Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2015, Vol. 10 Issue (1): 108101   https://doi.org/10.1007/s11467-014-0422-4
  Condensed Matter, Materials Physics, and Statistical Physics 本期目录
Self-assembly of InAs quantum dots on GaAs(001)by molecular beam epitaxy
Ju Wu(),Peng Jin
Key Laboratory of Semiconductor Materials Science and Beijing Key Laboratory of Low-dimensional Semiconductor Materials and Devices, Institute of Semiconduc tors, Chinese Academy of Sciences, Beijing 100083, China
 全文: PDF(974 KB)  
Abstract

Currently, the nature of self-assembly of three-dimensional epitaxial islands or quantum dots (QDs) in a lattice-mismatched heteroepitaxial growth system, such as InAs/GaAs(001) and Ge/Si(001) as fabricated by molecular beam epitaxy (MBE), is still puzzling. The purpose of this article is to discuss how the self-assembly of InAs QDs in MBE InAs/GaAs(001) should be properly understood in atomic scale. First, the conventional kinetic theories that have traditionally been used to interpret QD self-assembly in heteroepitaxial growth with a significant lattice mismatch are reviewed briefly by examining the literature of the past two decades. Second, based on their own experimental data, the authors point out that InAs QD self-assembly can proceed in distinctly different kinetic ways depending on the growth conditions and so cannot be framed within a universal kinetic theory, and, furthermore, that the process may be transient, or the time required for a QD to grow to maturity may be significantly short, which is obviously inconsistent with conventional kinetic theories. Third, the authors point out that, in all of these conventional theories, two well-established experimental observations have been overlooked: i) A large number of “floating” indium atoms are present on the growing surface in MBE InAs/GaAs(001); ii) an elastically strained InAs film on the GaAs(001) substrate should be mechanically unstable. These two well-established experimental facts may be highly relevant and should be taken into account in interpreting InAs QD formation. Finally, the authors speculate that the formation of an InAs QD is more likely to be a collective event involving a large number of both indium and arsenic atoms simultaneously or, alternatively, a morphological/structural transformation in which a single atomic InAs sheet is transformed into a three-dimensional InAs island, accompanied by the rehybridization from the sp2-bonded to sp3- bonded atomic configuration of both indium and arsenic elements in the heteroepitaxial growth system.

Key wordsmolecular beam epitaxy    InAs quantum dots
收稿日期: 2013-08-06      出版日期: 2015-02-10
Corresponding Author(s): Ju Wu   
 引用本文:   
. [J]. Frontiers of Physics, 2015, 10(1): 108101.
Ju Wu, Peng Jin. Self-assembly of InAs quantum dots on GaAs(001)by molecular beam epitaxy. Front. Phys. , 2015, 10(1): 108101.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-014-0422-4
https://academic.hep.com.cn/fop/CN/Y2015/V10/I1/108101
1 F. C. Frank and J. H. van der Merwe, One-dimensional dislocations (I): Static theory, Proc. R. Soc. Lond. A 198(1053), 205 (1949)
https://doi.org/10.1098/rspa.1949.0095
2 D. Pan, E. Towe, and S. Kennerly, A five-period normalincidence (In, Ga)As/GaAs quantum-dot infrared photodetector, Appl. Phys. Lett. 75(18), 2719 (1999)
https://doi.org/10.1063/1.125127
3 Z. Ye, J. C. Campbell, Z. Chen, E.T. Kim, and A. Madhukar, Voltage-controllable multiwavelength InAs quantum-dot infrared photodetectors for mid- and far-infrared detection, J. Appl. Phys. 92(7), 4141(2002)
https://doi.org/10.1063/1.1504167
4 H. C. Liu, B. Aslan, J. A. Gupta, Z. R. Wasilewski, G. C. Aers, A. J. SpringThorpe, and M. Buchanan, Quantum dots for terahertz generation, J. Phys.: Condens. Matter 20(38), 384211 (2008)
https://doi.org/10.1088/0953-8984/20/38/384211
5 N. S. Daghestani, M. A. Cataluna, G. Berry, G. Ross, and M. J. Rose, Terahertz emission from InAs/GaAs quantum dot based photoconductive devices, Appl. Phys. Lett. 98(18),181107 (2011)
https://doi.org/10.1063/1.3586774
6 G. Shan, X. Zhao, M. Hu, C. H. Shek, and W. Huang, Vertical-external-cavity surface-emitting lasers and quantum dot lasers, Front. Optoelectron. 5(2), 157 (2012)
https://doi.org/10.1007/s12200-012-0237-2
7 G. C. Shan, Z. Q. Yin, C. H. Shek, and W. Huang, Single photon sources with single semiconductor quantum dots, Front. Phys. 9(2), 170 (2014)
https://doi.org/10.1007/s11467-013-0360-6
8 D. J. Eaglesham and M. Cerullo, Dislocation-free StranskiKrastanow growth of Ge on Si(100), Phys. Rev. Lett. 64(16), 1943 (1990)
https://doi.org/10.1103/PhysRevLett.64.1943
9 Y. W. Mo, D. E. Savage, B. S. Swartzentruber, and M. G. Lagally, Kinetic pathway in Stranski–Krastanov growth of Ge on Si(001), Phys. Rev. Lett. 65(8), 1020 (1990)
https://doi.org/10.1103/PhysRevLett.65.1020
10 C. W. Snyder, B. G. Orr, D. Kessler, and L. M. Sander, Effect of strain on surface morphology in highly strained InGaAs films, Phys. Rev. Lett. 66(23), 3032 (1991)
https://doi.org/10.1103/PhysRevLett.66.3032
11 D. Leonard, M. Krishnamurthy, C. M. Reaves, S. P. Denbaars, and P. M. Petroff, Direct formation of quantum-sized dots from uniform coherent islands of InGaAs on GaAs surfaces, Appl. Phys. Lett. 63(23), 3203 (1993)
https://doi.org/10.1063/1.110199
12 J. M. Moison, F. Houzay, F. Barthe, L. Leprince, E. André, and O. Vatel, Self-organized growth of regular nanometerscale InAs dots on GaAs, Appl. Phys. Lett. 64(2),196 (1994)
https://doi.org/10.1063/1.111502
13 D. Leonard, K. Pond, and P. M. Petroff, Critical layer thickness for self-assembled InAs islands on GaAs, Phys. Rev. B 50(16), 11687 (1994)
https://doi.org/10.1103/PhysRevB.50.11687
14 A. Zolotaryov, A. Schramm, Ch. Heyn, and W. Hansen, InAs-coverage dependence of self-assembled quantum dot size, composition, and density, Appl. Phys. Lett. 91(8), 083107 (2007)
https://doi.org/10.1063/1.2772758
15 J. Wu, Y. H. Jiao, P. Jin, X. J. Lv, and Z. G. Wang, Effect of the growth mode on the two- to three-dimensional transition of InAs grown on vicinal GaAs(001) substrates, Nanotechnology 18(26), 265304 (2007)
https://doi.org/10.1088/0957-4484/18/26/265304
16 J. Wu, Y. P. Zeng, B. Q. Wang, J. Peng, and Z. G. Wang, Self-Assembling of InAs Quantum Dots on GaAs(001) in Molecular Beam Epitaxy Advances in Nanotechnology, edited by E. J. Chen and N. Peng, Nova Science Publishers, 2009, Vol. 1, pp 209-222
17 J. Wu, Y. P. Zeng, B. Q. Wang, Z. P. Zhu, and Z. G. Wang, Growth of MBE InAs/GaAs(001) quantum dots by the rapid rate, Micronanoelectronic Technology 46, 79 (2009) (in Chinese)
18 F. Grosse and M. F. Gyure, Island and step morphology in InAs(001) homoepitaxy, Phys. Status Solidi(b) 234(1), 338 (2002)
https://doi.org/10.1002/1521-3951(200211)234:1<338::AID-PSSB338>3.0.CO;2-F
19 M. Takahasi and J. Mizuki, X-ray diffraction study on selforganization of InAs islands on GaAs(001), J. Phys. Conf. Ser. 83, 012006 (2007)
20 H. Metiu, Building regulations, Nature 366(6451), 111 (1993)
https://doi.org/10.1038/366111a0
21 Z. Zhang and M. G. Lagally, Atomistic processes in the early stages of thin-film growth, Science 276(5311), 377 (1997)
https://doi.org/10.1126/science.276.5311.377
22 J. V. Barth, G. Costantini, and K. Kern, Engineering atomic and molecular nanostructures at surfaces, Nature 437(7059), 671 (2005)
https://doi.org/10.1038/nature04166
23 J. A. Venables, Nucleation growth and pattern formation in heteroepitaxy, Physica A 239(1-3), 35 (1997)
https://doi.org/10.1016/S0378-4371(97)00020-4
24 A. K. Bhuiyan, S. K. Dew, and M. Stepanova, Controlled self-assembly of nanocrystalline arrays studied by 3D kinetic Monte Carlo modeling, J. Phys. Chem. C 115(40), 19557 (2011)
https://doi.org/10.1021/jp205791t
25 A. Madhukar, A u nified atomistic and kinetic framework for growth front morphology evolution and defect initiation in strained epitaxy, J. Cryst. Growth 163(1-2), 149 (1996)
26 D. D. Vvedensky, Epitaxial phenomena across length and time scales, Surf. Interface Anal. 31(7), 627 (2001)
https://doi.org/10.1002/sia.1090
27 A. Voigt(Ed.), Multiscale Modeling in Epitaxial Growth, Birkhauser, 2005
28 T. Tiedje and A. Ballestad, Atomistic basis for continuum growth equation: Description of morphological evolution of GaAs during molecular beam epitaxy, Thin Solid Films 516(12), 3705 (2008)
https://doi.org/10.1016/j.tsf.2007.11.015
29 A. Y. Cho, Film deposition by molecular-beam techniques, J. Vac. Sci. Technol. 8(5), S31 (1971)
https://doi.org/10.1116/1.1316387
30 M. D. Johnson, C. Orme, A. W. Hunt, D. Graff, J. Sudijono, L. Sander, and B. Orr, Stable and unstable growth in molecular beam epitaxy, Phys. Rev. Lett. 72(1), 116 (1994)
https://doi.org/10.1103/PhysRevLett.72.116
31 C. Orme, M. D. Johnson, K. T. Leung, B. G. Orr, P. Smilauer, and D. Vvedensky, Studies of large scale unstable growth formed during GaAs(001) homoepitaxy, J. Cryst. Growth 150, 128 (1995)
https://doi.org/10.1016/0022-0248(95)80194-H
32 C. Orme, M. D. Johnson, J. L. Sudijono, K. T. Leung, and B. G. Orr, Large scale surface structure formed during GaAs (001) homoepitaxy, Appl. Phys. Lett. 64(7), 860 (1994)
https://doi.org/10.1063/1.111004
33 S. Martini, A. A. Quivy, T. E. Lamas, M. J. da Silva, E. C. F. da Silva, and J. R. Leite, Influence of indium segregation on the RHEED oscillations during the growth of InGaAs layers on a GaAs(001) surface, J. Cryst. Growth 251(1-4), 101 (2003)
https://doi.org/10.1016/S0022-0248(02)02313-8
34 S. Martini, A. A. Quivy, T. E. Lamas, and E. da Silva, Realtime RHEED investigation of indium segregation in InGaAs layers grown on vicinal GaAs(001) substrates, Phys. Rev. B 72(15), 153304 (2005)
https://doi.org/10.1103/PhysRevB.72.153304
35 R. J. Asaro and W. A. Tiller, Interface morphology development during stress corrosion cracking (Part I): Via surface diffusion, Metall. Trans. 3(7), 1789 (1972)
https://doi.org/10.1007/BF02642562
36 M. A. Grinfeld, Instability of the Separation Boundary between a Nonhydrostatically Stressed Elastic Body and a Melt, Dokl. Akad. Nauk. SSSR 290(6), 1358 (1986)
37 D. J. Srolovitz, On the stability of surfaces of stressed solids, Acta Metall. 37(2), 621 (1989)
https://doi.org/10.1016/0001-6160(89)90246-0
38 H. Gao and D. M. Nix, Surface roughening of heteroepitaxial thin films, Annu. Rev. Mater. Sci. 29(1), 173 (1999)
https://doi.org/10.1146/annurev.matsci.29.1.173
39 B. J. Spencer and J. Tersoff, Equilibrium shapes and properties of epitaxially strained islands, Phys. Rev. Lett. 79(24), 4858 (1997)
https://doi.org/10.1103/PhysRevLett.79.4858
40 C. D. Rudin and B. J. Spencer, Equilibrium island ridge arrays in strained solid films, J. Appl. Phys. 86(10), 5530 (1999)
https://doi.org/10.1063/1.371556
41 W. T. Tekalign and B. J. Spencer, Evolution equation for a thin epitaxial film on a deformable substrate, J. Appl. Phys. 96(10), 5505 (2004)
https://doi.org/10.1063/1.1766084
42 J. N. Aqua, T. Frisch, and A. Verga, Nonlinear evolution of a morphological instability in a strained epitaxial film, Phys. Rev. B 76(16), 165319 (2007)
https://doi.org/10.1103/PhysRevB.76.165319
43 B. J. Spencer, P. W. Voorhees, and S. H. Davis, Morphological instability in epitaxially strained dislocation-free solid films: Linear stability theory, J. Appl. Phys. 73(10), 4955 (1993)
https://doi.org/10.1063/1.353815
44 J. E. Guyer and P. W. Voorhees, Morphological stability of alloy thin films, Phys. Rev. B 54, 11710 (1996)
https://doi.org/10.1103/PhysRevB.54.11710
45 C. H. Chiu, The self-assembly of uniform heteroepitaxial islands, Appl. Phys. Lett. 75(22), 3473 (1999)
https://doi.org/10.1063/1.125300
46 C. H. Chiu and Z. Huang, Numerical simulation for the formation of nanostructures on the Stranski–Krastanow systems by surface undulation, J. Appl. Phys. 101(11), 113540 (2007)
https://doi.org/10.1063/1.2743734
47 M. Levine, A. Golovin, S. Davis, and P. Voorhees, Selfassembly of quantum dots in a thin epitaxial film wetting an elastic substrate, Phys. Rev. B 75(20), 205312 (2007)
https://doi.org/10.1103/PhysRevB.75.205312
48 Y. W. Zhang, Self-organization, shape transition, and stability of epitaxially strained islands, Phys. Rev. B 61(15), 10388 (2000)
https://doi.org/10.1103/PhysRevB.61.10388
49 J.Müller and M. Grant, Model of surface instabilities induced by stress, Phys. Rev. Lett. 82(8), 1736 (1999)
https://doi.org/10.1103/PhysRevLett.82.1736
50 Z. Suo and Z. Zhang, Epitaxial films stabilized by long-range forces, Phys. Rev. B 58(8), 5116 (1998)
https://doi.org/10.1103/PhysRevB.58.5116
51 P. Liu, Y. W. Zhang, and C. Lu, Coarsening kinetics of heteroepitaxial islands in nucleationless Stranski–Krastanov growth, Phys. Rev. B 68(3), 035402 (2003)
https://doi.org/10.1103/PhysRevB.68.035402
52 J. N. Aqua, and T. Frisch, Influence of surface energy anisotropy on the dynamics of quantum dot growth, Phys. Rev. B 82(8), 085322 (2010)
https://doi.org/10.1103/PhysRevB.82.085322
53 S. P. A. Gill, An analytical model for the growth of quantum dots on ultrathin substrates, Appl. Phys. Lett. 98(16), 161910 (2011)
https://doi.org/10.1063/1.3583447
54 M. Khenner, W. T. Tekalign, and M. S. Levine, Stability of a strongly anisotropic thin epitaxial film in a wetting interaction with elastic substrate, Europhys. Lett. 93(2), 26001 (2011)
https://doi.org/10.1209/0295-5075/93/26001
55 Y. W. Zhang and A. F. Bower, Three-dimensional analysis of shape transitions in strained-heteroepitaxial islands, Appl. Phys. Lett. 78(18), 2706 (2001)
https://doi.org/10.1063/1.1354155
56 F. Long, S. P. A. Gill, and A. C. Cocks, Effect of surfaceenergy anisotropy on the kinetics of quantum dot formation, Phys. Rev. B 64(12), 121307 (2001)
https://doi.org/10.1103/PhysRevB.64.121307
57 M. D. Korzec and P. L. Evans, From bell shapes to pyramids: A reduced continuum model for self-assembled quantum dot growth, Physica D 239(8), 465 (2010)
https://doi.org/10.1016/j.physd.2010.01.014
58 C. H. Chiu, Stable and uniform arrays of self-assembled nanocrystalline islands, Phys. Rev. B 69(16), 165413 (2004)
https://doi.org/10.1103/PhysRevB.69.165413
59 C. Herring, Effect of change of scale on sintering phenomena, J. Appl. Phys. 21(4), 301 (1950)
https://doi.org/10.1063/1.1699658
60 W. W. Mullins, Theory of thermal grooving, J. Appl. Phys. 28, 333 (1957)
https://doi.org/10.1063/1.1722742
61 J. W. Gibbs, The Collected Works, Thermodynamics Vol. 1, New York: Longmans Green, 1928
62 J. W. P. Schmelzer, On the determination of the kinetic prefactor in classical nucleation theory, J. Non-Cryst. Solids 356(52-54): 2901 (2010)
https://doi.org/10.1016/j.jnoncrysol.2010.02.026
63 B.V. Derjaguin, Theory of homogeneous condensation upon moderate supersaturation, Progress in Surface Science 45(1-4), 1 (1994)
https://doi.org/10.1016/0079-6816(94)90023-X
64 D. Kashchiev, Nucleation: Basic Theory with Applications, Oxford: Butterworth Heinemann, 2000
65 S. A. Kukushkin and A. V. Osipov, New phase formation on solid surfaces and thin film condensation, Prog. Surf. Sci. 51(1), 1 (1996)
https://doi.org/10.1016/0079-6816(96)82931-5
66 T. P. Munt, D. E. Jesson, V. A. Shchukin, and D. Bimberg, Metastable states of surface nanostructure arrays studied using a Fokker–Planck equation, Phys. Rev. B 75(8), 085422 (2007)
https://doi.org/10.1103/PhysRevB.75.085422
67 I. M. Lifshitz and V. V. Slyozov, The kinetics of precipitation from supersaturated solid solutions, J. Phys. Chem. Solids 19(1-2), 35 (1961)
https://doi.org/10.1016/0022-3697(61)90054-3
68 C. Wagner, Theorie der Alterung von Niederschl?gen durch Uml?sen (Ostwald-Reifung) [Theory of the aging of precipitates by dissolution-reprecipitation (Ostwald ripening)], Zeitschrift für Elektrochemie 65(7-8), 581 (1961)
69 A. V. Osipov, S. A. Kukushkin, F. Schmitt, and P. Hess, Kinetic model of coherent island formation in the case of self-limiting growth, Phys. Rev. B 64(20), 205421 (2001)
https://doi.org/10.1103/PhysRevB.64.205421
70 A. V. Osipov, F. Schmitt, S. A. Kukushkin, and P. Hess, Stress-driven nucleation of coherent islands: Theory and experiment, Appl. Surf. Sci. 188(1-2), 156 (2002)
https://doi.org/10.1016/S0169-4332(01)00727-9
71 V. G. Dubrovskii, G. E. Cirlin, and V. W. Ustinov, Kinetics of the initial stage of coherent island formation in heteroepitaxial systems, Phys. Rev. B 68(7), 075409 (2003)
https://doi.org/10.1103/PhysRevB.68.075409
72 V. G. Dubrovskii, G. E. Cirlin, Y. G. Musikhin, Y. B. Samsonenko, A. A. Tonkikh, N. K. Polyakov, V. A. Egorov, A. F. Tsatsul’nikov, N. A. Krizhanovskaya, V. M. Ustinov, and P. Werner, Effect of growth kinetics on the structural and optical properties of quantum dot ensembles, J. Cryst. Growth 267(1-2), 47 (2004)
https://doi.org/10.1016/j.jcrysgro.2004.03.055
73 V. G. Dubrovskii, Calculation of the size-distribution function for quantum dots at the kinetic stage of growth, Semiconductors 40(10), 1123 (2006)
https://doi.org/10.1134/S1063782606100010
74 J. Tersoff and F. K. LeGoues, Competing relaxation mechanisms in strained layers, Phys. Rev. Lett. 72, 3570 (1994)
https://doi.org/10.1103/PhysRevLett.72.3570
75 T. Hanada, H. Totsuka, S. K. Hong, K. Godo, K. Miyajima, T. Goto, and T. Yao, Slowdown in development of self-assembled InAs/GaAs(001) dots near the critical thickness, J. Vac. Sci. Technol. B 24(4), 1886 (2006)
https://doi.org/10.1116/1.2219756
76 A. L. Giermann and C. V. Thompson, Solid-state dewetting for ordered arrays of crystallographically oriented metal particles, Appl. Phys. Lett. 86(12), 121903 (2005)
https://doi.org/10.1063/1.1885180
77 D. T. Danielson, D. K. Sparacin, J. Michel, and L. C. Kimerling, Surface-energy-driven dewetting theory of silicon-oninsulator agglomeration, J. Appl. Phys. 100(8), 083507 (2006)
https://doi.org/10.1063/1.2357345
78 E. Bussmann, F. Cheynis, F. Leroy, P. Müller, and O. PierreLouis, Dynamics of solid thin-film dewetting in the siliconon-insulator system, New J. Phys. 13(4), 043017 (2011)
https://doi.org/10.1088/1367-2630/13/4/043017
79 D. Wang and P. Schaaf, Solid-state dewetting for fabrication of metallic nanoparticles and influences of nanostructured substrates and dealloying, Phys. Status Solidi A 210(8), 1544 (2013)
https://doi.org/10.1002/pssa.201200895
80 F. Ruffino and M. G. Grimaldi, Dewetting of templateconfined Au films on SiC surface: From patterned films to patterned arrays of nanoparticles, Vacuum 99, 28 (2014)
https://doi.org/10.1016/j.vacuum.2013.04.021
81 H. T. Dobbs, D. D. Vvedensky, A. Zangwill, J. Johansson, N. Carlsson, and W. Seifert, Mean-field theory of quantum dot formation, Phys. Rev. Lett. 79(5), 897 (1997)
https://doi.org/10.1103/PhysRevLett.79.897
82 Y. Chen and J. Washburn, Structural transition in largelattice-mismatch heteroepitaxy, Phys. Rev. Lett. 77(19), 4046 (1996)
https://doi.org/10.1103/PhysRevLett.77.4046
83 F. M. Ross, J. Tersoff, and R. M. Tromp, Coarsening of selfassembled Ge quantum dots on Si (001), Phys. Rev. Lett. 80(5), 984 (1998)
https://doi.org/10.1103/PhysRevLett.80.984
84 H. M. Koduvely and A. Zangwill, Epitaxial growth kinetics with interacting coherent islands, Phys. Rev. Lett. 60(4), R2204 (1999)
85 D. E. Jesson, T. P. Munt, V. A. Shchcukin, and D. Bimberg, Tunable metastability of surface nanostructure arrays, Phys. Rev. Lett. 92(11), 115503 (2004)
https://doi.org/10.1103/PhysRevLett.92.115503
86 Y. Enomoto and M. Sawa, Simulation study on nanocluster growth deposited on a substrate, Physica A 331(1-2), 189 (2004)
https://doi.org/10.1016/j.physa.2003.09.001
87 M. Fanfoni and M. Tomellini, Film growth viewed as stochastic dot processes, J. Phys.: Condens. Matter 17(17), R571 (2005)
https://doi.org/10.1088/0953-8984/17/17/R02
88 H. Z. Song, T. Usuki, Y. Nakata, N. Yokoyama, H. Sasakura, and S. Muto, Formation of InAs/GaAs quantum dots from a subcritical InAs wetting layer: A reflection high-energy electron diffraction and theoretical study, Phys. Rev. B 73(11), 115327 (2006)
https://doi.org/10.1103/PhysRevB.73.115327
89 M. Fanfoni, E. Placidi, F. Arciprete, E. Orsini, F. Patella, and A. Balzarotti, Sudden nucleation versus scale invariance of InAs quantum dots on GaAs, Phys. Rev. B 75(24), 245312 (2007)
https://doi.org/10.1103/PhysRevB.75.245312
90 K. A. Nevalainen, M. Rusanen, and I. T. Koponen, Size selected growth of nanodots: Effects of growth kinetics and energetics on the formation of stationary size distributions, Eur. Phys. J. B 56(4), 311 (2007)
https://doi.org/10.1140/epjb/e2007-00137-0
91 F. Ratto and F. Rosei, Order and disorder in the heteroepitaxy of semiconductor nanostructures, Mater. Sci. Eng. Rep. 70(3-6), 243 (2010)
https://doi.org/10.1016/j.mser.2010.06.011
92 Ch. Heyn, Critical coverage for strain-induced formation of InAs quantum dots, Phys. Rev. B 64(16), 165306 (2001)
https://doi.org/10.1103/PhysRevB.64.165306
93 J. A. Venables, G. D. T.Spiller, and M. Hanbuchen, Nucleation and growth of thin films, Rep. Prog. Phys. 47(4), 399 (1984)
https://doi.org/10.1088/0034-4885/47/4/002
94 M. Itoh, Atomic-scale homoepitaxial growth simulations of reconstructed III–V surfaces, Prog. Surf. Sci. 66(3-5), 53 (2001)
95 J. W. Evans, P. A. Thiel, and M. C. Bartelt, Morphological evolution during epitaxial thin film growth: Formation of 2D islands and 3D mounds, Surf. Sci. Rep. 61(1-2), 1 (2006)
https://doi.org/10.1016/j.surfrep.2005.08.004
96 G. S. Bales and D. C. Chrzan, Dynamics of irreversible island growth during submonolayer epitaxy, Phys. Rev. B 50(9), 6057 (1994)
https://doi.org/10.1103/PhysRevB.50.6057
97 M. K?rner, M. Einax, and P. Maass, Island size distributions in submonolayer growth: Prediction by mean field theory with coverage dependent capture number, Phys. Rev. B 82(20), 201401(R) (2010)
98 M. K?rner, M. Einax, and P. Maass, Capture numbers and island size distributions in models of submonolayer surface growth, Phys. Rev. B 86(8), 085403 (2012)
https://doi.org/10.1103/PhysRevB.86.085403
99 J. G. Amar, F. Family, and P. M. Lam, Dynamic scaling of the island-size distribution and percolation in a model of submonolayer molecular-beam epitaxy, Phys. Rev. B 50(12), 8781 (1994)
https://doi.org/10.1103/PhysRevB.50.8781
100 D. R. Frankl and J. A. Venables, Nucleation on substrates from the vapour phase, Adv. Phys. 19(80), 409 (1970)
https://doi.org/10.1080/00018737000101151
101 T. Witten and L. M. Sander, Diffusion-limited aggregation, a kinetic critical phenomenon, Phys. Rev. Lett. 47(19), 1400 (1981)
https://doi.org/10.1103/PhysRevLett.47.1400
102 P. Meakin, Formation of fractal clusters and networks by irreversible diffusion-limited aggregation, Phys. Rev. Lett. 51(13), 1119 (1983)
https://doi.org/10.1103/PhysRevLett.51.1119
103 M. Kolb, R. Botet, and R. Jullien, Scaling of kinetically growing clusters, Phys. Rev. Lett. 51(13), 1123 (1983)
https://doi.org/10.1103/PhysRevLett.51.1123
104 A. Y. Menshutin and L. N. Shchur, Morphological diagram of diffusion driven aggregate growth in plane: Competition of anisotropy and adhesion, Comput. Phys. Commun. 182(9), 1819 (2011)
https://doi.org/10.1016/j.cpc.2010.10.028
105 Z. Rácz and T. Vicsek, Diffusion-controlled deposition: Cluster statistics and scaling, Phys. Rev. Lett. 51(26), 2382 (1983)
https://doi.org/10.1103/PhysRevLett.51.2382
106 T. Vicsek and F. Family, Dynamic scaling for aggregation of clusters, Phys. Rev. Lett. 52(19), 1669 (1983)
https://doi.org/10.1103/PhysRevLett.52.1669
107 W. W. Mullins, The statistical self-similarity hypothesis in grain growth and particle coarsening, J. Appl. Phys. 59(4), 1341 (1986)
https://doi.org/10.1063/1.336528
108 F. Family and P. Meakin, Scaling of the droplet-size distribution in vapor-deposited thin films, Phys. Rev. Lett. 61(4), 428 (1988)
https://doi.org/10.1103/PhysRevLett.61.428
109 F. Family and P. Meakin, Kinetics of droplet growth processes: Simulations, theory, and experiments, Phys. Rev. A 40(7), 3836 (1989)
https://doi.org/10.1103/PhysRevA.40.3836
110 M. Zinke-Allmang, L. C. Feldman, and W. van Saarloos, Experimental study of self-similarity in the coalescence growth regime, Phys. Rev. Lett. 68(15), 2358 (1992)
https://doi.org/10.1103/PhysRevLett.68.2358
111 J. G. Amar, F. Family, and P. M. Lam, Dynamic scaling of the island-size distribution and percolation in a model of submonolayer molecular-beam epitaxy, Phys. Rev. B 50(12), 8781 (1994)
https://doi.org/10.1103/PhysRevB.50.8781
112 J. G. Amar and F. Family, Kinetics of submonolayer and multilayer epitaxial growth, Thin Solid Films 272(2), 208(1996)
https://doi.org/10.1016/0040-6090(95)06947-X
113 J. W. Evans and M. C. Bartelt, Nucleation, adatom capture, and island size distributions: Unified scaling analysis for submonolayer deposition, Phys. Rev. B 63(23), 235408 (2001)
https://doi.org/10.1103/PhysRevB.63.235408
114 J. W. Evans and M. C. Bartelt, Island sizes and capture zone areas in submonolayer deposition: Scaling and factorization of the joint probability distribution, Phys. Rev. B 66(23), 235410 (2002)
https://doi.org/10.1103/PhysRevB.66.235410
115 J. A. Stroscio and D. T. Pierce, Scaling of diffusion-mediated island growth in iron-on-iron homoepitaxy, Phys. Rev. B 49(12), 8522 (1994)
https://doi.org/10.1103/PhysRevB.49.8522
116 V. Bressler-Hill, S. Varma, A. Lorke, B. Z. Nosho, P. Petroff, and W. Weinberg, Island scaling in strained heteroepitaxy: InAs/GaAs(001), Phys. Rev. Lett. 74(16), 3209 (1995)
https://doi.org/10.1103/PhysRevLett.74.3209
117 G. R . Bell, T. J. Krzyzewski, P. B. Joyce, and T. S. Jones, Island size scaling for submonolayer growth of InAs on GaAs (001)- (2×4): Strain and surface reconstruction effects, Phys. Rev. B 61(16), R10551 (2000)
https://doi.org/10.1103/PhysRevB.61.R10551
118 C. Ratsch, A. Zangwill, P. Smilauer, and D. D. Vvedensky, Saturation and scaling of epitaxial island densities, Phys. Rev. Lett. 72(20), 3194 (1994)
https://doi.org/10.1103/PhysRevLett.72.3194
119 J. G. Amar and F. Family, Critical cluster size: Island morphology and size distribution in submonolayer epitaxial growth, Phys. Rev. Lett. 74(11), 2066 (1995)
https://doi.org/10.1103/PhysRevLett.74.2066
120 P. A. Mulheran and J. A. Blackman, The origins of island size scaling in heterogeneous film growth, Philos. Mag. Lett. 72(1), 55 (1995)
https://doi.org/10.1080/09500839508241614
121 P. A. Mulheran and J. A. Blackman, Capture zones and scaling in homogeneous thin-film growth, Phys. Rev. B 53(15), 10261 (1996)
https://doi.org/10.1103/PhysRevB.53.10261
122 F. Ratto, A. Locatelli, S. Fontana, S. Kharrazi, S. Ashtaputre, S. Kulkarni, S. Heun, and F. Rosei, Diffusion dynamics during the nucleation and growth of Ge/Si nanostructures on Si(111), Phys. Rev. Lett. 96(9), 096103 (2006)
https://doi.org/10.1103/PhysRevLett.96.096103
123 G. S. Solomon, J. A. Trezza, and J. S. Harris, Substrate temperature and monolayer coverage effects on epitaxial ordering of InAs and InGaAs islands on GaAs, Appl. Phys. Lett. 66(8), 991 (1995)
https://doi.org/10.1063/1.113822
124 R. Leon, T. J. Senden, Y. Kim, C. Jagadish, and A. Clark, Nucleation transitions for InGaAs islands on vicinal (100) GaAs, Phys. Rev. Lett. 78(26), 4942 (1997)
https://doi.org/10.1103/PhysRevLett.78.4942
125 K. Shiramine, T. Itoh, and S. Muto, Critical cluster size of InAs quantum dots formed by Stranski–Krastanow mode, J. Vac. Sci. Technol. B 22(2), 642 (2004)
https://doi.org/10.1116/1.1651113
126 F. Arciprete, E. Placidi, V. Sessi, M. Fanfoni, F. Patella, and A. Balzarotti, How kinetics drives the two- to three-dimensional transition in semiconductor strained heterostructures: The case of InAs/GaAs(001), Appl. Phys. Lett. 89(4), 041904 (2006)
https://doi.org/10.1063/1.2234845
127 Y. Ebiko, S. Muto, D. Suzuki, S. Itoh, K. Shiramine, T. Haga, Y. Nakata, and N. Yokoyama, Island size scaling in InAs/GaAs self-assembled quantum dots, Phys. Rev. Lett. 80(12), 2650 (1998)
https://doi.org/10.1103/PhysRevLett.80.2650
128 T. J. Krzyzewski, P. B. Joyce, G. R. Bell, and T. S. Jones, Understanding the growth mode transition in InAs/GaAs(001) quantum dot formation, Surf. Sci. 532-535, 822 (2003)
https://doi.org/10.1016/S0039-6028(03)00455-2
129 T. P. Munt, D. E. Jesson, V. A. Shchukin, and D. Bimberg, Manipulating the size distributions of quantum dots associated with strain-renormalized surface energy, Appl. Phys. Lett. 85(10), 1784(2004)
https://doi.org/10.1063/1.1787943
130 K. Pirkkalainen, K. A. Riekki, and I. T. Koponen, Two computational methods for describing size selected nanocluster growth and obtaining accurate cluster size distributions, Comput. Mater. Sci. 43(2), 325 (2008)
https://doi.org/10.1016/j.commatsci.2007.11.007
131 K. Pirkkalainen, K. A. Nevalainen, and I. T. Koponen, Computational methods for mesoscopic modelling of sizeselection in nanoisland growth, J. Phys.: Conf. Ser. 100(7), 072004 (2008)
132 K. A. Riekki, Size selected growth of nanodots: Analytical prediction for the selected size, Eur. Phys. J. B 85(6), 185, 2012
https://doi.org/10.1140/epjb/e2012-30324-7
133 G. S. Bales and A. Zangwill, Self-consistent rate theory of submonolayer homoepitaxy with attachment/detachment kinetics, Phys. Rev. B 55(4), R1973 (1997)
https://doi.org/10.1103/PhysRevB.55.R1973
134 H. A. Atwater and C. M. Yang, Island growth and coarsening in thin films — conservative and nonconservative systems, J. Appl. Phys. 67(10), 6202 (1990)
https://doi.org/10.1063/1.346084
135 W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in Fortran 77, Cambridge: Cambridge University Press, 1992
136 J. W. Christian, The Theory of Transformations in Metals and Alloys, Part I, New York: Pergamon Press, 2002
137 E. M. Lifshitz and L. P. Pitaevskii, Physical Kinetics, Oxford: Butterworth-Heinemann, 1981
138 T. P. Munt, D. E. Jesson, V. A. Shchukin, and D. Bimberg, Manipulating the size distributions of quantum dots associated with strain-renormalized surface energy, Appl. Phys. Lett. 85(10), 1784 (2004)
https://doi.org/10.1063/1.1787943
139 D. J. Vine, D. E. Jesson, M. J. Morgan, V. Shchukin, and D. Bimberg, Shape transitions of metastable surface nanostructures, Phys. Rev. B 72(24), 241304 (2005)
https://doi.org/10.1103/PhysRevB.72.241304
140 R. Bergamaschini, M. Brehm, M. Grydlik, T. Fromherz, G. Bauer, and F. Montalenti, Temperature-dependent evolution of the wetting layer thickness during Ge deposition on Si(001), Nanotechnology 22(28), 285704 (2011)
https://doi.org/10.1088/0957-4484/22/28/285704
141 C. Misbah, O. Pierre- Louis, and Y. Saito, Crystal surfaces in and out of equilibrium: A modern view, Rev. Mod. Phys. 82(1), 981, (2010)
https://doi.org/10.1103/RevModPhys.82.981
142 T. Witten and L. M. Sander, Diffusion-limited aggregation, a kinetic critical phenomenon, Phys. Rev. Lett. 47(19), 1400 (1981)
https://doi.org/10.1103/PhysRevLett.47.1400
143 G. H. Gilmer, M. H. Grabow, and A. F. Bakker, Modeling of epitaxial growth, Mater. Sci. Eng. B 6(2-3), 101 (1990)
https://doi.org/10.1016/0921-5107(90)90086-Q
144 D. D. Vvedensky, Epitaxial phenomena across length and time scales, Surf. Interface Anal. 31(7), 627 (2001)
https://doi.org/10.1002/sia.1090
145 R. E. Caflisch, Growth, structure and pattern formation for thin films, J. Sci. Comput. 37(1), 3 (2008)
https://doi.org/10.1007/s10915-008-9206-8
146 K. Pirkkalainen and I. T. Koponen, Computational study on tuning the 2D self-assembly of metallic nanoclusters, Surf. Sci. 604(11-12), 951 (2010)
https://doi.org/10.1016/j.susc.2010.02.028
147 B. A. Joyce and D. D. Vvedensky, Self-organized growth on GaAs surfaces, Mater. Sci. Eng. Rep. 46(6), 127 (2004)
https://doi.org/10.1016/j.mser.2004.10.001
148 P. P. Petrov and W. Miller, Fast kinetic Monte Carlo simulation and statistics of quantum dot arrays, Surf. Sci. 621, 175 (2014)
https://doi.org/10.1016/j.susc.2013.11.011
149 E. Sch?ll and B. Bose, Kinetic Monte Carlo simulation of the nucleation stage of the self-organized growth of quantum dots, Solid-State Electron. 42(7-8), 1587 (1998)
150 G. Russo and P. Smereka, Computation of strained epitaxial growth in three dimensions by kinetic Monte Carlo, J. Comput. Phys. 214(2), 809 (2006)
https://doi.org/10.1016/j.jcp.2005.10.008
151 T. P. Schulze and P. Smereka, An energy localization principle and its application to fast kinetic Monte Carlo simulation of heteroepitaxial growth, J. Mech. Phys. Solids 57(3), 521 (2009)
https://doi.org/10.1016/j.jmps.2008.11.007
152 B. G. Orr, D. A. Kessler, C. W. Snyder, and L. M. Sander, A model for strain-induced roughening and coherent island growth, Europhys. Lett. 19(1), 33 (1992)
https://doi.org/10.1209/0295-5075/19/1/006
153 C. H. Lam, C. K. Lee, and L. M. Sander, Competing roughening mechanisms in strained heteroepitaxy: A fast kinetic Monte Carlo study, Phys. Rev. Lett. 89(21), 216102 (2002)
https://doi.org/10.1103/PhysRevLett.89.216102
154 M. T. Lung, C. H. Lam, and L. M. Sander, Island, pit, and groove formation in strained heteroepitaxy, Phys. Rev. Lett. 95(8), 086102 (2005)
https://doi.org/10.1103/PhysRevLett.95.086102
155 T. P. Schulze and P. Smereka, An energy localization principle and its application to fast kinetic Monte Carlo simulation of heteroepitaxial growth, J. Mech. Phys. Solids 57(3), 521 (2009)
https://doi.org/10.1016/j.jmps.2008.11.007
156 F. Much and M. Biehl, Simulation of wetting-layer and island formation in heteroepitaxial growth, Europhys. Lett. 63, 14 (2003)
https://doi.org/10.1209/epl/i2003-00471-9
157 J. Y. Guo, Y. W. Zhang, and C. Lu, Effects of wetting and misfit strain on the pattern formation of heteroepitaxially grown thin films, Comput. Mater. Sci. 44(1), 174 (2008)
https://doi.org/10.1016/j.commatsci.2008.01.053
158 P. Gaillard, J. N. Aqua, and T. Frisch, Kinetic Monte Carlo simulations of the growth of silicon germanium pyramids, Phys. Rev. B 87(12), 125310 (2013)
https://doi.org/10.1103/PhysRevB.87.125310
159 G. Russo and P. Smereka, Computation of strained epitaxial growth in three dimensions by kinetic Monte Carlo, J. Comput. Phys. 214(2), 809 (2006)
https://doi.org/10.1016/j.jcp.2005.10.008
160 J. N. Aqua and T. Frisch, Elastic interactions and kinetics during reversible submonolayer growth: Monte Carlo simulations, Phys. Rev. B 78(12), 121305 (2008)
https://doi.org/10.1103/PhysRevB.78.121305
161 R. Stumpf and M. Scheffler, Theory of self-diffusion at and growth of Al(111), Phys. Rev. Lett. 72(2), 254 (1994)
https://doi.org/10.1103/PhysRevLett.72.254
162 R. Stumpf and M. Scheffler, Ab initio calculations of energies and self-diffusion on flat and stepped surfaces of Al and their implications on crystal growth, Phys. Rev. B 53(8), 4958 (1996)
https://doi.org/10.1103/PhysRevB.53.4958
163 B. D. Yu and M. Scheffler, Anisotropy of growth of the closepacked surfaces of silver, Phys. Rev. Lett. 77(6), 1095 (1996)
https://doi.org/10.1103/PhysRevLett.77.1095
164 A. Bogicevic, J. Str?mquist, and B. Lundqvist, Lowsymmetry diffusion barriers in homoepitaxial growth of Al(111), Phys. Rev. Lett. 81(3), 637 (1998)
https://doi.org/10.1103/PhysRevLett.81.637
165 A. La Magna, Nanoisland shape relaxation mechanism, Surf. Sci. 601(2), 308 (2007)
https://doi.org/10.1016/j.susc.2006.09.035
166 K. Thürmer, J. E. Reutt-Robey, and E. D. Williams, Nucleation limited crystal shape transformations, Surf. Sci. 537(1-3), 123 (2003)
https://doi.org/10.1016/S0039-6028(03)00600-9
167 C. Herring, in: Structure and Properties of Solid Surfaces, edited by R. Gomer and C. S. Smith, Chicago: The University of Chicago Press, 1952, pp 5-81
168 W. W. Mullins and G. S. Rohrer, Nucleation barrier for volume-conserving shape changes of faceted crystals, J. Am. Ceram. Soc. 83(1), 214 (2000)
https://doi.org/10.1111/j.1151-2916.2000.tb01173.x
169 G. S. Rohrer, C. L. Rohrer, and W. W. Mullins, Nucleation energy barriers for volume-conserving shape changes of crystals with nonequilibrium morphologies, J. Am. Ceram. Soc. 84(9), 2099 (2001)
https://doi.org/10.1111/j.1151-2916.2001.tb00965.x
170 N. Combe, P. Jensen, and A. Pimpinelli, Changing shapes in the nanoworld, Phys. Rev. Lett. 85(1), 110 (2000)
https://doi.org/10.1103/PhysRevLett.85.110
171 D. N. McCarthy and S. A. Brown, Evolution of neck radius and relaxation of coalescing nanoparticles, Phys. Rev. B 80, 064107 (2009)
https://doi.org/10.1103/PhysRevB.80.064107
172 F. Family and T. Vicsek, in: Dynamics of Fractal Surfaces, Singapore: World Scientific Press, 1991
173 A. L. Barabasi and H. E. Stanly, Fractal Concepts in Surface Growth, New York: Cambridge University Press, 1995
https://doi.org/10.1017/CBO9780511599798
174 P. Meakin, Fractals, Scaling and Growth Far from Equilibrium, Cambridge: Cambridge University Press, 1998
175 F. Family and T. Vicsek, Scaling of the active zone in the Eden process on percolation networks and the ballistic deposition model, J. Phys. Math. Gen. 18(2), L75 (1985)
https://doi.org/10.1088/0305-4470/18/2/005
176 H. Brune, K. Bromann, H. R?der, K. Kern, J. Jacobsen, P. Stoltze, K. Jacobsen, and J. N?rskov, Effect of strain on surface diffusion and nucleation, Phys. Rev. B 52(20), R14380 (1995)
177 J. Krug, Four lectures on the physics of crystal growth, Physica A 313(1-2): 47, 2002
178 P. P. Chatraphorn, Z. Toroczkai, and S. Das Sarma, Epitaxial mounding in limited-mobility models of surface growth, Phys. Rev. B 64(20), 205407 (2001)
https://doi.org/10.1103/PhysRevB.64.205407
179 K. J. Caspersen, A. R. Layson, C. R. Stoldt, V. Fournee, P. Thiel, and J. Evans, Development and ordering of mounds during metal(100) homoepitaxy, Phys. Rev. B 65(19), 193407 (2002)
https://doi.org/10.1103/PhysRevB.65.193407
180 F. F. Leal, S. C. Ferreira, and S. O. Ferreira, Modelling of epitaxial film growth with an Ehrlich-Schwoebel barrier dependent on the step height, J. Phys.: Condens. Matter 23(29), 292201 (2011)
https://doi.org/10.1088/0953-8984/23/29/292201
181 R. L. Schwoebel and E. J. Shipsey, Step motion on crystal surfaces, J. Appl. Phys. 37(10), 3682 (1966)
https://doi.org/10.1063/1.1707904
182 R. L. Schwoebel, Step motion on crystal surfaces (II), J. Appl. Phys. 40(2), 614 (1969)
https://doi.org/10.1063/1.1657442
183 J. Villain, Continuum models of crystal growth from atomic beams with and without desorption, J. Phys. I 1(1), 19 (1991)
https://doi.org/10.1051/jp1:1991114
184 J. G. Amar and F. Family, Step-adatom attraction as a new mechanism for instability in epitaxial growth, Phys. Rev. Lett. 77(22), 4584 (1996)
https://doi.org/10.1103/PhysRevLett.77.4584
185 D. V. Brunev, I. G. Neizvestny, N. L. Shwartz, and Z. S. Yanovitskaja, Schwoebel barriers and quantum dot lateral size equalization during epitaxial growth, Nanotechnology 12(4), 413 (2001)
https://doi.org/10.1088/0957-4484/12/4/304
186 R. Zhu, E. Pan, and P. W. Chung, Fast multiscale kinetic Monte Carlo simulations of three-dimensional self-assembled quantum dot islands, Phys. Rev. B 75(20), 205339 (2007)
https://doi.org/10.1103/PhysRevB.75.205339
187 Z. Y. Zhang, J. Detch, and H. Metiu, Surface roughness in thin-film growth: The effect of mass transport between layers, Phys. Rev. B 48(7), 4972 (1993)
https://doi.org/10.1103/PhysRevB.48.4972
188 M. Kalff, P. Smilauer, G. Comsa, and T. Michely, No coars-ěning in Pt(111) homoepitaxy, Surf. Sci. 426(3), L447 (1999)
https://doi.org/10.1016/S0039-6028(99)00351-9
189 B. Yang, Elastic energy release rate of quantum islands in Stranski–Krastanow growth, J. Appl. Phys. 92(7), 3704 (2002)
https://doi.org/10.1063/1.1506386
190 C. Ratsch, J. DeVita, and P. Smereka, Level-set simulation for the strain-driven sharpening of the island-size distribution during submonolayer heteroepitaxial growth, Phys. Rev. B 80(15), 155309 (2009)
https://doi.org/10.1103/PhysRevB.80.155309
191 A. C. Schindler, M. F. Gyure, G. D. Simms, D. Vvedensky, R. Caflisch, C. Connell, and E. Luo, Theory of strain relaxation in heteroepitaxial systems, Phys. Rev. B 67(7), 075316 (2003)
https://doi.org/10.1103/PhysRevB.67.075316
192 C. Ratsch, P. Smilauer, D. D. Vvedensky, and A. Zangwill, Mechanism for coherent island formation during heteroepitaxy, J. Phys. I 6, 575 (1996)
https://doi.org/10.1051/jp1:1996230
193 P. Nath and M. Ranganathan, Kinetic Monte Carlo simulations of heteroepitaxial growth with an atomistic model of elasticity, Surf. Sci. 606(17-18), 1450 (2012)
https://doi.org/10.1016/j.susc.2012.05.015
194 V. I. Tokar and H. Dreyssé, Nucleation of size calibrated three-dimensional nanodots in atomistic model of strained epitaxy: A Monte Carlo study, J. Phys.: Condens. Matter 25(4), 045001 (2013)
https://doi.org/10.1088/0953-8984/25/4/045001
195 F. Buatier de Mongeot, W. Zhu, A. Molle, R. Buzio, C. Boragno, U. Valbusa, E. Wang, and Z. Zhang, Nanocrystal formation and faceting instability in Al(110) homoepitaxy: True upward adatom diffusion at step edges and island corners, Phys. Rev. Lett. 91(1), 016102 (2003)
https://doi.org/10.1103/PhysRevLett.91.016102
196 K. Fichthorn and M. Scheffler, Nanophysics: A step up to self-assembly, Nature 429(6992), 617 (2004)
https://doi.org/10.1038/429617a
197 W. Zhu, F. Buatier de Mongeot, U. Valbusa, E. Wang, and Z. Zhang, Adatom ascending at step edges and faceting on fcc metal (110) surfaces, Phys. Rev. Lett. 92(10), 106102 (2004)
https://doi.org/10.1103/PhysRevLett.92.106102
198 H. Yang, Q. Sun, Z. Zhang, and Y. Jia, Upward self-diffusion of adatoms and small clusters on facets of fcc metal (110) surfaces, Phys. Rev. B 76(11), 115417 (2007)
https://doi.org/10.1103/PhysRevB.76.115417
199 Z. Zhang, Q. Niu, and C. K. Shih, Electronic growth of metallic overlayers on semiconductor substrates, Phys. Rev. Lett. 80(24), 5381 (1998)
https://doi.org/10.1103/PhysRevLett.80.5381
200 K. Budde, E. Abram, V. Yeh, and M. C. Tringides, Uniform, self-organized, seven-step height Pb/Si(111)-(7 × 7) islands at low temperatures, Phys. Rev. B 61(16), R10602 (2000)
https://doi.org/10.1103/PhysRevB.61.R10602
201 K. L. Man, M. C. Tringides, M. M. T. Loy, and M. Altman, Superdiffusive motion of the Pb wetting layer on the Si(111) surface, Phys. Rev. Lett. 110(3), 036104 (2013)
https://doi.org/10.1103/PhysRevLett.110.036104
202 M. Hupalo and M. C. Tringides, Ultrafast kinetics in Pb/Si(111) from the collective spreading of the wetting layer, Phys. Rev. B 75(23), 235443 (2007)
https://doi.org/10.1103/PhysRevB.75.235443
203 W. K. Burton, N. Cabrera, and F. C. Frank, The growth of crystals and the equilibrium structure of their surfaces, Philos. Trans. R. Soc. London A 243, 299 (1951)
https://doi.org/10.1098/rsta.1951.0006
204 H. C. Jeong and E. D. Williams, Steps on surfaces: Experiment and theory, Surf. Sci. Rep. 34(6-8): 171 (1999)
https://doi.org/10.1016/S0167-5729(98)00010-7
205 N. Israeli and D. Kandel, Profile of a decaying crystalline cone, Phys. Rev. B 60(8), 5946 (1999)
https://doi.org/10.1103/PhysRevB.60.5946
206 E. Korutcheva, A. M. Turiel, and I. Markov, Coherent Stranski–Krastanov growth in 1+1 dimensions with anharmonic interactions: An equilibrium study, Phys. Rev. B 61(24), 16890 (2000)
https://doi.org/10.1103/PhysRevB.61.16890
207 K. E. Khor and S. Das Sarma, Quantum dot self-assembly in growth of strained-layer thin films: A kinetic Monte Carlo study, Phys. Rev. B 62(24), 16657 (2000)
https://doi.org/10.1103/PhysRevB.62.16657
208 J. E. Prieto and I. Markov, Thermodynamic driving force of formation of coherent three-dimensional islands in Stranski–Krastanov growth, Phys. Rev. B 66(7), 073408 (2002)
https://doi.org/10.1103/PhysRevB.66.073408
209 J. E. Prieto and I. Markov, Quantum-dot nucleation in strained-layer epitaxy: Minimum-energy pathway in the stress-driven two-dimensional to three-dimensional transformation, Phys. Rev. B 72(20), 205412 (2005)
https://doi.org/10.1103/PhysRevB.72.205412
210 R. Xiang, M. T. Lung, and C. H. Lam, Layer-by-layer nucleation mechanism for quantum dot formation in strained heteroepitaxy, Phys. Rev. E 82(2), 021601 (2010)
https://doi.org/10.1103/PhysRevE.82.021601
211 J. E. Prieto and I. Markov, Second-layer nucleation in coherent Stranski–Krastanov growth of quantum dots, Phys. Rev. B 84(19), 195417 (2011)
https://doi.org/10.1103/PhysRevB.84.195417
212 K. M. Chen, D. Jesson, S. Pennycook, T. Thundat, and R. Warmack, Critical nuclei shapes in the stress-driven 2D-to-3D transition, Phys. Rev. B 56(4), R1700 (1997)
https://doi.org/10.1103/PhysRevB.56.R1700
213 P. Sutter and M. G. Lagally, Nucleationless threedimensional island formation in low-misfit heteroepitaxy, Phys. Rev. Lett. 84(20), 4637 (2000)
https://doi.org/10.1103/PhysRevLett.84.4637
214 P. Kratzer, Q. K. K. Liu, P. Acosta-Diaz, C. Manzano, G. Costantini, R. Songmuang, A. Rastelli, O. Schmidt, and K. Kern, Shape transition during epitaxial growth of InAs quantum dots on GaAs(001): Theory and experiment, Phys. Rev. B 73(20), 205347 (2006)
https://doi.org/10.1103/PhysRevB.73.205347
215 D. J. Jesson, G. Chen, K. Chen, and S. Pennycook, Selflimiting growth of strained faceted islands, Phys. Rev. Lett. 80(23), 5156 (1998)
https://doi.org/10.1103/PhysRevLett.80.5156
216 M. K?stner and B. Voigtl?nder, Kinetically self-limiting growth of Ge Islands on Si(001), Phys. Rev. Lett. 82(13), 2745 (1999)
https://doi.org/10.1103/PhysRevLett.82.2745
217 J. Johansson and W. Seifert, Kinetics of self-assembled island formation: Part II – Island size, J. Cryst. Growth 234(1), 139 (2002)
https://doi.org/10.1016/S0022-0248(01)01675-X
218 F. Montalenti, P. Raiteri, D. B. Migas, H. von K?nel, A. Rastelli, C. Manzano, G. Costantini, U. Denker, O. Schmidt, K. Kern, and L. Miglio, Atomic-scale pathway of the pyramid-to-dome transition during Ge growth on Si (001), Phys. Rev. Lett. 93(21), 216102 (2004)
https://doi.org/10.1103/PhysRevLett.93.216102
219 H. Eisele, A. Lenz, R. Heitz, R. Timm, M. D?hne, Y. Temko, T. Suzuki, and K. Jacobi, Change of InAs/GaAs quantum dot shape and composition during capping, J. Appl. Phys. 104(12), 124301 (2008)
https://doi.org/10.1063/1.3042216
220 A. Rastelli, H. Von K?nel, B. Spencer, and J. Tersoff, Prepyramid-to-pyramid transition of SiGe islands on Si(001), Phys. Rev. B 68(11), 115301 (2003)
https://doi.org/10.1103/PhysRevB.68.115301
221 A. Vailionis, B. Cho, G. Glass, P. Desjardins, David G. Cahill, and J. E. Greene, Pathway for the strain-driven twodimensional to three-dimensional transition during growth of Ge on Si(001), Phys. Rev. Lett. 85, 3672 (2000)
https://doi.org/10.1103/PhysRevLett.85.3672
222 B. J. Spencer and J. Tersoff, Symmetry breaking in shape transitions of epitaxial quantum dots, Phys. Rev. B 87(16), 161301 (2013)
https://doi.org/10.1103/PhysRevB.87.161301
223 X. B. Niu, G. B. Stringfellow, and F. Liu, Nonequilibrium composition profiles of alloy quantum dots and their correlation with the growth mode, Phys. Rev. Lett. 107(7), 076101 (2011)
https://doi.org/10.1103/PhysRevLett.107.076101
224 T. P. Schulze and P. Smereka, Kinetic Monte Carlo simulation of heteroepitaxial growth: Wetting layers, quantum dots, capping, and nanorings, Phys. Rev. B 86(23), 235313 (2012)
https://doi.org/10.1103/PhysRevB.86.235313
225 F. Watanabe, D. G. Cahill, and J. E. Greene, Roughening rates of strained-layer instabilities, Phys. Rev. Lett. 94(6), 066101 (2005)
https://doi.org/10.1103/PhysRevLett.94.066101
226 M. A. Grinfeld, Instability of the separation boundry between a nonhydrostatically stressed elastic body and a melt, Sov. Phys. Dokl. 31, 831 (1986)
227 D. J. Srolovitz, On the stability of surfaces of stressed solids, Acta Metall. 37(2), 621 (1989)
https://doi.org/10.1016/0001-6160(89)90246-0
228 O. Pierre-Louis, A. Chame, and Y. Saito, Dewetting of a solid monolayer, Phys. Rev. Lett. 99(13), 136101 (2007)
https://doi.org/10.1103/PhysRevLett.99.136101
229 K. Thurmer and N. C. Bartelt, Nucleation-limited dewetting of ice films on Pt(111), Phys. Rev. Lett. 100(18), 186101 (2008)
https://doi.org/10.1103/PhysRevLett.100.186101
230 K. Thürmer, J. E. Reutt-Robey, and E. D. Williams, Nucleation limited crystal shape transformations, Surf. Sci. 537(1-3), 123 (2003)
https://doi.org/10.1016/S0039-6028(03)00600-9
231 R. F. Strickland, Constable, Kinetics and Mechanism of Crystallization, New York: Academic Press, 1968
232 C. Herring, Some theorems on the free energies of crystal surfaces, Phys. Rev. 82(1), 87 (1951)
https://doi.org/10.1103/PhysRev.82.87
233 A. F. Andreev, Faceting phase transitions of crystals, Sov. Phys. JETP 53, 1063 (1981)
234 F. Cheynis, E. Bussmann, F. Leroy, T. Passanante, and P. Mülle, Dewetting dynamics of silicon-on-insulator thin films, Phys. Rev. B 84(24), 245439 (2011)
https://doi.org/10.1103/PhysRevB.84.245439
235 F. Leroy, F. Cheynis, T. Passante, and P. Müller, Dynamics, anisotropy, and stability of silicon-on-insulator dewetting fronts, Phys. Rev. B 85(19), 195414 (2012)
https://doi.org/10.1103/PhysRevB.85.195414
236 F. Baletto and R. Ferrando, Structural properties of nanoclusters: Energetic, thermodynamic, and kinetic effects, Rev. Mod. Phys. 77(1), 371 (2005)
https://doi.org/10.1103/RevModPhys.77.371
237 W. Li, J. S. Lin, M. Karimi, C. Moses, and G. Vidali, Structural characterization of ultra-thin metal overlayers on Cu(001) by atom beam scattering, Appl. Surf. Sci. 48-49, 160 (1991)
https://doi.org/10.1016/0169-4332(91)90324-D
238 W. Li, G. Vidali, and O. Biham, Scaling of island growth in Pb overlayers on Cu(001), Phys. Rev. B 48(11), 8336 (1993)
https://doi.org/10.1103/PhysRevB.48.8336
239 B. J. Siwick, J. R. Dwyer, R. E. Jordan, and R. J. D. Miller, An atomic-level view of melting using femtosecond electron diffraction, Science 302(5649), 1382 (2003)
https://doi.org/10.1126/science.1090052
240 C. V. Shank, R. Yen, and C. Hirlimann, Timeresolved reflectivity measurements of femtosecond-opticalpulse-induced phase transitions in silicon, Phys. Rev. Lett. 50(6), 454 (1983)
https://doi.org/10.1103/PhysRevLett.50.454
241 G. Sciaini and R. J. D. Miller, Femtosecond electron diffraction: heralding the era of atomically resolved dynamics, Rep. Prog. Phys. 74(9), 096101 (2011)
https://doi.org/10.1088/0034-4885/74/9/096101
242 M. J. Aziz, Model for solute redistribution during rapid solidification, J. Appl. Phys. 53(2), 1158 (1982)
https://doi.org/10.1063/1.329867
243 R. Willnecker, D. M. Herlach, and B. Feuerbacher, Grain refinement induced by a critical crystal growth velocity in undercooled melts, Appl. Phys. Lett. 56(4), 324 (1990)
https://doi.org/10.1063/1.103289
244 W. G. Burgers, On the process of transition of the cubicbody-centered modification into the hexagonal-close-packed modification of zirconium, Physica 1(7-12), 561 (1934)
245 J. A. Hawreliak, B. El-Dasher, H. Lorenzana, G. Kimminau, A. Higginbotham, B. Nagler, S. M. Vinko, W. J. Murphy, T. Whitcher, J. S. Wark, S. Rothman, and N. Park, In situ X-ray diffraction measurements of the c/a ratio in the highpressure ? phase of shock-compressed polycrystalline iron, Phys. Rev. B 83(14), 144114 (2011)
https://doi.org/10.1103/PhysRevB.83.144114
246 B. Dupé, B. Amadon, Y. P. Pellegrini, and C. Denoual, Mechanism for the α → ? phase transition in iron, Phys. Rev. B 87(2), 024103 (2013)
https://doi.org/10.1103/PhysRevB.87.024103
247 T. Kudo, T. Inoue, T. Kita, and O. Wada, Real time analysis of self-assembled InAs/GaAs quantum dot growth by probing reflection high-energy electron diffraction chevron image, J. Appl. Phys. 104(7), 074305 (2008)
https://doi.org/10.1063/1.2987469
248 A. Feltrin and A. Freundlich, RHEED metrology of Stranski–Krastanov quantum dots, J. Cryst. Growth 301-302, 38 (2007)
249 A. Freundlich and C. Rajapaksha, Quantum dots and nanostructures: Synthesis, characterization, and modeling VIII, Proc. SPIE 7947, 79470P (2011)
250 M. Yakimov, V. Tokranov, G. Agnello, J. van Eisden, and S. Oktyabrsky, In situ monitoring of formation of InAs quantum dots and overgrowth by GaAs or AlAs, J. Vac. Sci. Technol. B 23(3), 1221 (2005)
https://doi.org/10.1116/1.1881634
251 K. Shimomura, T. Shirasaka, D. M. Tex, F. Yamada and I. Kamiya, RHEED transients during InAs quantum dot growth by MBE, J. Vac. Sci. Technol. B 30, 02B128 (2012)
252 J. M. Gérard, J. B. Genin, J. Lefebvre, J. M. Moison, N. Lebouché, and F. Barthe, Optical investigation of the selforganized growth of InAs/GaAs quantum boxes, J. Cryst. Growth 150, 351 (1995)
https://doi.org/10.1016/0022-0248(95)80234-4
253 M. Takahasi, T. Kaizu, and J. Mizuki, In situ monitoring of internal strain and height of InAs nanoislands grown on GaAs(001), Appl. Phys. Lett. 88(10), 101917 (2006)
https://doi.org/10.1063/1.2186106
254 G. R. Bell, M. Pristovsek, T. Tsukamoto, B. G. Orr, Y. Arakawa, and N. Koguchi, In situ scanning tunneling microscopy of InAs quantum dots on GaAs(0 0 1) during molecular beam epitaxial growth, Surf. Sci. 544(2-3), 234 (2003)
https://doi.org/10.1016/j.susc.2003.08.021
255 S. Tsukamoto, T. Honma, G. R. Bell, A. Ishii, and Y. Arakawa, Atomistic insights for InAs quantum dot formation on GaAs(001) using STM within a MBE growth chamber, Small 2(3), 386 (2006)
https://doi.org/10.1002/smll.200500339
256 H. R. Eisenberg and D. Kandel, Wetting layer thickness and early evolution of epitaxially strained thin films, Phys. Rev. Lett. 85(6), 1286 (2000)
https://doi.org/10.1103/PhysRevLett.85.1286
257 P. Müller and R. Kern, The physical origin of the twodimensional towards three-dimensional coherent epitaxial Stranski-Krastanov transition, Appl. Surf. Sci. 102, 6 (1996)
https://doi.org/10.1016/0169-4332(96)00009-8
258 J. Tersoff, Stress-induced layer-by-layer growth of Ge on Si(100), Phys. Rev. B 43(11), 9377 (1991)
https://doi.org/10.1103/PhysRevB.43.9377
259 M. J. Beck, A. van de Walle, and M. Asta, Surface energetics and structure of the Ge wetting layer on Si(100), Phys. Rev. B 70(20), 205337 (2004)
https://doi.org/10.1103/PhysRevB.70.205337
260 M. Brehm, F. Montalenti, M. Grydlik, G. Vastola, H. Lichtenberger, N. Hrauda, M. J. Beck, T. Fromherz, F. Sch?ffler, L. Miglio, and G. Bauer, Key role of the wetting layer in revealing the hidden path of Ge/Si(001) Stranski–Krastanow growth onset, Phys. Rev. B 80(20), 205321 (2009)
https://doi.org/10.1103/PhysRevB.80.205321
261 I. Daruka and A. L. Barabási, Dislocation-free island formation in heteroepitaxial growth: A study at equilibrium, Phys. Rev. Lett. 79(19), 3708 (1997)
https://doi.org/10.1103/PhysRevLett.79.3708
262 C. Chiu, Z. Huang, and C. T. Poh, Formation of nanostructures by the activated Stranski–Krastanow transition method, Phys. Rev. Lett. 93(13), 136105 (2004)
https://doi.org/10.1103/PhysRevLett.93.136105
263 D. V. Yurasov and Y. N. Drozdov, Critical thickness for the Stranski–Krastanov transition treated with the effect of segregation, Semiconductors 42(5), 563 (2008)
https://doi.org/10.1134/S1063782608050138
264 H. R. Eisenberg and D. Kandel, Wetting layer thickness and early evolution of epitaxially strained thin films, Phys. Rev. Lett. 85(6), 1286 (2000)
https://doi.org/10.1103/PhysRevLett.85.1286
265 C. H. Chiu and H. Gao, in: Thin Films: Stresses and Mechanical Properties V, edited by S. P. Baker, et al., MRS Symposia Proceedings No. 356, Pittsburgh: Materials Research Society, 1995, page 33
266 R. V. Kukta and L. B. Freund, in: Thin Films: Stresses and Mechanical Properties VI, edited by W. W. Gerberich, et al., MRS Symposia Proceedings No. 436, Pittsburgh: Materials Research Society, 1997, page 493
267 B. J. Spencer, Asymptotic derivation of the glued-wettinglayer model and contact-angle condition for Stranski–Krastanow islands, Phys. Rev. B 59(3), 2011 (1999)
https://doi.org/10.1103/PhysRevB.59.2011
268 S. M. Shivaprasad, S. Bera, and Y. Aparna, The epitaxial growth of Ag on Si(111)-(7 × 7) surface and its ( √3 × √3)- R30 surface phase transformation, Bull. Mater. Sci. 21(2), 111 (1998)
https://doi.org/10.1007/BF02927558
269 S. ?ozkaya, M. ??kmak, and B. Alkan, Atomic and electronic structures of the group-IV elements on Si(111)-(√3 ×√3) surface, J. Phys. Conf. Ser. 100, 072025 (2008)
https://doi.org/10.1088/1742-6596/100/7/072025
270 H. W. Yeom, K. Yoo, and D. H. Oh, Electronic structures of Ga-induced incommensurate and commensurate overlayers on the Si(111) surface, Surf. Sci. 605(1-2), 146 (2011)
https://doi.org/10.1016/j.susc.2010.10.012
271 J. ?echal, M. Kol?bal, P. Kosteln?k, and T. ?ikola, Gallium structure on the Si(111)-(7× 7) surface: Influence of Ga coverage and temperature, J. Phys.: Condens. Matter 19(1), 016011 (2007)
https://doi.org/10.1088/0953-8984/19/1/016011
272 G. Meyer, M. Michailov, and M. Henzler, LEED studies of the epitaxy of Pb on Cu(111), Surf. Sci. 202(1-2), 125 (1988)
https://doi.org/10.1016/0039-6028(88)90065-9
273 C. Nagl, O. Haller, E. Platzgummer, M. Schmid, and P. Varga, Submonolayer growth of Pb on Cu(111): surface alloying and de-alloying, Surf. Sci. 321(3), 237 (1994)
https://doi.org/10.1016/0039-6028(94)90189-9
274 B. H. Müller, Th. Schmidt, and M. Henzler, Growth and melting of a Pb monolayer on Cu(111), Surf. Sci. 376(1-3), 123 (1997)
https://doi.org/10.1016/S0039-6028(96)01308-8
275 Y. Tu and J. Tersoff, Origin of apparent critical thickness for island formation in heteroepitaxy, Phys. Rev. Lett. 93(21), 216101 (2004)
https://doi.org/10.1103/PhysRevLett.93.216101
276 T. Walther, A. G. Cullis, D. J. Norris, and M. Hopkinson, Nature of the Stranski–Krastanow transition during epitaxy of InGaAs on GaAs, Phys. Rev. Lett. 86(11), 2381 (2001)
https://doi.org/10.1103/PhysRevLett.86.2381
277 J. G. Belk, J. L. Sudijono, D. M. Holmes, C. F. McConville, T. S. Jones, and B. A. Joyce, Spatial distribution of In during the initial stages of growth of InAs on GaAs(001)-c(4 × 4), Surf. Sci. 365(3), 735 (1996)
https://doi.org/10.1016/0039-6028(96)00757-1
278 T. J. Krzyzewski, P. B. Joyce, G. R. Bell, and T. S. Jones, Surface morphology and reconstruction changes during heteroepitaxial growth of InAs on GaAs(001)- c(2× 4), Surf. Sci. 482-485, 891 (2001)
https://doi.org/10.1016/S0039-6028(00)01073-6
279 J. Grabowski, C. Prohl, B. H?pfner, M. D?hne, and H. Eisele, Evolution of the InAs wetting layer on GaAs(001)-(4× 4) on the atomic scale, Appl. Phys. Lett. 95(23), 233118 (2009)
https://doi.org/10.1063/1.3266865
280 C. Prohl, B. H?pfner, J. Grabowski, J. Grabowski, M. D?hne, and H. Eisele, Atomic structure and strain of the InAs wetting layer growing on GaAs(001)-c(4×4), J. Vac. Sci. Tech. B 28, C5E13 (2009)
281 M. Sauvage-Simkin, Y. Garreau, R. Pinchaux, M. Véron, J. Landesman, and J. Nagle, Commensurate and incommensurate phases at reconstructed (In,Ga)As(001) surfaces: X-ray diffraction evidence for a composition lock-in, Phys. Rev. Lett. 75(19), 3485 (1995)
https://doi.org/10.1103/PhysRevLett.75.3485
282 C. Ratsch and A. Zangwill, Equilibrium theory of the Stranski–Krastanov epitaxial morphology, Surf. Sci. 293(1-2), 123 (1993)
https://doi.org/10.1016/0039-6028(93)90250-N
283 V. I. Tokar and H. Dreyssé, Lattice gas model of coherent strained epitaxy, Phys. Rev. B 68(19), 195419 (2003)
https://doi.org/10.1103/PhysRevB.68.195419
284 V. I. Tokar and H. Dreysse, Size calibration of self-assembled nanoparticles in a model of strained epitaxy with passive substrate, Phys. Rev. B 72(3), 035438 (2005)
https://doi.org/10.1103/PhysRevB.72.035438
285 W. D. Knight, K. Clemenger, W. A. de Heer, W. Saunders, M. Chou, and M. Cohen, Electronic shell structure and abundances of sodium clusters, Phys. Rev. Lett. 52(24), 2141 (1984)
https://doi.org/10.1103/PhysRevLett.52.2141
286 T. P. Martin, Shell of atoms, Phys. Rep. 273(4), 199 (1996)
https://doi.org/10.1016/0370-1573(95)00083-6
287 S. Gwo, C. P. Chou, C. L. Wu, Y. J. Ye, S. J. Tsai, W. C. Lin, and M. T. Lin, Self-limiting size distribution of supported cobalt nanoclusters at room temperature, Phys. Rev. Lett. 90(18), 185506 (2003)
https://doi.org/10.1103/PhysRevLett.90.185506
288 M. Ja?ochowski, M. Hoffmann, and E. Bauer, Pb layer-bylayer growth at very low temperatures, Phys. Rev. B 51(11), 7231 (1995)
https://doi.org/10.1103/PhysRevB.51.7231
289 Y. L. Wang and M. Y. Lai, Formation of surface magic clusters: A pathway to monodispersed nanostructures on surfaces, J. Phys.: Condens. Matter 13(31), R589 (2001)
https://doi.org/10.1088/0953-8984/13/31/201
290 J. F. Jia, X. Liu, J. Z. Wang, J. L. Li, X. Wang, Q. K. Xue, Z. Q. Li, Z. Zhang, and S. Zhang, Fabrication and structural analysis of Al, Ga, and In nanocluster crystals, Phys. Rev. B 66(16), 165412 (2002)
https://doi.org/10.1103/PhysRevB.66.165412
291 C. Priester and M. Lannoo, Origin of self-assembled quantum dots in highly mismatched heteroepitaxy, Phys. Rev. Lett. 75(1), 93 (1995)
https://doi.org/10.1103/PhysRevLett.75.93
292 T. Kudo, T. Inoue, T. Kita, and O. Wada, Real time analysis of self-assembled InAs/GaAs quantum dot growth by probing reflection high-energy electron diffraction chevron image, J. Appl. Phys. 104(7), 074305 (2008)
https://doi.org/10.1063/1.2987469
293 M. Valden, X. Lai, and D. W. Goodman, Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties, Science 281(5383), 1647 (1998)
https://doi.org/10.1126/science.281.5383.1647
294 C. Xu, X. Lai, G. W. Zajac, and D.W. Goodman, Scanning tunneling microscopy studies of the TiO2(110) surface: Structure and the nucleation growth of Pd, Phys. Rev. B 56(11), 13464 (1997)
https://doi.org/10.1103/PhysRevB.56.13464
295 F. Liu, Self-assembly of three-dimensional metal islands: Nonstrained versus strained islands, Phys. Rev. Lett. 89(24), 246105 (2002)
https://doi.org/10.1103/PhysRevLett.89.246105
296 Z. Gai, B. Wu, J. P. Pierce, G. A. Farnan, D. Shu, M. Wang, Z. Zhang, and J. Shen, Self-assembly of nanometer-scale magnetic dots with narrow size distributions on an insulating substrate, Phys. Rev. Lett. 89(23), 235502 (2002)
https://doi.org/10.1103/PhysRevLett.89.235502
297 A. C. Levi and M. Kotrla, Theory and simulation of crystal growth, J. Phys.: Condens. Matter 9(2), 299 (1997)
https://doi.org/10.1088/0953-8984/9/2/001
298 J. Cleick, Chaos, Viking Penguin Inc., 1987
299 J. Wu, P. Jin, Y. H. Jiao, X. J. Lv, and Z. G. Wang, Evolution of InAs/GaAs(001) islands during the two- to threedimensional growth mode transition in molecular-beam epitaxy, Nanotechnology 18(16), 165301 (2007)
https://doi.org/10.1088/0957-4484/18/16/165301
300 J. A. Floro, M. B. Sinclair, E. Chason, L. Freund, R. Twesten, R. Hwang, and G. Lucadamo, Novel SiGe island coarsening kinetics: Ostwald ripening and elastic interactions, Phys. Rev. Lett. 84(4), 701 (2000)
https://doi.org/10.1103/PhysRevLett.84.701
301 M. Meixner, R. Kunert, and E. Scholl, Control of strainmediated growth kinetics of self-assembled semiconductor quantum dots, Phys. Rev. B 67(19), 195301 (2003)
https://doi.org/10.1103/PhysRevB.67.195301
302 L. G. Wang, P. Kratzer, M. Scheffler, and N. Moll, Formation and Stability of Self-Assembled Coherent Islands in Highly Mismatched Heteroepitaxy, Phys. Rev. Lett. 82(20), 4042 (1999)
https://doi.org/10.1103/PhysRevLett.82.4042
303 L. G. Wang, P. Kratzer, N. Moll, and M. Scheffler, Size, shape, and stability of InAs quantum dots on the GaAs(001) substrate, Phys. Rev. B 62(3), 1897 (2000)
https://doi.org/10.1103/PhysRevB.62.1897
304 A. Polimeni, A. Patane, M. Capizzi, F. Martelli, L. Nasi, and G. Salviati, Self-aggregation of quantum dots for very thin InAs layers grown on GaAs, Phys. Rev. B 53(8), R4213 (1996)
https://doi.org/10.1103/PhysRevB.53.R4213
305 V. G. Dubrovskii, M. A. Kazansky, M. V. Nazarenko, and L. T. Adzhemyan, Numerical analysis of Ostwald ripening in two-dimensional systems, J. Chem. Phys. 134(9), 094507 (2011)
https://doi.org/10.1063/1.3556658
306 Y. S. Djikaev and E. Ruckenstein, Kinetic theory of nucleation based on a first passage time analysis: Improvement by the density-functional theory, J. Chem. Phys. 123(21), 214503 (2005)
https://doi.org/10.1063/1.2135777
307 N. P. Kobayashi, T. R. Ramachandran, P. Chen, and A. Madhukar, In situ, atomic force microscope studies of the evolution of InAs three-dimensional islands on GaAs(001), Appl. Phys. Lett. 68(23), 3299 (1996)
https://doi.org/10.1063/1.116580
308 D. S. Guimard, H. Lee, M. Nishioka, and Y. Arakawa, Growth of high-uniformity InAs/GaAs quantum dots with ultralow density below 107cm - 2 and emission above 1.3 μm, Appl. Phys. Lett. 92(16), 163101 (2008)
https://doi.org/10.1063/1.2913159
309 A. Rosenauer, D. Gerthsen, D. Dyck, M. Arzberger, G. B?hm, and G. Abstreiter, Quantification of segregation and mass transport in InxGa1-xAs/GaAs Stranski-Krastanow layers, Phys. Rev. B 64(24), 245334 (2001)
https://doi.org/10.1103/PhysRevB.64.245334
310 M. Gsell, P. Jakob, and D. Menzel, Effect of substrate strain on adsorption, Science 280(5364), 717 (1998)
https://doi.org/10.1126/science.280.5364.717
311 M. Mavrikakis, B. Hammer, and J. K. N?rskov, Effect of strain on the reactivity of metal surfaces, Phys. Rev. Lett. 81(13), 2819 (1998)
https://doi.org/10.1103/PhysRevLett.81.2819
312 K. Muraki, S. Fukatsu, Y. Shiraki, and R. Ito, Surface segregation of In atoms during molecular beam epitaxy and its influence on the energy levels in InGaAs/GaAs quantum wells, Appl. Phys. Lett. 61(5), 557 (1992)
https://doi.org/10.1063/1.107835
313 D. Litvinov, D. Gerthsen, A. Rosenauer, M. Schowalter, T. Passow, P. Fein?ugle, and M. Hetterich, Transmission electron microscopy investigation of segregation and critical floating-layer content of indium for island formation in InxGa1-xAs, Phys. Rev. B 74(16), 165306 (2006)
https://doi.org/10.1103/PhysRevB.74.165306
314 J. M. García, J. P. Silveira, and F. Briones, Strain relaxation and segregation effects during self-assembled InAs quantum dots formation on GaAs(001), Appl. Phys. Lett. 77(3), 409 (2000)
https://doi.org/10.1063/1.126992
315 A. G. Cullis, D. J. Norris, T. Walther, M. A. Migliorato, and M. Hopkinson, Stranski-Krastanow transition and epitaxial island growth, Phys. Rev. B 66(8), 081305 (2002)
https://doi.org/10.1103/PhysRevB.66.081305
316 A. G. Cullis, D. J. Norris, M. A. Migliorato, and M. Hopkinson, Surface elemental segregation and the Stranski-Krastanow epitaxial islanding transition, Appl. Surf. Sci. 244(1-4), 65 (2005)
https://doi.org/10.1016/j.apsusc.2004.10.066
317 T. Honma, S. Tsukamoto, and Y. Arakawa, In Situ scanning tunneling microscope observation of InAs wetting layer formation on GaAs(001) during molecular beam epitaxy growth at 500 °C, Jpn. J. Appl. Phys. 45(30), L777 (2006)
https://doi.org/10.1143/JJAP.45.L777
318 F. Patella, S. Nufris, F. Arciprete, M. Fanfoni, E. Placidi, A. Sgarlata, and A. Balzarotti, Tracing the two- to threedimensional transition in the InAs/GaAs(001) heteroepitaxial growth, Phys. Rev. B 67(20), 205308 (2003)
https://doi.org/10.1103/PhysRevB.67.205308
319 J. M. Moison, C. Guille, F. Houzay, F. Barthe, and M. Van Rompay, Surface segregation of third-column atoms in group III-V arsenide compounds: Ternary alloys and heterostructures, Phys. Rev. B 40(9), 6149 (1989)
https://doi.org/10.1103/PhysRevB.40.6149
320 W. D. Xiao, Z. J. Yan, S. S. Kushvaha, M. J. Xu, and X. S. Wang, Different growth behavior of Ge, Al and Sb on graphite, Surf. Rev. Lett. 13(2-3), 287 (2006)
https://doi.org/10.1142/S0218625X06008025
321 S. S. Kushvaha, Z. Yan, W. Xiao, M. J. Xu, Q. K. Xue, and X. S. Wang, Self-assembled Ge, Sb and Al nanostructures on graphite: comparative STM studies, Nanotechnology 18(14), 145501, (2007)
https://doi.org/10.1088/0957-4484/18/14/145501
322 S. S. Kushvaha, H. Xu, W. Xiao, H. L. Zhang, A. T. S. Wee, and X. S. Wang, Scanning tunneling microscopy investigation of growth of self-assembled indium and aluminum nanostructures on inert substrates, Thin Solid Films 517(16), 4540 (2009)
https://doi.org/10.1016/j.tsf.2008.12.034
323 S. S. Kushvaha, H. L. Zhang, Z. Yan, A. T. S. Wee, and X. S. Wang, Growth of self-assembled Mn, Sb and MnSb nanostructures on highly oriented pyrolytic graphite, Thin Solid Films 520(23), 6909 (2012)
https://doi.org/10.1016/j.tsf.2012.07.099
324 A. Ohtake, M. Ozeki, M. Terauchi, F. Sato, and M. Tanaka, Strain-induced surface segregation in In0.5Ga0.5 As/GaAs heteroepitaxy, Appl. Phys. Lett. 80(21), 3931 (2002)
https://doi.org/10.1063/1.1482792
325 A. Ohtake and M. Ozeki, Growth mode of Inx Ga1-x As (0<~ x<~ 0.5) on GaAs(001) under As-deficient conditions, Phys. Rev. B 65(15), 155318 (2002)
https://doi.org/10.1103/PhysRevB.65.155318
326 J. S. Kim and N. Koguchi, Near room temperature droplet epitaxy for fabrication of InAs quantum dots, Appl. Phys. Lett. 85(24), 5893 (2004)
https://doi.org/10.1063/1.1839642
327 A. Urbańczyk, G. J. Hamhuis, and R. N?tzel, In islands and their conversion to InAs quantum dots on GaAs (100): Structural and optical properties, J. Appl. Phys. 107(1), 014312 (2010)
https://doi.org/10.1063/1.3269700
328 K. Reyes, P. Smereka, D. Nothern, J. Millunchick, S. Bietti, C. Somaschini, S. Sanguinetti, and C. Frigeri, Unified model of droplet epitaxy for compound semiconductor nanostructures: Experiments and theory, Phys. Rev. B 87(16), 165406 (2013)
https://doi.org/10.1103/PhysRevB.87.165406
329 F. Bastiman, A. G. Cullis, and M. Hopkinson, InAs/GaAs(001) wetting layer formation observed in situ by concurrent MBE and STM, Surf. Sci. 603(24), 3439 (2009)
https://doi.org/10.1016/j.susc.2009.10.009
330 J. R. Arthur, Interaction of Ga and As2 molecular beams with GaAs surfaces, J. Appl. Phys. 39(8), 4032 (1968)
https://doi.org/10.1063/1.1656901
331 J. R. Arthur, Surface stoichiometry and structure of GaAs, Surf. Sci. 43(2), 449 (1974)
https://doi.org/10.1016/0039-6028(74)90269-6
332 J. R. Arthur, Gallium arsenide surface structure and reaction kinetics: Field emission microscopy, J. Appl. Phys. 37(8), 3057 (1966)
https://doi.org/10.1063/1.1703162
333 C. T. Foxon, M. R. Boudry, and B. A. Joyce, Evaluation of surface kinetic data by the transform analysis of modulated molecular beam measurements, Surf. Sci. 44(1), 69 (1974)
https://doi.org/10.1016/0039-6028(74)90094-6
334 C. T. Foxon and B. A. Joyce, Interaction kinetics of As2 and Ga on 100 GaAs surfaces, Surf. Sci. 64(1), 293 (1977)
https://doi.org/10.1016/0039-6028(77)90273-4
335 C. G. Morgan, P. Kratzer, and M. Scheffler, Arsenic dimer dynamics during MBE growth: Theoretical evidence for a novel chemisorption state of As2 molecules on GaAs surfaces, Phys. Rev. Lett. 82(24), 4886 (1999)
https://doi.org/10.1103/PhysRevLett.82.4886
336 M. Itoh, G. R. Bell, A. R. Avery, T. S. Jones, B. A. Joyce, and D. D. Vvedensky, Island nucleation and growth on reconstructed GaAs(001) surfaces, Phys. Rev. Lett. 81, 633 (1998)
https://doi.org/10.1103/PhysRevLett.81.633
337 S. V. Ghaisas and A. Madhukar, Monte Carlo simulations of MBE growth of III–V semiconductors: The growth kinetics, mechanism, and consequences for the dynamics of RHEED intensity, J. Vac. Sci. Technol. B 3(2), 540 (1985)
https://doi.org/10.1116/1.583173
338 S. V. Ghaisas and A. Madhukar, Role of surface molecular reactions in influencing the growth mechanism and the nature of nonequilibrium surfaces: A Monte Carlo study of molecular-beam epitaxy, Phys. Rev. Lett. 56(10), 1066 (1986)
https://doi.org/10.1103/PhysRevLett.56.1066
339 S. V. Ghaisas and A. Madhukar, Surface kinetics and growth interruption in molecular-beam epitaxy of compound semiconductors: A computer simulation study, J. Appl. Phys. 65(10), 3872 (1989)
https://doi.org/10.1063/1.343350
340 T. Shitara, D. D. Vvedensky, M. R. Wilby, J. Zhang, J. Neave, and B. Joyce, Step-density variations and reflection high-energy electron-diffraction intensity oscillations during epitaxial growth on vicinal GaAs(001), Phys. Rev. B 46(11), 6815 (1992)
https://doi.org/10.1103/PhysRevB.46.6815
341 P. ?milauer and D. D. Vvedensky, Step-edge barriers on GaAs(001), Phys. Rev. B 48(23), 17603 (1993)
https://doi.org/10.1103/PhysRevB.48.17603
342 K. Shiraishi and T. Ito, Theoretical investigation of adsorption behavior during molecular beam epitaxy growth of GaAs: ab initio based microscopic calculation, J. Cryst. Growth 150, 158 (1995)
https://doi.org/10.1016/0022-0248(95)80199-M
343 G. Colayni and R. Venkat, Growth dynamics of InGaAs by MBE: Process simulation and theoretical analysis, J. Cryst. Growth 211(1-4), 21 (2000)
344 P. Kratzer, E. Penev, and M. Scheffler, Understanding the growth mechanisms of GaAs and InGaAs thin films by employing first-principles calculations, Appl. Surf. Sci. 216(1-4), 436 (2003)
https://doi.org/10.1016/S0169-4332(03)00392-1
345 J. Wu, Novel scenario for epitaxial growth process of quantum dots, Micronanoelectronic Technology 49, 141 (2012)
346 J. Wu and P. Jin, Epitaxial Growth Process of Quantum Dots, in: Nanotechnology, edited by S. Sinha, N. K. Navani, and J. N. Govil, Studium Press LLC, Volume 3, 2013, pp 335-368
347 A. Mujica, A. Rubio, A. Mu?oz, and R. Needs, Highpressure phases of group-IV, III–V, and II–VI compounds, Rev. Mod. Phys. 75(3), 863 (2003)
https://doi.org/10.1103/RevModPhys.75.863
348 N. E. Christensen, Calculated equation of state of InAs, Phys. Rev. B 33(7), 5096 (1986)
https://doi.org/10.1103/PhysRevB.33.5096
349 N. E. Christensen, High Pressure in Semiconductor Physics (I), edited by T Suski and W Paul, New York: Academic, 1998
350 L. Pedesseau, J. Even, A. Bondi, W. Guo, S. Richard, H. Folliot, C. Labbe, C. Cornet, O. Dehaese, A. Le Corre, O. Durand, and S. Loualiche, Theoretical study of highly strained InAs material from first-principles modelling: Application to an ideal QD, J. Phys. D 41(16), 165505 (2008)
https://doi.org/10.1088/0022-3727/41/16/165505
351 Y. K. Vohra, S. T. Weir, and A. L. Ruoff, High-pressure phase transitions and equation of state of the III-V compound InAs up to 27 GPa, Phys. Rev. B 31(11), 7344 (1985)
https://doi.org/10.1103/PhysRevB.31.7344
352 M. Durandurdu, Structural phase transition of germanium under uniaxial stress: An ab initio study, Phys. Rev. B 71(5), 054112 (2005)
https://doi.org/10.1103/PhysRevB.71.054112
353 R. G. Hennig, A. Wadehra, K. P. Driver, W. D. Parker, C. J. Umrigar, and J. W. Wilkins, Phase transformation in Si from semiconducting diamond to metallic β-Sn phase in QMC and DFT under hydrostatic and anisotropic stress, Phys. Rev. B 82(1), 014101 (2010)
https://doi.org/10.1103/PhysRevB.82.014101
354 J. C. Jamieson, Crystal structures at high pressures of metallic modifications of silicon and germanium, Science 139(3556), 762 (1963)
https://doi.org/10.1126/science.139.3556.762
355 K. Gá al-Nagy, A. Bauer, M. Schmitt, K. Karch, P. Pavone, and D. Strauch, Temperature and dynamical effects on the high-pressure cubic-diamond ? β-Tin phase transition in Si and Ge, Physica Status Solidi (b): Basic Res. 211(1), 275 (1999)
356 C. Cheng, W. H. Huang, and H. J. Li, Thermodynamics of uniaxial phase transition: Ab initio study of the diamond-to-β-tin transition in Si and Ge, Phys. Rev. B 63(15), 153202 (2001)
https://doi.org/10.1103/PhysRevB.63.153202
357 K. H. Hellwege, Physics of Group IV Elements and III-V Elements, Landolt–B?rnstein, New Series, Group III, Vol. 17, Part a, Berlin: Springer, 1982
358 A. Jayaraman, W. Klement, and G. C. Kennedy, Melting and polymorphism at high pressures in some group IV elements and III-V compounds with the diamond/zincblende structure, Phys. Rev. 130(2), 540 (1963)
https://doi.org/10.1103/PhysRev.130.540
359 F. P. Bundy, Phase diagrams of silicon and germanium to 200 kbar, 1000 °C, J. Chem. Phys. 41(12), 3809 (1964)
360 D. J. Bottomley, The physical origin of InAs quantum dots on GaAs(001), Appl. Phys. Lett. 72(7), 783 (1998)
https://doi.org/10.1063/1.120892
361 D. J. Bottomley, The free energy of condensed matter under stress, Jpn. J. Appl. Phys. 36(Part 2, No. 11A), L1464 (1997)
362 D. J. Bottomley, Formation and shape of InAs nanoparticles on GaAs surfaces, J. Vac. Sci. Technol. B 17(2), 259 (1999)
https://doi.org/10.1116/1.590547
363 F. Rosei and P. Raiteri, Stress induced surface melting during the growth of the Ge wetting layer on Si(001) and Si(111), Appl. Surf. Sci. 195(1-4), 16 (2002)
364 D. K. Biegelsen, R. Bringans, J. Northrup, and L.E. Swartz, Surface reconstructions of GaAs(100) observed by scanning tunneling microscopy, Phys. Rev. B 41(9), 5701 (1990)
https://doi.org/10.1103/PhysRevB.41.5701
365 C. Ratsch, Strain induced change of surface reconstructions for InAs(001), Phys. Rev. B 63, 161306(R) (2001)
366 A. Ohtake, P. Kocan, J. Nakamura, A. Natori, and N. Koguchi, Kinetics in surface reconstructions on GaAs(001), Phys. Rev. Lett. 92(23), 236105 (2004)
https://doi.org/10.1103/PhysRevLett.92.236105
367 M. Sauvage- Simkin, R. Pinchaux, J. Massies, P. Calverie, N. Jedrecy, J. Bonnet, and I. Robinson, Fractional stoichiometry of the GaAs(001)-c(4 × 4) surface: An in-situ X-ray scattering study, Phys. Rev. Lett. 62(5), 563 (1989)
https://doi.org/10.1103/PhysRevLett.62.563
368 F. Liu, F. Wu, and M. G. Lagally, Effect of strain on structure and morphology of ultrathin Ge films on Si(001), Chem. Rev. 97(4), 1045 (1997)
https://doi.org/10.1021/cr9600722
369 B. Voigtl?nder, Fundamental processes in Si/Si and Ge/Si epitaxy studied by scanning tunneling microscopy during growth, Surf. Sci. Rep. 43(5-8), 127 (2001)
370 J. Tersoff, Missing dimers and strain relief in Ge films on Si(100), Phys. Rev. B 45(15), 8833 (1992)
https://doi.org/10.1103/PhysRevB.45.8833
371 F. Liu and M. G. Lagally, Interplay of stress, structure, and stoichiometry in Ge-covered Si(001), Phys. Rev. Lett. 76(17), 3156 (1996)
https://doi.org/10.1103/PhysRevLett.76.3156
372 T. Zhou, G. Renaud, C. Revenant, J. Issartel, T. U. Schülli, R. Felici, and A. Malachias, Atomic structure and composition of the 2 × N reconstruction of the Ge wetting layer on Si(001) investigated by surface X-ray diffraction, Phys. Rev. B 83(19), 195426 (2011)
https://doi.org/10.1103/PhysRevB.83.195426
373 M. Tomitori, K. Watanabe, M. Kobayashi, and O. Nishikawa, STM study of the Ge growth mode on Si(001) substrates, Appl. Surf. Sci. 76-77, 322 (1994)
https://doi.org/10.1016/0169-4332(94)90362-X
374 I. Goldfarb, J. H. G. Owen, P. T. Hayden, D. R. Bowler, K. Miki, and G. A. D. Briggs, Gas-source growth of group IV semiconductors (III): Nucleation and growth of Ge/Si(001), Surf. Sci. 394(1-3), 105 (1997)
https://doi.org/10.1016/S0039-6028(97)00634-1
375 P. W. Sutter, J. I. Flege, and E. I. Sutter, Epitaxial graphene on ruthenium, Nature 7(5), 406 (2008)
https://doi.org/10.1038/nmat2166
376 M. Henzler, Growth of epitaxial monolayers, Surf. Sci. 357-358, 809 (1996)
https://doi.org/10.1016/0039-6028(96)00270-1
377 B. Lalmi, H. Oughaddou, H. Enriquez, A. Kara, S. Vizzini, B. Ealet, and B. Aufray, Epitaxial growth of a silicene sheet, Appl. Phys. Lett. 97(22), 223109 (2010)
https://doi.org/10.1063/1.3524215
378 A. Kara, H. Enriquez, A. P. Seitsonen, L. C. Lew Yan Voon, S. Vizzini, B. Aufray, and H. Oughaddou, A review on silicene — New candidate for electronics, Surf. Sci. Rep. 67(1), 1 (2012)
https://doi.org/10.1016/j.surfrep.2011.10.001
379 H. Jamgotchian, Y. Colignon, N. Hamzaoui, B. Ealet, J. Y. Hoarau, B. Aufray, and J. P. Bibérian, Growth of silicene layers on Ag(111): Unexpected effect of the substrate temperature, J. Phys.: Condens. Matter 24(17), 172001 (2012)
https://doi.org/10.1088/0953-8984/24/17/172001
380 B. Feng, Z. Ding, S. Meng, Y. Yao, X. He, P. Cheng, L. Chen, and K. Wu, Evidence of silicene in honeycomb structures of silicon on Ag(111), Nano Lett. 12(7), 3507 (2012)
https://doi.org/10.1021/nl301047g
381 H.?ahin, S. Cahangirov, M. Topsakal, E. Bekaroglu, E. Akturk, R. Senger, and S. Ciraci, Monolayer honeycomb structures of group-IV elements and III-V binary compounds: First-principles calculations, Phys. Rev. B 80(15), 155453 (2009)
https://doi.org/10.1103/PhysRevB.80.155453
382 S. Scandolo, M. Bernasconi, G. L. Chiarotti, P. Focher, and E. Tosatti, Pressure-induced transformation path of graphite to diamond, Phys. Rev. Lett. 74(20), 4015 (1995)
https://doi.org/10.1103/PhysRevLett.74.4015
383 D. T. Wang, N. Esser, M. Cardona, and J. Zegenhagen, Epitaxy of Sn on Si(111), Surf. Sci. 343(1-2), 31 (1995)
https://doi.org/10.1016/0039-6028(95)00749-0
384 L. L. Wang, X. C. Ma, S. H. Ji, Y. Fu, Q. Shen, J. Jia, K. Kelly, and Q. Xue, Epitaxial growth and quantum well states study of Sn thin films on Sn induced Si(111)-(23 × 23) R30° surface, Phys. Rev. B 77(20), 205410 (2008)
https://doi.org/10.1103/PhysRevB.77.205410
385 Q. Shen, W. Li, G. Dong, G. F. Sun, Y. Sun, X. Ma, J. Jia, and Q. Xue, Self-assembled Sn nanoplatelets on Si(1 1 1)-2 √3 × 2 √3-Sn surfaces, J. Phys. D 42(1), 015305 (2009)
https://doi.org/10.1088/0022-3727/42/1/015305
386 L. L. Wang, X. C. Ma, Y. X. Ning, S. H. Ji, Y. S. Fu, J. F. Jia, K. F. Kelly and Q. K. Xue, Atomic scale study of strain relaxation in Sn islands on Sn-induced Si(111)-(2 √3 × 2 √3) surface, Appl. Phys. Lett. 94(15), 153111 (2009)
https://doi.org/10.1063/1.3120764
387 A. N’Diaye, S. Bleikamp, P. Feibelman, and T. Michely, Two-dimensional Ir cluster lattice on a graphene Moi?e on Ir(111), Phys. Rev. Lett. 97(21), 215501 (2006)
https://doi.org/10.1103/PhysRevLett.97.215501
388 J. P. Feibelman, Pinning of graphene to Ir(111) by flat Ir dots, Phys. Rev. B 77(16), 165419 (2008)
https://doi.org/10.1103/PhysRevB.77.165419
389 C. Busse, P. Lazic, R. Djemour, J. Coraux, T. Gerber, N. Atodiresei, V. Caciuc, R. Brako, A. T. N’Diaye, S. Blügel, J. Zegenhagen, and T. Michely, Graphene on Ir(111): Physisorption with chemical modulation, Phys. Rev. Lett. 107(3), 036101 (2011)
https://doi.org/10.1103/PhysRevLett.107.036101
390 E. Loginova, S. Nie, K. Thurmer, N. C. Bartelt, and K. F. McCarty, Defects of graphene on Ir(111): Rotational domains and ridges, Phys. Rev. B 80(8), 085430 (2009)
https://doi.org/10.1103/PhysRevB.80.085430
391 D. C. Elias, R. R. Nair, T. M. G. Mohiuddin, S. V. Morozov, P. Blake, M. P. Halsall, A. C. Ferrari, D. W. Boukhvalov, M. I. Katsnelson, A. K. Geim, and K. S. Novoselov, Control of graphene’s properties by reversible hydrogenation: Evidence for graphane, Science 323(5914), 610 (2009)
https://doi.org/10.1126/science.1167130
392 C. Freeman, F. Claeyssens, N. Allan, and J. Harding, Graphitic nanofilms as precursors to Wurtzite films: Theory, Phys. Rev. Lett. 96(6), 066102 (2006)
https://doi.org/10.1103/PhysRevLett.96.066102
393 C. Tusche, H. L. Meyerheim, and J. Kirschner, Observation of depolarized ZnO(0001) monolayers: Formation of unreconstructed planar sheets, Phys. Rev. Lett. 99(2), 026102 (2007)
https://doi.org/10.1103/PhysRevLett.99.026102
394 G. Weirum, G. Barcaro, A. Fortunelli, F. Weber, R. Schennach, S. Surnev, and F. P. Netzer, Growth and surface structure of zinc oxide layers on a Pd(111) surface, J. Phys. Chem. C 114(36), 15432 (2010)
https://doi.org/10.1021/jp104620n
395 M. F. Jarrold and V. A. Constant, Silicon cluster ions: Evidence for a structural transition, Phys. Rev. Lett. 67(21), 2994 (1991)
https://doi.org/10.1103/PhysRevLett.67.2994
396 M. F. Jarrold, Nanosurface chemistry on size-selected silicon clusters, Science 252(5009), 1085 (1991)
https://doi.org/10.1126/science.252.5009.1085
397 M. F. Jarrold and J. E. Bower, Mobilities of silicon cluster ions: The reactivity of silicon sausages and spheres, J. Chem. Phys. 96(12), 9180 (1992)
https://doi.org/10.1063/1.462228
398 R. R. Hudgins, M. Imai, M. F. Jarrold, and P. Dugourd, High-resolution ion mobility measurements for silicon cluster anions and cations, J. Chem. Phys. 111(17), 7865 (1999)
https://doi.org/10.1063/1.480164
399 A. A. Shvartsburg, R. R. Hudgins, P. Dugourd, and M. F. Jarrold, Structural information from ion mobility measurements: Applications to semiconductor clusters, Chem. Soc. Rev. 30(1), 26 (2001)
https://doi.org/10.1039/a802099j
400 D. F. Hagen, Characterization of isomeric compounds by gas and plasma chromatography, Anal. Chem. 51(7), 870 (1979)
https://doi.org/10.1021/ac50043a022
401 G. von Helden, M. T. Hsu, P. R. Kemper, and M. T. Bowers, Structures of carbon cluster ions from 3 to 60 atoms: Linears to rings to fullerenes, J. Chem. Phys. 95(5), 3835 (1991)
https://doi.org/10.1063/1.460783
402 S. Yoo, J. J. Zhao, J. L. Wang, and X. C. Zeng, Endohedral Silicon Fullerenes SiN(27 N 39), J. Am. Chem. Soc. 126(42), 13845 (2004)
https://doi.org/10.1021/ja046861f
403 J. Zhao, J. Wang, J. Jellinek, S. Yoo, and X. C. Zeng, Stuffed fullerene structures for medium-sized silicon clusters, Eur. Phys. J. D 34(1-3), 35 (2005)
https://doi.org/10.1140/epjd/e2005-00113-x
404 O. O?a, V. E. Bazterra, M. C. Caputo, J. Facelli, P. Fuentealba, and M. Ferraro, Modified genetic algorithms to model cluster structures in medium-sized silicon clusters: Si18-Si60, Phys. Rev. A 73(5), 053203 (2006)
https://doi.org/10.1103/PhysRevA.73.053203
405 J. Zhao, L. Ma, and B. Wen, Lowest-energy endohedral fullerene structure of Si60 from a genetic algorithm and density-functional theory, J. Phys.: Condens. Matter 19(22), 226208 (2007)
https://doi.org/10.1088/0953-8984/19/22/226208
406 R. L. Zhou and B. C. Pan, Structural features of silicon clusters Sin(n = 40-57, 60), Phys. Lett. A 368(5), 396 (2007)
https://doi.org/10.1016/j.physleta.2007.04.045
407 M. Ehbrecht and F. Huisken, Gas-phase characterization of silicon nanoclusters produced by laser pyrolysis of silane, Phys. Rev. B 59(4), 2975 (1999)
https://doi.org/10.1103/PhysRevB.59.2975
408 D. K. Yu, R. Q. Zhang, and S. T. Lee, Structural transition in nanosized silicon clusters, Phys. Rev. B 65(24), 245417 (2002)
https://doi.org/10.1103/PhysRevB.65.245417
409 G. Ledoux, O. Guillois, D. Porterat, C. Reynaud, F. Huisken, B. Kohn, and V. Paillard, Photoluminescence properties of silicon nanocrystals as a function of their size, Phys. Rev. B 62(23), 15942 (2000)
https://doi.org/10.1103/PhysRevB.62.15942
410 P. Mélinon, P. Kéghélian, B. Prével, A. Perez, G. Guiraud, J. LeBrusq, J. Lermé, M. Pellarin, M. Broyer, Nanostructured silicon films obtained by neutral cluster depositions, J. Chem. Phys. 107(23), 10278 (1997)
https://doi.org/10.1063/1.474168
411 P. Mélinon, P. Kéghélian, B. Prével, V. Dupuis, A. Perez, B. Champagnon, Y. Guyot, M. Pellarin, J. Lermé, M. Broyer, J. L. Rousset, and P. Delichére, Structural, vibrational, and optical properties of silicon cluster assembled films, J. Chem. Phys. 108(11), 4607 (1998)
412 A. N. Goldstein, The melting of silicon nanocrystals: Submicron thin-film structures derived from nanocrystal precursors, Appl. Phys. A 62(1), 33 (1996)
https://doi.org/10.1007/BF01568084
413 U. R?thlisberger, W. Andreoni, and M. Parrinello, Structure of nanoscale silicon clusters, Phys. Rev. Lett. 72(5), 665 (1994)
https://doi.org/10.1103/PhysRevLett.72.665
414 D. Tománek and M. A. Schluter, Growth regimes of carbon clusters, Phys. Rev. Lett. 67(17), 2331 (1991)
https://doi.org/10.1103/PhysRevLett.67.2331
415 P. R. C. Kent, M. D. Towler, R. J. Needs, and G. Rajagopal, Carbon clusters near the crossover to fullerene stability, Phys. Rev. B 62(23), 15394 (2000)
https://doi.org/10.1103/PhysRevB.62.15394
416 P. W. Fowler and D. E. Manolopoulos, An Atlas of Fullerenes, Oxford: Clarendon Press, 1995
417 E. Hernández, P. Ordejón, and H. Terrones, Fullerene growth and the role of nonclassical isomers, Phys. Rev. B 63(19), 193403 (2001)
https://doi.org/10.1103/PhysRevB.63.193403
418 J. R. Heath, in: Fullerenes: Synthesis, Properties and Chemistry of Large Carbon Clusters, edited by G. S. Hammond and V. J. Kuck, ACS Symposium Series No. 481, Washington: American Chemical Society, 1991, page 1
419 A. A. Shvartsburg, R. R. Hudgins, P. Dugourd, R. Gutierrez, T. Frauenheim, and M. Jarrold, Observation of “stick” and “handle” intermediates along the fullerene road, Phys. Rev. Lett. 84(11), 2421 (2000)
https://doi.org/10.1103/PhysRevLett.84.2421
420 A. S. Barnard, Theory and modeling of nanocarbon phase stability, Diamond Related Materials 15(2-3), 285 (2006)
421 S. J. Kwon and J.G. Park, Theoretical analysis of the graphitization of a nanodiamond, J. Phys.: Condens. Matter 19(38), 386215 (2007)
https://doi.org/10.1088/0953-8984/19/38/386215
422 H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, and R. E. Smalley, C60: Buckminsterfullerene, Nature 318(6042), 162 (1985)
https://doi.org/10.1038/318162a0
423 A. S. Barnard, Modelling of nanoparticles: Approaches to morphology and evolution, Rep. Prog. Phys. 73, 086502 (2010)
https://doi.org/10.1088/0034-4885/73/8/086502
424 R. N. Kostoff, J. S. Murday, C. G. Y. Lau, and W. M. Tolles, The seminal literature of nanotechnology research, J. Nanopart. Res. 8, 193 (2006)
https://doi.org/10.1007/s11051-005-9034-9
425 S. H. Tolbert and A. P. Alivisatos, The wurtzite to rock salt structural transformation in CdSe nanocrystals under high pressure, J. Chem. Phys. 102(11), 4642 (1995)
https://doi.org/10.1063/1.469512
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed