Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2014, Vol. 9 Issue (4): 472-476   https://doi.org/10.1007/s11467-014-0415-3
  RESEARCH ARTICLE 本期目录
Tunable nano Peltier cooling device from geometric effects using a single graphene nanoribbon
Wan-Ju Li1,Dao-Xin Yao2(),E. W. Carlson1,*()
1. Department of Physics, Purdue University, West Lafayette, IN 47907, USA
2. State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-Sen University, Guangzhou 510275, China
 全文: PDF(420 KB)  
Abstract

Based on the phenomenon of curvature-induced doping in graphene we propose a class of Peltier cooling devices, produced by geometrical effects, without gating. We show how a graphene nanoribbon laid on an array of curved nano cylinders can be used to create a targeted and tunable cooling device. Using two different approaches, the Nonequilibrium Green’s Function (NEGF) method and experimental inputs, we predict that the cooling power of such a device can approach the order of kW/cm2, on par with the best known techniques using standard superlattice structures. The structure proposed here helps pave the way toward designing graphene electronics which use geometry rather than gating to control devices.

Key wordsPeltier cooling device    graphene nanoribbon    superlattice structure    graphene electronics    cooling power    Nonequilibrium Green’s Function (NEGF)
收稿日期: 2014-01-02      出版日期: 2014-08-26
Corresponding Author(s): Dao-Xin Yao and E. W. Carlson   
 引用本文:   
. [J]. Frontiers of Physics, 2014, 9(4): 472-476.
Wan-Ju Li, Dao-Xin Yao, E. W. Carlson. Tunable nano Peltier cooling device from geometric effects using a single graphene nanoribbon. Front. Phys. , 2014, 9(4): 472-476.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-014-0415-3
https://academic.hep.com.cn/fop/CN/Y2014/V9/I4/472
1 G. H. Zeng, X. F. Fan, C. LaBounty, E. Croke, Y. Zhang, J. Christofferson, D. Vashaee, A. Shakouri, and J. E. Bowers, Cooling power density of SiGe/Si superlattice micro refrigerators, Volume 793 of Materials Research Society Symposium Proceedings, Materials Research Society, 2004
2 I. Chowdhury, R. Prasher, K. Lofgreen, G. Chrysler, S. Narasimhan, R. Mahajan, D. Koester, R. Alley, and R. Venkatasubramanian, On-chip cooling by superlattice-based thin-film thermoelectrics, Nat. Nanotechnol., 2009, 4(4): 235
doi: 10.1038/nnano.2008.417
3 X. Fan, G. Zeng, E. Croke, C. LaBounty, C. C. Ahn, D. Vashaee, A. Shakouri, and J. E. Bowers, High cooling power density SiGe/Si micro-coolers, Electron. Lett., 2001, 37(2): 126
doi: 10.1049/el:20010096
4 A. Shakouri and Yan Zhang, On-chip solid-state cooling for integrated circuits using thin-film microrefrigerators, IEEE Trans. Compon. Packag. Tech., 2005, 28(1): 65
doi: 10.1109/TCAPT.2005.843219
5 J. Zhang, N. G. Anderson, and K. M. Lau, AlGaAs superlattice microcoolers, Appl. Phys. Lett., 2003, 83(2): 374
doi: 10.1063/1.1591242
6 H. Y. Chiu, V. Perebeinos, Y. M. Lin, and P. Avouris, Controllable p-n junction formation in monolayer graphene using electrostatic substrate engineering, Nano Lett., 2010, 10(11): 4634
doi: 10.1021/nl102756r
7 G. Liu, J. Velasco, and W. Bao, and C. N. Lau, Fabrication of graphene p-n-p junctions with contactless top gates., Appl. Phys. Lett., 2008, 92(20): 203103
doi: 10.1063/1.2928234
8 S. G. Nam, D. K. Ki, J. W. Park, Y. Kim, J. S. Kim, and H. J. Lee, Ballistic transport of graphene p-n-p junctions with embedded local gates, Nanotechnology, 2011, 22(41): 415203
doi: 10.1088/0957-4484/22/41/415203
9 B. ?yilmaz, P. Jarillo-Herrero, D. Efetov, D. Abanin, L. Levitov, and P. Kim, Electronic transport and quantum Hall effect in bipolar graphene p-n-p junctions, Phys. Rev. Lett., 2007, 99(16): 166804
doi: 10.1103/PhysRevLett.99.166804
10 G. Rao, M. Freitag, H. Y. Chiu, R. S. Sundaram, and P. Avouris, Raman and photocurrent imaging of electrical stress-induced p-n junctions in graphene, ACS Nano, 2011, 5(7): 5848
doi: 10.1021/nn201611r
11 J. R. Williams, L. DiCarlo, and C. M. Marcus, Quantum Hall effect in a gate-controlled p-n junction of graphene, Science, 2007, 317(5838): 638
doi: 10.1126/science.1144657
12 T. Yu, C. W. Liang, C. Kim, and B. Yu, Local electrical stress-induced doping and formation of monolayer graphene P-N junction, Appl. Phys. Lett., 2011, 98(24): 243105
doi: 10.1063/1.3593131
13 H. C. Cheng, R. J. Shiue, C. C. Tsai, W. H. Wang, and Y. T. Chen, High-quality graphene p-n junctions via resistfree fabrication and solution-based noncovalent functionalization, ACS Nano, 2011, 5(3): 2051
doi: 10.1021/nn103221v
14 T. Lohmann, K. von Klitzing, and J. H. Smet, Four-terminal magneto-transport in graphene p-n junctions created by spatially selective doping, Nano Lett., 2009, 9(5): 1973
doi: 10.1021/nl900203n
15 E. A. Kim and A. H. Castro Neto, Graphene as an electronic membrane, Europhys. Lett., 2008, 84(5): 57007
doi: 10.1209/0295-5075/84/57007
16 D. Rowe, Thermoelectrics Handbook: Macro to Nano, Boca Raton: CRC/Taylor and Francis, 2006
17 P. Wei, W. Z. Bao, Y. Pu, C. N. Lau, and J. Shi, Anomalous thermoelectric transport of Dirac particles in graphene, Phys. Rev. Lett., 2009, 102(16): 166808
doi: 10.1103/PhysRevLett.102.166808
18 S. Datta, Quantum Transport: Atom to transistor, Cambridge: Cambridge University Press, 2005
19 Y. Ouyang and J. Guo, A theoretical study on thermoelectric properties of graphene nanoribbons, Appl. Phys. Lett., 2009, 94(26): 263107
doi: 10.1063/1.3171933
20 K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Electric field effect in atomically thin carbon films, Science, 2004, 306(5696): 666
doi: 10.1126/science.1102896
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed