Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2014, Vol. 9 Issue (2): 234-239   https://doi.org/10.1007/s11467-013-0393-x
  本期目录
A higher-dimensional model of the nucleon–nucleon central potential
A higher-dimensional model of the nucleon–nucleon central potential
Eric R. Hedin()
Department of Physics & Astronomy, Ball State University, Muncie, IN 47306, USA
 全文: PDF(247 KB)   HTML
Abstract

Based on a theory of extra dimensional confinement of quantum particles [E. R. Hedin, Physics Essays, 2012, 25(2): 177], a simple model of a nucleon–nucleon (NN) central potential is derived which quantitatively reproduces the radial profile of other models, without adjusting any free parameters. It is postulated that a higher-dimensional simple harmonic oscillator confining potential localizes particles into three-dimensional (3D) space, but allows for an evanescent penetration of the particles into two higher spatial dimensions. Producing an effect identical with the relativistic quantum phenomenon of zitterbewegung, the higher-dimensional oscillations of amplitude ?/(mc) can be alternatively viewed as a localized curvature of 3D space back and forth into the higher dimensions. The overall spatial curvature is proportional to the particle’s extra-dimensional ground state wave function in the higher-dimensional harmonic confining potential well. Minimizing the overlapping curvature (proportional to the energy) of two particles in proximity to each other, subject to the constraint that for the two particles to occupy the same spatial location one of them must be excited into the 1st excited state of the harmonic potential well, gives the desired NN potential. Specifying only the nucleon masses, the resulting potential well and repulsive core reproduces the radial profile of several published NN central potential models. In addition, the predicted height of the repulsive core, when used to estimate the maximum neutron star mass, matches well with the best estimates from relativistic theory incorporating standard nuclear matter equations of state. Nucleon spin, Coulomb interactions, and internal nucleon structure are not considered in the theory as presented in this article.

Key wordsnucleon–nucleon potential    higher-dimensional theory    neutron star mass limit
收稿日期: 2013-06-25      出版日期: 2014-04-01
Corresponding Author(s): Hedin Eric R.,Email:erhedin@bsu.edu   
 引用本文:   
. A higher-dimensional model of the nucleon–nucleon central potential[J]. Frontiers of Physics, 2014, 9(2): 234-239.
Eric R. Hedin. A higher-dimensional model of the nucleon–nucleon central potential. Front. Phys. , 2014, 9(2): 234-239.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-013-0393-x
https://academic.hep.com.cn/fop/CN/Y2014/V9/I2/234
1 H. Yukawa, On the interaction of elementary particles, Proc. Phys.-Math. Soc. Jpn. , 1935, 17: 48
2 R. A. Bryan and B. L. Scott, Nucleon–nucleon scattering from one-boson-exchange potentials (III): S waves included, Phys. Rev. , 1969, 17(4): 1435
doi: 10.1103/PhysRev.177.1435
3 M. Lacombe, B. Loiseau, J. M. Richard, R. Vinh Mau, J. C?té, P. Pirès, and R. de Tourreil, Parametrization of the Paris N–N potential, Phys. Rev. C , 1980, 21(3): 861
doi: 10.1103/PhysRevC.21.861
4 R. Machleidt, The meson theory of nuclear forces and nuclear structure, Adv. Nucl. Phys. , 1989, 19: 189
doi: 10.1007/978-1-4613-9907-0_2
5 F. Myhrer and J. Wroldsen, The nucleon–nucleon force and the quark degrees of freedom, Rev. Mod. Phys. , 1988, 60(3): 629
doi: 10.1103/RevModPhys.60.629
6 S. Weinberg, Nuclear forces from chiral lagrangians, Phys. Lett. B , 1990, 251(2): 288
doi: 10.1016/0370-2693(90)90938-3
7 D. R. Entem and R. Machleidt, Accurate charge-dependent nucleon–nucleon potential at fourth order of chiral perturbation theory, Phys. Rev. C , 2003, 68(4): 041001(R)
doi: 10.1103/PhysRevC.68.041001
8 N. Ishii, S. Aoki, and T. Hatsuda, Nuclear force from lattice QCD, Phys. Rev. Lett. , 2007, 99(2): 022001
doi: 10.1103/PhysRevLett.99.022001
9 C. Downum, J. R. Stone, T. Barnes, E. S. Swanson, I. Vida?a, V. Crede, P. Eugenio, and A. Ostrovidov, Nucleonnucleon interactions from the quark model, AIP Conf. Proc. , 2010, 1257: 538
doi: 10.1063/1.3483388
10 B. Singh, M. Bhuyan, S. K. Patra, and R. K. Gupta, Optical potential obtained from relativistic-mean-field theory-based microscopic nucleon–nucleon interaction: Applied to cluster radioactive decays, J. Phys. G , 2012, 39(2): 025101
doi: 10.1088/0954-3899/39/2/025101
11 R. Xu, Z. Ma, E. N. E. van Dalen, and H. Müther, Relativistic nucleon optical potentials with isospin dependence in a Dirac–Brueckner–Hartree–Fock approach, Phys. Rev. C , 2012, 85(3): 034613
doi: 10.1103/PhysRevC.85.034613
12 E. R. Hedin, Extradimensional confinement of quantum particles, Physics Essays , 2012, 25(2): 177
doi: 10.4006/0836-1398-25.2.177
13 P. Strange, Relativistic Quantum Mechanics, With Applications in Condensed Matter and Atomic Physics, Cambridge: Cambridge University Press, 1998: 118, 210. The Compton wavelength is defined to be ?/mc in this citation.
14 R. Liboff, Introductory Quantum Mechanics, 2nd Ed., Reading: Addison-Wesley, 1992: 185-187
15 T. Hatsuda [for HAL QCD Collaboration], Nuclear forces from lattice QCD, in: Proc. of Science, 6th International Workshop of Chiral Dynamics, Bern, Switzerland , arXiv: 0909.5637v1, 2009
16 R. B. Wiringa, V. G. J. Stoks, and R. Schiavilla, Accurate nucleon–nucleon potential with charge-independence breaking, Phys. Rev. C , 1995, 51(1): 38
doi: 10.1103/PhysRevC.51.38
17 S. M. Carroll, An Introduction to General Relativity, Spacetime and Geometry, San Francisco: Addison-Wesley, 2004: 233
18 H. Heiselberg and V. Pandharipande, Recent progress in neutron star theory, Annu. Rev. Nucl. Part. Sci. , 2000, 50(1): 481
doi: 10.1146/annurev.nucl.50.1.481
19 B. W. Carroll and D. A. Ostlie, An Introduction to Modern Astrophysics, Reading: Addison-Wesley, 1996: 604
20 K. S. Krane, Modern Physics, 2nd Ed., Hoboken: John Wiley & Sons, 1996: 508
21 S. Carroll, Spacetime and Geometry: An Introduction to General Relativity, San Francisco: Addison-Wesley, 2004: 232-233
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed