Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2014, Vol. 9 Issue (5): 613-628   https://doi.org/10.1007/s11467-014-0420-6
  本期目录
Security analysis on some experimental quantum key distribution systems with imperfect optical and electrical devices
Lin-Mei Liang(梁林海)1,2(), Shi-Hai Sun(孙仕海)1, Mu-Sheng Jiang(江木生)1, Chun-Yan Li(李春燕)1
1. Department of Physics, National University of Defense Technology, Changsha 410073, China
2. State Key Laboratory of High Performance Computing, National University of Defense Technology, Changsha 410073, China
 全文: PDF(828 KB)  
Abstract

In general, quantum key distribution (QKD) has been proved unconditionally secure for perfect devices due to quantum uncertainty principle, quantum noncloning theorem and quantum nondividing principle which means that a quantum cannot be divided further. However, the practical optical and electrical devices used in the system are imperfect, which can be exploited by the eavesdropper to partially or totally spy the secret key between the legitimate parties. In this article, we first briefly review the recent work on quantum hacking on some experimental QKD systems with respect to imperfect devices carried out internationally, then we will present our recent hacking works in details, including passive faraday mirror attack, partially random phase attack, wavelength-selected photon-number-splitting attack, frequency shift attack, and single-photon-detector attack. Those quantum attack reminds people to improve the security existed in practical QKD systems due to imperfect devices by simply adding countermeasure or adopting a totally different protocol such as measurement-device independent protocol to avoid quantum hacking on the imperfection of measurement devices [Lo, et al., Phys. Rev. Lett., 2012, 108: 130503].

Key wordsquantum key distribution    quantum cryptography    quantum hacking
收稿日期: 2013-12-09      出版日期: 2014-10-15
Corresponding Author(s): Lin-Mei Liang(梁林海)   
 引用本文:   
. [J]. Frontiers of Physics, 2014, 9(5): 613-628.
Lin-Mei Liang(梁林海), Shi-Hai Sun(孙仕海), Mu-Sheng Jiang(江木生), Chun-Yan Li(李春燕). Security analysis on some experimental quantum key distribution systems with imperfect optical and electrical devices. Front. Phys. , 2014, 9(5): 613-628.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-014-0420-6
https://academic.hep.com.cn/fop/CN/Y2014/V9/I5/613
1 C. H. Bennett and G. Brassard, Quantum Cryptography: Public key distribution and coin tossing, in: Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing , Bangalore, India (IEEE, New York), 1984, pp 175−179
2 H. K. Lo and H. F. Chau, Unconditional security of quantum key distribution over arbitrarily long distances, Science, 1999, 283(5410): 2050
https://doi.org/10.1126/science.283.5410.2050
3 P. W. Shor and J. Preskill, Simple proof of security of the BB84 quantum key distribution protocol, Phys. Rev. Lett., 2000, 85(2): 441
https://doi.org/10.1103/PhysRevLett.85.441
4 D. Gottesman, H. K. Lo, N. Lütkenhaus, and J. Preskill, Security of quantum key distribution with imperfect devices, Quant. Inf. Comput., 2004, 4(5): 325
5 H. Inamori, N. Lütkenhaus, and D. Mayers, Unconditional security of practical quantum key distribution, Eur. Phys. J. D, 2007, 41(3): 599
https://doi.org/10.1140/epjd/e2007-00010-4
6 M. Davanco, J. R. Ong, A. B. Shehata, A. Tosi, I. Agha, S. Assefa, F. Xia, W. M. J. Green, S. Mookherjea, and K. Srinivasan, Telecommunications-band heralded single photons from a silicon nanophotonic chip, Appl. Phys. Lett., 2012, 100(26): 261104
https://doi.org/10.1063/1.4711253
7 J. S. Neergaard-Nielsen, B. M. Nielsen, H. Takahashi, A. I. Vistnes, and E. S. Polzik, High purity bright single photon source, Opt. Express, 2007, 15(13): 7940
https://doi.org/10.1364/OE.15.007940
8 F. Hargart, C. A. Kessler, T. Schwarzbäck, E. Koroknay, S. Weidenfeld, M. Jetter, and P. Michler, Electrically driven quantum dot single-photon source at 2 GHz excitation repetition rate with ultra-low emission time jitter, Appl. Phys. Lett., 2013, 102(1): 011126
https://doi.org/10.1063/1.4774392
9 M. M. Müller, A. Kölle, R. Löw, T. Pfau, T. Calarco, and S. Montangero, Room-temperature Rydberg single-photon source, Phys. Rev. A, 2013, 87(5): 053412
https://doi.org/10.1103/PhysRevA.87.053412
10 S. Deshpande and P. Bhattacharya, An electrically driven quantum dot-in-nanowire visible single photon source operating up to 150 K, Appl. Phys. Lett., 2013, 103(24): 241117
https://doi.org/10.1063/1.4848195
11 A. K. Ekert, Quantum cryptography based on Bell’s theorem, Phys. Rev. Lett., 1991, 67(6): 661
https://doi.org/10.1103/PhysRevLett.67.661
12 F. G. Deng and G. L. Long, Secure direct communication with a quantum one-time pad, Phys. Rev. A, 2004, 69(5): 052319
https://doi.org/10.1103/PhysRevA.69.052319
13 G. L. Long, F. G. Deng, C. Wang, X. H. Li, K. Wen, and W. Y. Wang, Quantum secure direct communication and deterministic secure quantum communication, Front. Phys. China, 2007, 2(3): 251
https://doi.org/10.1007/s11467-007-0050-3
14 F. G. Deng and G. L. Long, Controlled order rearrangement encryption for quantum key distribution, Phys. Rev. A, 2003, 68(4): 042315
https://doi.org/10.1103/PhysRevA.68.042315
15 B. Huttner, N. Imoto, N. Gisin, and T. Mor, Quantum cryptography with coherent states, Phys. Rev. A, 1995, 51(3): 1863
https://doi.org/10.1103/PhysRevA.51.1863
16 G. Brassard, N. Lütkenhaus, T. Mor, and B. Sanders, Limitations on practical quantum cryptography, Phys. Rev. Lett., 2000, 85(6): 1330
https://doi.org/10.1103/PhysRevLett.85.1330
17 N. Lütkenhaus and M. Jahma, Quantum key distribution with realistic states: photon-number statistics in the photonnumber splitting attack, New J. Phys., 2002, 4: 44
https://doi.org/10.1088/1367-2630/4/1/344
18 W. T. Liu, S. H. Sun, L. M. Liang, and J. M. Yuan, Proof-ofprinciple experiment of a modified photon-number-splitting attack against quantum key distribution, Phys. Rev. A, 2011, 83(4): 042326
https://doi.org/10.1103/PhysRevA.83.042326
19 W. Y. Hwang, Quantum key distribution with high loss: Toward global secure communication, Phys. Rev. Lett., 2003, 91(5): 057901
https://doi.org/10.1103/PhysRevLett.91.057901
20 H. K. Lo, X. F. Ma, and K. Chen, Decoy state quantum key distribution, Phys. Rev. Lett., 2005, 94(23): 230504
https://doi.org/10.1103/PhysRevLett.94.230504
21 X. F. Ma, B. Qi, Y. Zhao, and H. K. Lo, Practical decoy state for quantum key distribution, Phys. Rev. A, 2005, 72(1): 012326
https://doi.org/10.1103/PhysRevA.72.012326
22 X. B. Wang, Beating the photon-number-splitting attack in practical quantum cryptography, Phys. Rev. Lett., 2005, 94(23): 230503
https://doi.org/10.1103/PhysRevLett.94.230503
23 C. Z. Peng, J. Zhang, D. Yang, W. B. Gao, H. X. Ma, H. Yin, H. P. Zeng, T. Yang, X. B. Wang, and J. W. Pan, Experimental long-distance decoy-state quantum key distribution based on polarization encoding, Phys. Rev. Lett., 2007, 98(1): 010505
https://doi.org/10.1103/PhysRevLett.98.010505
24 T. Schmitt-Manderbach, H. Weier, M. Fürst, R. Ursin, F. Tiefenbacher, T. Scheidl, J. Perdigues, Z. Sodnik, C. Kurtsiefer, J. Rarity, A. Zeilinger, and H. Weinfurter, Experimental demonstration of free-space decoy-state quantum key distribution over 144 km, Phys. Rev. Lett., 2007, 98(1): 010504
https://doi.org/10.1103/PhysRevLett.98.010504
25 D. Rosenberg, J. W. Harrington, P. R. Rice, P. A. Hiskett, C. G. Peterson, R. J. Hughes, A. Lita, S. Nam, and J. Nordholt, Long-distance decoy-state quantum key distribution in optical fiber, Phys. Rev. Lett., 2007, 98(1): 010503
https://doi.org/10.1103/PhysRevLett.98.010503
26 Y. Zhao, B. Qi, X. F. Ma, H. K. Lo, and L. Qian, Experimental quantum key distribution with decoy states, Phys. Rev. Lett., 2006, 96(7): 070502
https://doi.org/10.1103/PhysRevLett.96.070502
27 Y. Liu, T. Y. Chen, J. Wang, W. Q. Cai, X. Wan, L. K. Chen, J. H. Wang, S. B. Liu, H. Liang, L. Yang, C. Z. Peng, K. Chen, Z. B. Chen, and J. W. Pan, Decoy-state quantum key distribution with polarized photons over 200 km, Opt. Express, 2010, 18(8): 8587
https://doi.org/10.1364/OE.18.008587
28 Y. Zhao, B. Qi, and H. K. Lo, Quantum key distribution with an unknown and untrusted source, Phys. Rev. A, 2008, 77(5): 052327
https://doi.org/10.1103/PhysRevA.77.052327
29 X. Peng, H. Jiang, B. J. Xu, X. F. Ma, and H. Guo, Experimental quantum-key distribution with an untrusted source, Opt. Lett., 2008, 33(18): 2077
https://doi.org/10.1364/OL.33.002077
30 B. J. Xu, X. Peng, and H. Guo, Passive scheme with a photon-number-resolving detector for monitoring the untrusted source in a plug-and-play quantum-key-distribution system, Phys. Rev. A, 2010, 82(4): 042301
https://doi.org/10.1103/PhysRevA.82.042301
31 X. B. Wang, Decoy-state quantum key distribution with large random errors of light intensity, Phys. Rev. A, 2007, 75(5): 052301
https://doi.org/10.1103/PhysRevA.75.052301
32 X. B. Wang, C. Z. Peng, and J. W. Pan, Simple protocol for secure decoy-state quantum key distribution with a loosely controlled source, Appl. Phys. Lett., 2007, 90(3): 031110
https://doi.org/10.1063/1.2431718
33 X. B. Wang, L. Yang, C. Z. Peng, and J. W. Pan, Decoystate quantum key distribution with both source errors and statistical fluctuations, New J. Phys., 2009, 11(7): 075006
https://doi.org/10.1088/1367-2630/11/7/075006
34 X. B. Wang, C. Z. Peng, J. Zhang, L. Yang, and J. W. Pen, General theory of decoy-state quantum cryptography with source errors, Phys. Rev. A, 2008, 77(4): 042311
https://doi.org/10.1103/PhysRevA.77.042311
35 S. Nauerth, M. Fürst, T. Schmitt-Manderbach, H. Weier, and H. Weinfurter, Information leakage via side channels in freespace BB84 quantum cryptography, New J. Phys., 2009, 11(6): 065001
https://doi.org/10.1088/1367-2630/11/6/065001
36 C. H. F. Fung, B. Qi, K. Tamaki, and H. K. Lo, Phaseremapping attack in practical quantum-key-distribution systems, Phys. Rev. A, 2007, 75(3): 032314
https://doi.org/10.1103/PhysRevA.75.032314
37 F. H. Xu, B. Qi, and H. K. Lo, Experimental demonstration of phase-remapping attack in a practical quantum key distribution system, New J. Phys., 2010, 12(11): 113026
https://doi.org/10.1088/1367-2630/12/11/113026
38 H. W. Li, S. Wang, J. Z. Huang, W. Chen, Z. Q. Yin, F. Y. Li, Z. Zhou, D. Liu, Y. Zhang, G. C. Guo, W. S. Bao, and Z. F. Han, Attacking a practical quantum-key-distribution system with wavelength-dependent beam-splitter and multiwavelength sources, Phys. Rev. A, 2011, 84(6): 062308
https://doi.org/10.1103/PhysRevA.84.062308
39 Y. Zhao, C. H. Fung, B. Qi, C. Chen, and H. K. Lo, Quantum hacking: Experimental demonstration of timeshift attack against practical quantum-key-distribution systems, Phys. Rev. A, 2008, 78(4): 042333
https://doi.org/10.1103/PhysRevA.78.042333
40 V. Makarov, A. Anisimov, and J. Skaar, Effects of detector efficiency mismatch on security of quantum cryptosystems, Phys. Rev. A, 2006, 74(2): 022313
https://doi.org/10.1103/PhysRevA.74.022313
41 V. Makarov and J. Skaar, Faked states attack using detector efficiency mismatch on SARG04, phase-time, DPSK, and Ekert protocols, Quant. Inf. Comput., 2008, 8(6−7): 0622
42 L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, and V. Makarov, Hacking commercial quantum cryptography systems by tailored bright illumination, Nat. Photonics, 2010, 4(10): 686
https://doi.org/10.1038/nphoton.2010.214
43 V. Makarov, Controlling passively quenched single photon detectors by bright light, New J. Phys., 2009, 11(6): 065003
https://doi.org/10.1088/1367-2630/11/6/065003
44 N. Jain, C. Wittmann, L. Lydersen, C. Wiechers, D. Elser, C. Marquardt, V. Makarov, and G. Leuchs, Device calibration impacts security of quantum key distribution, Phys. Rev. Lett., 2011, 107(11): 110501
https://doi.org/10.1103/PhysRevLett.107.110501
45 I. Gerhardt, Q. Liu, A. Lamas-Linares, J. Skaar, C. Kurtsiefer, and V. Makarov, Full-field implementation of a perfect eavesdropper on a quantum cryptography system, Nat. Commun., 2011, 2: 349
https://doi.org/10.1038/ncomms1348
46 C. Weedbrook, S. Pirandola, R. García-Patrón, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, Gaussian quantum information, Rev. Mod. Phys., 2012, 84(2): 621
https://doi.org/10.1103/RevModPhys.84.621
47 B. Qi, L. L. Huang, L. Qian, and H. K. Lo, Experimental study on the Gaussian-modulated coherent-state quantum key distribution over standard telecommunication fibers, Phys. Rev. A, 2007, 76(5): 052323
https://doi.org/10.1103/PhysRevA.76.052323
48 Z. Zhang and P. L. Voss, Security of a discretely signaled continuous variable quantum key distribution protocol for high rate systems, Opt. Express, 2009, 17(14): 12090
https://doi.org/10.1364/OE.17.012090
49 X. C. Ma, S. H. Sun, M. S. Jiang, and L. M. Liang, Wavelength attack on practical continuous-variable quantum-keydistribution system with a heterodyne protocol, Phys. Rev. A, 2013, 87(5): 052309
https://doi.org/10.1103/PhysRevA.87.052309
50 J. Z. Huang, C. Weedbrook, Z. Q. Yin, S. Wang, H. W. Li, W. Chen, G. C. Guo, and Z. F. Han, Quantum hacking of a continuous-variable quantum-key-distribution system using a wavelength attack, Phys. Rev. A, 2013, 87(6): 062329
https://doi.org/10.1103/PhysRevA.87.062329
51 X. C. Ma, S. H. Sun, M. S. Jiang, and L. M. Liang, Local oscillator fluctuation opens a loophole for Eve in practical continuous-variable quantum-key-distribution systems, Phys. Rev. A, 2013, 88(2): 022339
https://doi.org/10.1103/PhysRevA.88.022339
52 A. Acín, N. Brunner, N. Gisin, S. Massar, S. Pironio, and V. Scarani, Device-independent security of quantum cryptography against collective attacks, Phys. Rev. Lett., 2007, 98(23): 230501
https://doi.org/10.1103/PhysRevLett.98.230501
53 S. Pironio, A. Acín, N. Brunner, N. Gisin, S. Massar, and V. Scarani, Device-independent quantum key distribution secure against collective attacks, New J. Phys., 2009, 11(4): 045021
https://doi.org/10.1088/1367-2630/11/4/045021
54 H. K. Lo, M. Curty, and B. Qi, Measurement-deviceindependent quantum key distribution, Phys. Rev. Lett., 2012, 108(13): 130503
https://doi.org/10.1103/PhysRevLett.108.130503
55 K. Tamaki, H. K. Lo, C. H. F. Fung, and B. Qi, Phase encoding schemes for measurement-device-independent quantum key distribution with basis-dependent flaw, Phys. Rev. A, 2012, 85(4): 042307
https://doi.org/10.1103/PhysRevA.85.042307
56 X. F. Ma and M. Razavi, Alternative schemes for measurement-device-independent quantum key distribution, Phys. Rev. A, 2012, 86(6): 062319
https://doi.org/10.1103/PhysRevA.86.062319
57 S. H. Sun, M. Gao, C. Y. Li, and L. M. Liang, Practical decoy-state measurement-device-independent quantum key distribution, Phys. Rev. A, 2013, 87(5): 052329
https://doi.org/10.1103/PhysRevA.87.052329
58 Y. Liu, T. Y. Chen, L. J. Wang, H. Liang, G. L. Shentu, J. Wang, K. Cui, H. L. Yin, N. L. Liu, L. Li, X. Ma, J. S. Pelc, M. M. Fejer, C. Z. Peng, Q. Zhang, and J. W. Pan, Experimental measurement-device-independent quantum key distribution, Phys. Rev. Lett., 2013, 111(13): 130502
https://doi.org/10.1103/PhysRevLett.111.130502
59 A. Rubenok, J. A. Slater, P. Chan, I. Lucio-Martinez, and W. Tittel, Real-world two-photon interference and proofof-principle quantum key distribution immune to detector attacks, Phys. Rev. Lett., 2013, 111(13): 130501
https://doi.org/10.1103/PhysRevLett.111.130501
60 Z. Y. Tang, Z. F. Liao, F. H. Xu, B. Qi, L. Qian, and H. K. Lo, Experimental demonstration of polarization encoding measurement-device-independent quantum key distribution, arXiv: 1306.6134, 2013
61 S. H. Sun, M. S. Jiang, and L. M. Liang, Passive Faraday-mirror attack in a practical two-way quantum-keydistribution system, Phys. Rev. A, 2011, 83(6): 062331
https://doi.org/10.1103/PhysRevA.83.062331
62 S. H. Sun, M. Gao, M. S. Jiang, C. Y. Li, and L. M. Liang, Partially random phase attack to the practical twoway quantum-key-distribution system, Phys. Rev. A, 2012, 85(3): 032304
https://doi.org/10.1103/PhysRevA.85.032304
63 M. S. Jiang, S. H. Sun, C. Y. Li, and L. M. Liang, Wavelength-selected photon-number-splitting attack against plug-and-play quantum key distribution systems with decoy states, Phys. Rev. A, 2012, 86(3): 032310
https://doi.org/10.1103/PhysRevA.86.032310
64 M. S. Jiang, S. H. Sun, C. Y. Li, and L. M. Liang, Frequency shift attack on “plug-and-play” quantum key distribution systems, J. Mod. Opt., 2014, 61(2): 147
https://doi.org/10.1080/09500340.2013.872309
65 S. H. Sun, M. S. Jiang, and L. M. Liang, Single-photondetection attack on the phase-coding continuous-variable quantum cryptography, Phys. Rev. A, 2012, 86(1): 012305
https://doi.org/10.1103/PhysRevA.86.012305
66 A. Muller, T. Herzog, B. Huttner, W. Tittel, H. Zbinden, and N. Gisin, “Plug and play” systems for quantum cryptography, Appl. Phys. Lett., 1997, 70(7): 793
https://doi.org/10.1063/1.118224
67 https://www.newport.com.cn/f/fiber-optic-faraday-rotator-mirrors
68 https://lunainc.com/general-photonics-now-luna-innovations
69 H. F. Chau, Practical scheme to share a secret key through a quantum channel with a 27.6% bit error rate, Phys. Rev. A, 2002, 66(6): 060302 (R)
https://doi.org/10.1103/PhysRevA.66.060302
70 K. S. Ranade and G. Alber, Asymptotic correctability of Bell-diagonal quantum states and maximum tolerable biterror rates, J. Phys. A, 2006, 39(7): 1701
https://doi.org/10.1088/0305-4470/39/7/014
71 V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek, N. Lütkenhaus, and M. Peev, The security of practical quantum key distribution, Rev. Mod. Phys., 2009, 81(3): 1301
https://doi.org/10.1103/RevModPhys.81.1301
72 H. K. Lo and J. Preskill, Security of quantum key distribution using weak coherent states with Nonrandom phases, Quant. Inf. Comput., 2007, 5(6): 431
73 Y. Zhao, B. Qi, and H. K. Lo, Experimental quantum key distribution with active phase randomization, Appl. Phys. Lett., 2007, 90(4): 044106
https://doi.org/10.1063/1.2432296
74 S. H. Sun and L. M. Liang, Experimental demonstration of an active phase randomization and monitor module for quantum key distribution, Appl. Phys. Lett., 2012, 101(7): 071107
https://doi.org/10.1063/1.4746402
75 https://www.idquantique.com/
76 M. Sasaki, M. Fujiwara, H. Ishizuka, W. Klaus, K. Wakui, et al., Field test of quantum key distribution in the Tokyo QKD Network, Opt. Express, 2011, 19(11): 10387
https://doi.org/10.1364/OE.19.010387
77 P. A. Hiskett, D. Rosenberg, C. G. Peterson, R. J. Hughes, S. Nam, A. E. Lita, A. J. Miller, and J. E. Nordholt, Longdistance quantum key distribution in optical fibre, New J. Phys., 2006, 8(9): 193
https://doi.org/10.1088/1367-2630/8/9/193
78 C. Gobby, Z. L. Yuan, and A. J. Shields, Quantum key distribution over 122 km of standard telecom fiber, Appl. Phys. Lett., 2004, 84(19): 3762
https://doi.org/10.1063/1.1738173
79 T. Hirano, H. Yamanaka, M. Ashikaga, T. Konishi, and R. Namiki, Quantum cryptography using pulsed homodyne detection, Phys. Rev. A, 2003, 68(4): 042331
https://doi.org/10.1103/PhysRevA.68.042331
80 S. Braunstein and P. van Loock, Quantum information with continuous variables, Rev. Mod. Phys., 2005, 77(2): 513
https://doi.org/10.1103/RevModPhys.77.513
81 https://www.magiqtech.com/
82 D. Stucki, N. Walenta, F. Vannel, R. T. Thew, N. Gisin, H. Zbinden, S. Gray, C. R. Towery, and S. Ten, High rate, longdistance quantum key distribution over 250 km of ultralow loss fibres, New J. Phys., 2009, 11(7): 075003
https://doi.org/10.1088/1367-2630/11/7/075003
83 P. Eraerds, N. Walenta, M. Legré, N. Gisin, and H. Zbinden, Quantum key distribution and 1 Gbps data encryption over a single fibre, New J. Phys., 2010, 12(6): 063027
https://doi.org/10.1088/1367-2630/12/6/063027
84 R. Namiki and T. Hirano, Security of quantum cryptography using balanced homodyne detection, Phys. Rev. A, 2003, 67(2): 022308
https://doi.org/10.1103/PhysRevA.67.022308
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed