Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2014, Vol. 9 Issue (4): 446-450   https://doi.org/10.1007/s11467-014-0425-1
  本期目录
Quantum phase for an electric quadrupole moment in noncommutative quantum mechanics
Halqem Nizamidin1,Abduwali Anwar1,Sayipjamal Dulat2,*(),Kang Li3
1. School of Mathematical Science, Capital Normal University, Beijing 100048, China
2. School of Physics Science and Technology, Xinjiang University, Urumqi 830046, China
3. Department of Physics, Hangzhou Normal University, Hangzhou 310036, China
 全文: PDF(159 KB)  
Abstract

We study the noncommutative nonrelativistic quantum dynamics of a neutral particle, which possesses an electric qaudrupole moment, in the presence of an external magnetic field. First, by introducing a shift for the magnetic field, we give the Schr?dinger equations in the presence of an external magnetic field both on a noncommutative space and a noncommutative phase space, respectively. Then by solving the Schr?dinger equations both on a noncommutative space and a noncommutative phase space, we obtain quantum phases of the electric quadrupole moment, respectively. We demonstrate that these phases are geometric and dispersive.

Key wordsnoncommutative quantum mechanics    electric quadrupole moment    quantum phase    noncommutative phase space
收稿日期: 2013-11-18      出版日期: 2014-08-26
Corresponding Author(s): Sayipjamal Dulat   
 引用本文:   
. [J]. Frontiers of Physics, 2014, 9(4): 446-450.
Halqem Nizamidin,Abduwali Anwar,Sayipjamal Dulat,Kang Li. Quantum phase for an electric quadrupole moment in noncommutative quantum mechanics. Front. Phys. , 2014, 9(4): 446-450.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-014-0425-1
https://academic.hep.com.cn/fop/CN/Y2014/V9/I4/446
1 S. Godfrey and M. A. Doncheski, Signals for noncommutative QED in eγ and γγ collisions, Phys. Rev. D, 2001, 65(1): 015005
doi: 10.1103/PhysRevD.65.015005
2 M. Haghighat and M. M. Ettefaghi, Parton model in Lorentz invariant noncommutative space, Phys. Rev. D, 2004, 70(3): 034017
doi: 10.1103/PhysRevD.70.034017
3 A. Devoto, S. Chiara, and W. W. Repko, Noncommutative QED corrections to e+e-→γγγ at linear collider energies, Phys. Rev. D, 2005, 72(5): 056006
doi: 10.1103/PhysRevD.72.056006
4 X. Calmet, Quantum electrodynamics on noncommutative spacetime, Eur. Phys. J. C, 2007, 50(1): 113
doi: 10.1140/epjc/s10052-006-0192-4
5 M. Chaichian, A. Demichev, P. Pre?najder, M. M. Sheikh-Jabbari, and A. Tureanu, Aharonov–Bohm effect in noncommutative spaces, Phys. Lett. B, 2002, 527(1-2): 149
doi: 10.1016/S0370-2693(02)01176-0
6 M. Chaichian, A. Demichev, P. Presnajder, M. M. Sheikh-Jabbari, and A. Tureanu, Quantum theories on noncommutative spaces with nontrivial topology: Aharonov–Bohm and Casimir effects, Nucl. Phys. B, 2001, 611(1-3): 383
doi: 10.1016/S0550-3213(01)00348-0
7 H. Falomir, J. Gamboa, M. Loewe, F. Méndez, and J. Rojas, Testing spatial noncommutativity via the Aharonov–Bohm effect, Phys. Rev. D, 2002, 66(4): 045018
doi: 10.1103/PhysRevD.66.045018
8 K. Li and S. Dulat, The Aharonov–Bohm effect in noncommutative quantum mechanics, Eur. Phys. J. C, 2006, 46(3): 825
doi: 10.1140/epjc/s2006-02538-2
9 B. Mirza and M. Zarei, Non-commutative quantum mechanics and the Aharonov–Casher effect, Eur. Phys. J. C, 2004, 32(4): 583
doi: 10.1140/epjc/s2003-01522-8
10 K. Li and J. H. Wang, The topological AC effect on noncommutative phase space, Eur. Phys. J. C, 2007, 50(4): 1007
doi: 10.1140/epjc/s10052-007-0256-0
11 B. Mirza, R. Narimani, and M. Zarei, Aharonov–Casher effect for spin-1 particles in a non-commutative space, Eur. Phys. J. C, 2006, 48(2): 641
doi: 10.1140/epjc/s10052-006-0047-z
12 S. Dulat and K. Li, The Aharonov–Casher effect for spin-1 particles in non-commutative quantum mechanics, Eur. Phys. J. C, 2008, 54(2): 333
doi: 10.1140/epjc/s10052-008-0522-9
13 S. Dulat, K. Li, and J. Wang, The He–McKellar–Wilkens effect for spin one particles in non-commutative quantum mechanics, J. Phys. A: Math. Theor., 2008, 41(6): 065303
doi: 10.1088/1751-8113/41/6/065303
14 B. Harms and O. Micu, Noncommutative quantum Hall effect and Aharonov–Bohm effect, J. Phys. A, 2007, 40(33): 10337
doi: 10.1088/1751-8113/40/33/024
15 O. F. Dayi and A. Jellal, Hall effect in noncommutative coordinates, J. Math. Phys., 2002, 43(10): 4592
doi: 10.1063/1.1504484
16 O. F. Dayi and A. Jellal, Erratum: “Hall effect in noncommutative coordinates” [J. Math. Phys. 43, 4592 (2002)], J. Math. Phys., 2004, 45(2): 827 (E)
doi: 10.1063/1.1636511
17 A. Kokado, T. Okamura, and T. Saito, Noncommutative phase space and the Hall effect, Prog. Theor. Phys., 2003, 110(5): 975
doi: 10.1143/PTP.110.975
18 S. Dulat and K. Li, Quantum Hall effect in noncommutative quantum mechanics, Eur. Phys. J. C, 2009, 60(1): 163
doi: 10.1140/epjc/s10052-009-0886-5
19 B. Chakraborty, S. Gangopadhyay, and A. Saha, Seiberg–Witten map and Galilean symmetry violation in a noncommutative planar system, Phys. Rev. D, 2004, 70(10): 107707arXiv: hep-th/0312292
doi: 10.1103/PhysRevD.70.107707
20 F. G. Scholtz, B. Chakraborty, S. Gangopadhyay, and A. G. Hazra, Dual families of noncommutative quantum systems, Phys. Rev. D, 2005, 71(8): 085005
doi: 10.1103/PhysRevD.71.085005
21 F. G. Scholtz, B. Chakraborty, S. Gangopadhyay, and J. Govaerts, Interactions and non-commutativity in quantum Hall systems, J. Phys. A, 2005, 38(45): 9849
doi: 10.1088/0305-4470/38/45/008
22 ?. F. Dayi and M. Elbistan, Spin Hall effect in noncommutative coordinates, Phys. Lett. A, 2009, 373(15): 1314
doi: 10.1016/j.physleta.2009.02.029
23 K. Ma and S. Dulat, Spin Hall effect on a noncommutative space, Phys. Rev. A, 2011, 84(1): 012104
doi: 10.1103/PhysRevA.84.012104
24 E. Passos, L. R. Ribeiro, C. Furtado, and J. R. Nascimento, Noncommutative Anandan quantum phase, Phys. Rev. A, 2007, 76(1): 012113
doi: 10.1103/PhysRevA.76.012113
25 C. C.Chen, Topological quantum phase and multipole moment of neutral particles, Phys. Rev. A, 1995, 51(3): 2611
doi: 10.1103/PhysRevA.51.2611
26 T. Curtright, D. Fairlie, and C. Zachos, Features of timeindependent Wigner functions, Phys. Rev. D, 1998, 58(2): 025002
doi: 10.1103/PhysRevD.58.025002
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed