, 1110: 024, arXiv: 1106.0768 [hep-ph]
145 T. Cohen, M. Lisanti, T. R. Slatyer, and J. G. Wacker, Illuminating the 130 GeV gamma line with continuum photons, J. High Energy Phys. , 2012, 1210: 134, arXiv: 1207.0800 [hep-ph]
doi: 10.1007/JHEP10(2012)134
146 I. Cholis, M. Tavakoli, and P. Ullio, Searching for the continuum spectrum photons correlated to the 130 GeV gamma-ray line, Phys. Rev. D , 2012, 86(8): 083525, arXiv: 1207.1468 [hep-ph]
doi: 10.1103/PhysRevD.86.083525
147 X.-Y. Huang, Q. Yuan, P.-F. Yin, X.-J. Bi, and X.-L. Chen, Constraints on the dark matter annihilation scenario of Fermi 130 GeV γ-ray line emission by continuous gammarays, MilkyWay halo, galaxy clusters and dwarf galaxies observations, J. Cosmol. Astropart. Phys. , 2012, 1211: 048, arXiv: 1208.0267 [astro-ph.HE]
148 D. Hooper and L. Goodenough, Dark matter annihilation in the galactic center as seen by the Fermi gamma ray space telescope, Phys. Lett. B , 2011, 697: 412, arXiv: 1010.2752 [hep-ph]
doi: 10.1016/j.physletb.2011.02.029
149 D. Hooper and T. Linden, On the origin of the gamma rays from the galactic center, Phys. Rev. D , 2011, 84: 123005, arXiv: 1110.0006 [astro-ph.HE]
doi: 10.1103/PhysRevD.84.123005
150 L. Bergstrom and H. Snellman, Observable monochromatic photons from cosmic photino annihilation, Phys. Rev. D , 1988, 37(12): 3737
doi: 10.1103/PhysRevD.37.3737
151 S. Rudaz, On the annihilation of heavy neutral fermion pairs into monochromatic gamma-rays and its astrophysical implications, Phys. Rev. D , 1989, 39(12): 3549
doi: 10.1103/PhysRevD.39.3549
152 L. Bergstrom and P. Ullio, Full one loop calculation of neutralino annihilation into two photons, Nucl. Phys. B , 1997, 504(1-2): 27, arXiv: hep-ph/9706232
153 P. Ullio and L. Bergstrom, Neutralino annihilation into a photon and a Z boson, Phys. Rev. D , 1998, 57(3): 1962, arXiv: hep-ph/9707333
doi: 10.1103/PhysRevD.57.1962
154 T. Bringmann, X. Huang, A. Ibarra, S. Vogl, and C. Weniger, Fermi LAT search for internal Bremsstrahlung signatures from dark matter annihilation, J. Cosmol. Astropart. Phys. , 2012, 1207: 054, arXiv: 1203.1312 [hep-ph]
155 C. Weniger, A tentative gamma-ray line from dark matter annihilation at the Fermi large area telescope, J. Cosmol. Astropart. Phys., 2012, 1208: 007, arXiv: 1204.2797 [hep-ph]
156 E. Tempel, A. Hektor, and M. Raidal, Fermi 130 GeV gamma-ray excess and dark matter annihilation in subhaloes and in the Galactic centre, J. Cosmol. Astropart. Phys. , 2012, 1209: 032 [Addendum-ibid., 2012, 1211: A01], arXiv: 1205.1045 [hep-ph]
157 A. Boyarsky, D. Malyshev, and O. Ruchayskiy, Spectral and spatial variations of the diffuse gamma-ray background in the vicinity of the Galactic plane and possible nature of the feature at 130 GeV, arXiv: 1205.4700 [astro-ph.HE] , 2012
158 M. Su and D. P. Finkbeiner, Strong evidence for gammaray line emission from the inner galaxy, arXiv: 1206.1616 [astro-ph.HE] , 2012
159 Fermi-LAT Collaboration, Search for gamma-ray spectral lines with the Fermi large area telescope and dark matter implications, arXiv: 1305.5597 [astro-ph.HE] , 2013
160 J. Faulkner and R. L. Gilliland, Weakly interacting, massive particles and the solar neutrino flux, Astrophys. J. , 1985, 299: 994
doi: 10.1086/163766
161 W. H. Press and D. N. Spergel, Capture by the sun of a galactic population of weakly interacting massive particles, Astrophys. J. , 1985, 296: 679
doi: 10.1086/163485
162 J. Silk, K. A. Olive, and M. Srednicki, The Photino, the Sun and high-energy neutrinos, Phys. Rev. Lett. , 1985, 55(2): 257
doi: 10.1103/PhysRevLett.55.257
163 A. Gould, Resonant enhancements in WIMP capture by the Earth, Astrophys. J. , 1987, 321: 571
doi: 10.1086/165653
164 A. Gould, Cosmological density of WIMPs from solar and terrestrial annihilations, Astrophys. J. , 1992, 388: 338
doi: 10.1086/171156
165 M. Cirelli, N. Fornengo, T. Montaruli, I. A. Sokalski, A. Strumia, and F. Vissani, Spectra of neutrinos from dark matter annihilations, Nucl. Phys. B , 2005, 727(1-2): 99 [Erratum-ibid. B, 2008, 790: 338], arXiv: hep-ph/0506298 )
166 M. Blennow, J. Edsjo, and T. Ohlsson, Neutrinos from WIMP annihilations using a full three-flavor Monte Carlo, J. Cosmol. Astropart. Phys. , 2008, 0801: 021, arXiv: 0709.3898 [hep-ph]
167 V. Barger, W. -Y. Keung, G. Shaughnessy, and A. Tregre, High energy neutrinos from neutralino annihilations in the Sun, Phys. Rev. D , 2007, 76: 095008, arXiv: 0708.1325 [hepph]
doi: 10.1103/PhysRevD.76.095008
168 M. Honda, T. Kajita, K. Kasahara, S. Midorikawa, and T. Sanuki, Calculation of atmospheric neutrino flux using the interaction model calibrated with atmospheric muon data, Phys. Rev. D , 2007, 75(4): 043006, arXiv: astro-ph/0611418
doi: 10.1103/PhysRevD.75.043006
169 H. Yuksel, S. Horiuchi, J. F. Beacom, and S. ’i. Ando, Neutrino constraints on the dark matter total annihilation cross section, Phys. Rev. D , 2007, 76: 123506, arXiv: 0707.0196 [astro-ph]
doi: 10.1103/PhysRevD.76.123506
170 J. Liu, P.-F. Yin, and S.-H. Zhu, Prospects for detecting neutrino signals from annihilating/decaying dark matter to account for the PAMELA and ATIC results, Phys. Rev. D , 2009, 79: 063522, arXiv: 0812.0964 [astro-ph]
doi: 10.1103/PhysRevD.79.063522
171 A. E. Erkoca, G. Gelmini, M. H. Reno, and I. Sarcevic, Muon fluxes and showers from dark matter annihilation in the galactic center, Phys. Rev. D , 2010, 81: 096007, arXiv: 1002.2220 [hep-ph]
doi: 10.1103/PhysRevD.81.096007
172 L. Covi, M. Grefe, A. Ibarra, and D. Tran, Neutrino signals from dark matter decay, J. Cosmol. Astropart. Phys. , 2010, 1004: 017, arXiv: 0912.3521 [hep-ph]
173 A. E. Erkoca, G. Gelmini, M. H. Reno, and I. Sarcevic, Muon fluxes and showers from dark matter annihilation in the galactic center, Phys. Rev. D , 2010, 81: 096007, arXiv: 1002.2220 [hep-ph]
doi: 10.1103/PhysRevD.81.096007
174 R. Abbasi, . [IceCube Collaboration], The design and performance of IceCube DeepCore, Astropart. Phys. , 2012, 35: 615, arXiv: 1109.6096 [astro-ph.IM]
doi: 10.1016/j.astropartphys.2012.01.004
175 R. Abbasi, . [IceCube Collaboration], Search for neutrinos from annihilating dark matter in the direction of the galactic center with the 40-string IceCube neutrino observatory, arXiv: 1210.3557 [hep-ex] , 2012
176 H. -C. Cheng, J. F. Gunion, Z. Han, G. Marandella, and B. McElrath, Mass determination in SUSY-like events with missing energy, J. High Energy Phys. , 2007, 0712: 076, arXiv: 0707.0030 [hep-ph]
177 M. Burns, K. Kong, K. T. Matchev, and M. Park, Using subsystem MT2 for complete mass determinations in decay chains with missing energy at hadron colliders, J. High Energy Phys. , 2009, 0903: 143, arXiv: 0810.5576 [hep-ph]
doi: 10.1088/1126-6708/2009/03/143
178 A. J. Barr and C. G. Lester, A review of the mass measurement techniques proposed for the large hadron collider, J. Phys. G , 2010, 37: 123001, arXiv: 1004.2732 [hep-ph]
doi: 10.1088/0954-3899/37/12/123001
179 T. Han, I.-W. Kim, and J. Song, Kinematic cusps with two missing particles I: Antler decay topology, Phys. Rev. D , 2013, 87: 035003, 2012, arXiv: 1206.5633 [hep-ph]
180 K. A. Olive, Colliders and Cosmology, In: Karlsruhe 2007, SUSY 2007, 158-173, arXiv: 0709.3303 [hep-ph] , 2007
181 H. Baer and X. Tata, Dark matter and the LHC, arXiv: 0805.1905 [hep-ph] , 2008
182 H. Baer, X. Tata, and J. Woodside, Multi-lepton signals from supersymmetry at hadron super colliders, Phys. Rev. D , 1992, 45(1): 142
doi: 10.1103/PhysRevD.45.142
183 D. Feldman, Z. Liu, and P. Nath, Sparticles at the LHC, J. High Energy Phys. , 2008, 0804: 054, arXiv: 0802.4085 [hep-ph]
184 C. Rogan, Kinematical variables towards new dynamics at the LHC, arXiv: 1006.2727 [hep-ph] , 2010
185 CMS Collaboration, Search for supersymmetry with the razor variables at CMS, CMS-PAS-SUS-12-005
186 L. Randall and D. Tucker-Smith, Dijet searches for supersymmetry at the LHC, Phys. Rev. Lett. , 2008, 101: 221803, arXiv: 0806.1049 [hep-ph]
doi: 10.1103/PhysRevLett.101.221803
187 S. Chatrchyan, . [CMS Collaboration], Search for supersymmetry in final states with missing transverse energy and 0, 1, 2, or at least 3 b-quark jets in 7 TeV pp collisions using the variable alphaT, J. High Energy Phys. , 2013, 1301: 077, arXiv: 1210.8115 [hep-ex]
188 C. G. Lester and D. J. Summers, Measuring masses of semiinvisibly decaying particles pair produced at hadron colliders, Phys. Lett. B , 1999, 463: 99, arXiv: hep-ph/9906349
doi: 10.1016/S0370-2693(99)00945-4
189 A. Barr, C. Lester, and P. Stephens, mT2: The Truth behind the glamour, J. Phys. G, 2003, 29: 2343, arXiv: hepph/0304226
190 S. Chatrchyan, . [CMS Collaboration], Search for supersymmetry in hadronic final states using MT2 in PP collisions at s = 7 TeV, J. High Energy Phys. , 2012, 1210: 018, arXiv: 1207.1798 [hep-ex]
191 G. Aad, . [ATLAS Collaboration], Search for dark matter candidates and large extra dimensions in events with a jet and missing transverse momentum with the ATLAS detector, J. High Energy Phys. , 2013, 1304: 075, arXiv: 1210.4491 [hep-ex]
192 J. Goodman, M. Ibe, A. Rajaraman, W. Shepherd, T. M. P. Tait, and H.-B. Yu, Constraints on dark matter from colliders, Phys. Rev. D , 2010, 82: 116010, arXiv: 1008.1783 [hep-ph]
doi: 10.1103/PhysRevD.82.116010
193 T. Aaltonen, . [CDF Collaboration], A search for dark matter in events with one jet and missing transverse energy in PˉP collisions at s = 1.96 TeV, Phys. Rev. Lett. , 2012, 108: 211804, arXiv: 1203.0742 [hep-ex]
194 S. Chatrchyan, . [CMS Collaboration], Search for dark matter and large extra dimensions in monojet events in pp collisions at s = 7 TeV, J. High Energy Phys. , 2012, 1209: 094, arXiv: 1206.5663 [hep-ex]
195 Y. Bai, P. J. Fox, and R. Harnik, The tevatron at the frontier of dark matter direct detection, J. High Energy Phys. , 2010, 1012: 048, arXiv: 1005.3797 [hep-ph]
196 P. J. Fox, R. Harnik, J. Kopp, and Y. Tsai, Missing energy signatures of dark matter at the LHC, Phys. Rev. D , 2012, 85: 056011, arXiv: 1109.4398 [hep-ph]
doi: 10.1103/PhysRevD.85.056011
197 Q. -H. Cao, C. -R. Chen, C. S. Li, and H. Zhang, Effective dark matter model: Relic density, CDMS II, Fermi LAT and LHC, J. High Energy Phys. , 2011, 1108: 018, arXiv: 0912.4511 [hep-ph]
198 M. Beltran, D. Hooper, E. W. Kolb, and Z. C. Krusberg, Deducing the nature of dark matter from direct and indirect detection experiments in the absence of collider signatures of new physics, Phys. Rev. D , 2009, 80: 043509, arXiv: 0808.3384 [hep-ph]
doi: 10.1103/PhysRevD.80.043509
199 J.-M. Zheng, Z.-H. Yu, J.-W. Shao, X.-J. Bi, Z. Li, and H.-H. Zhang, Constraining the interaction strength between dark matter and visible matter: I. fermionic dark matter, Nucl. Phys. B , 2012, 854: 350, arXiv: 1012.2022[hep-ph]
doi: 10.1016/j.nuclphysb.2011.09.009
200 Z.-H. Yu, J.-M. Zheng, X.-J. Bi, Z. Li, D.-X. Yao, and H.- H. Zhang, Constraining the interaction strength between dark matter and visible matter: II. scalar, vector and spin-3/2 dark matter, Nucl. Phys. B , 2012, 860: 115, arXiv: 1112.6052 [hep-ph]
doi: 10.1016/j.nuclphysb.2012.02.016
201 C. E. Rolfs and W. S. Rodney, Cauldrons in the Cosmos: Nuclear Astrophysics, Chicago: University of Chicago Press, 1988
202 Planck Collaboration, Planck 2013 results. I. Overview of products and scientific results, Astron. Astrophys., (submitted), arXiv:1303.5062
203 R. V. Wagoner, W. A. Fowler, and F. Hoyle, On the synthesis of elements at very high temperatures, Astrophys. J. , 1967, 148: 3
doi: 10.1086/149126
204 A. Coc, S. Goriely, Y. Xu, M. Saimpert, and E. Vangioni, Standard big bang nucleosynthesis up to CNO with an improved extended nuclear network, Astrophys. J. , 2012, 744(2): 158
doi: 10.1088/0004-637X/744/2/158
205 F. Hammache, M. Heil, S. Typel, D. Galaviz, K. Sümmerer, A. Coc, F. Uhlig, F. Attallah, M. Caamano, D. Cortina, H. Geissel, M. Hellstr?m, N. Iwasa, J. Kiener, P. Koczon, B. Kohlmeyer, P. Mohr, E. Schwab, K. Schwarz, F. Schümann, P. Senger, O. Sorlin, V. Tatischeff, J. P. Thibaud, E. Vangioni, A. Wagner, and W. Walus, High-energy break-up of 6Li as a tool to study the Big-Bang nucleosynthesis reaction 2H(alpha,gamma)6Li, Phys. Rev. C , 2010, 82(6): 065803, arXiv: 1011.6179
doi: 10.1103/PhysRevC.82.065803
206 M.-M. Kang, Y. Hu, H.-B. Hu, and S.-H. Zhu, Cosmic rays during BBN as origin of lithium problem, J. Cosmol. Astropart. Phys. , 2012, 1205: 011, arXiv: 1110.0163 [astroph. CO]
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed