Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2015, Vol. 10 Issue (1): 100501   https://doi.org/10.1007/s11467-014-0438-9
  Condensed Matter, Materials Physics, and Statistical Physics 本期目录
Effects of correlation time between noises on the noise enhanced stability phenomenon in an asymmetric bistable system
Chun Li1,Zheng-Lin Jia2,Dong-Cheng Mei1,2,3,*()
1. Department of Computer Science, Puer College, Puer 665000, China
2. Department of Physics, Yuxi Normal University, Yuxi 653100, China
3. Department of Physics, Yunnan University, Kunming 650091, China
 全文: PDF(492 KB)  
Abstract

The effects of the correlation time τ between noises on the noise-enhanced stability (NES) phenomenon in an asymmetric bistable system driven by cross-correlated noise are investigated. The expressions for the average escape time from the left metastable state TL and from the right metastable state TRare derived. The results indicate that: i) The NES effect is suppressed as the correlation time τ increases for two metastable states; ii) The increase in τ speeds up the escape process from the right state for positively correlated noise, whereas its role is reverses for negatively correlated; iii) In the escape process from the left state, the role of τ is opposite to that in escape from the right state.

Key wordsasymmetric bistable system    noise    correlation time    noise enhanced stability
收稿日期: 2014-05-20      出版日期: 2015-02-10
Corresponding Author(s): Dong-Cheng Mei   
 引用本文:   
. [J]. Frontiers of Physics, 2015, 10(1): 100501.
Chun Li, Zheng-Lin Jia, Dong-Cheng Mei. Effects of correlation time between noises on the noise enhanced stability phenomenon in an asymmetric bistable system. Front. Phys. , 2015, 10(1): 100501.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-014-0438-9
https://academic.hep.com.cn/fop/CN/Y2015/V10/I1/100501
1 L. H. Gammaitoni, P. H?nggi, P. Jung, and F. Marchesoni, Stochastic resonance, Rev. Mod. Phys. 70(1), 223 (1998)
https://doi.org/10.1103/RevModPhys.70.223
2 C. R. Doering and C. J. Gadoua, Resonant activation over a fluctuating barrier, Phys. Rev. Lett. 69(16), 2318 (1992)
https://doi.org/10.1103/PhysRevLett.69.2318
3 B. Spagnolo, N. Agudov, and A. Dubkov, Noise enhanced stability, Acta Phys. Pol. B 35(4), 1419 (2004)
4 J. E. Hirsch, B. A. Huberman, and D. J. Scalapino, Theory of intermittency, Phys. Rev. A 25(1), 519 (1982)
https://doi.org/10.1103/PhysRevA.25.519
5 A. A. Dubkov, N. V. Agudov, and B. Spagnolo, Noiseenhanced stability in fluctuating metastable states, Phys. Re v . E 69(6), 061103 (2004)
https://doi.org/10.1103/PhysRevE.69.061103
6 A. Fiasconaro, B. Spagnolo, and S. Boccaletti, Signatures of noise-enhanced stability in metastable states, Phys. Rev. E 72(6), 061110 (2005)
https://doi.org/10.1103/PhysRevE.72.061110
7 P. D’Odorico, F. Laio, and L. Ridolfi, Noise-induced stability in dryland plant ecosystems, Proc. Natl. Acad. Sci. USA 102(31), 10819 (2005)
https://doi.org/10.1073/pnas.0502884102
8 A. Fiasconaro, B. Spagnolo, A. Ochab-Marcinek, and E. Gudowska-Nowak, Co-occurrence of resonant activation and noise-enhanced stability in a model of cancer growth in the presence of immune response, Phys. Rev. E 74(4), 041904 (2006)
https://doi.org/10.1103/PhysRevE.74.041904
9 M. Yoshimoto, H. Shirahama, and S. Kurosawa, Noiseinduced order in the chaos of the Belousov–Zhabotinsky reaction, J. Chem. Phys. 129(1), 014508 (2008)
https://doi.org/10.1063/1.2946710
10 M. Trapanese, Noise enhanced stability in magnetic systems, J. Appl. Phys. 105, 07D313 (2009)
11 G. Z. Sun, N. Dong, G. F. Mao, J. Chen, W. W. Xu, Z. M. Ji, L. Kang, P. H. Wu, Y. Yu, and D. Y. Xing, Thermal escape from a metastable state in periodically driven Josephson junctions, Phys. Rev. E 75(2), 021107 (2007)
https://doi.org/10.1103/PhysRevE.75.021107
12 R. N. Mantegna and B. Spagnolo, Noise enhanced stability in an unstable system, Phys. Rev. Lett. 76(4), 563 (1996)
https://doi.org/10.1103/PhysRevLett.76.563
13 B. Spagnolo, A. A. Dubkov, A. L. Pankratov, E. V. Pankratova, A. Fiasconaro, and A. Ochab-Marcinek, Lifetime of metastable states and suppression of noise in interdisciplinary physical models, Acta Phys. Polo. B 38(5), 1925 (2007)
14 A. Fiasconaro and B. Spagnolo, Stability measures in metastable states with Gaussian colored noise, Phys. Rev. E 80(4), 041110 (2009)
https://doi.org/10.1103/PhysRevE.80.041110
15 A. Fiasconaro, J. J. Mazo, and B. Spagnolo, Noise-induced enhancement of stability in a metastable system with damping, Phys. Rev. E 82(4), 041120 (2010)
https://doi.org/10.1103/PhysRevE.82.041120
16 Z. L. Jia, Numerical investigation of noise enhanced stability phenomenon in a time-delayed metastable system, Chin. Phys. Lett. 25(4), 1209 (2008)
https://doi.org/10.1088/0256-307X/25/4/013
17 Z. L. Jia and D. C. Mei, Effects of linear and nonlinear time-delayed feedback on the noise-enhanced stability phenomenon in a periodically driven bistable system, J. Stat. Mech. 2011(10), P10010 (2011)
https://doi.org/10.1088/1742-5468/2011/10/P10010
18 C. W. Xie and D. C. Mei, Mean first-passage time of a bistable kinetic model driven by multiplicative coloured noise and additive white noise, Chin. Phys. Lett. 20(6), 813 (2003)
https://doi.org/10.1088/0256-307X/20/6/310
19 A. Mielke, Noise induced stability in fluctuating, bistable potentials, Phys. Rev. Lett. 84(5), 818 (2000)
https://doi.org/10.1103/PhysRevLett.84.818
20 B. Dybiec and E. Gudowska-Nowak, Quantifying noise induced effects in the generic double-well potential, Acta Phys. Pol. B 38(5), 1759 (2007)
21 A. R. Bulsara, M. E. Inchiosa, and L. Gammaitoni, Noisecontrolled resonance behavior in nonlinear dynamical systems with broken symmetry, Phys. Rev. Lett. 77(11), 2162 (1996)
https://doi.org/10.1103/PhysRevLett.77.2162
22 M. E. Inchiosa, A. R. Bulsara, and L. Gammaitoni, Higherorder resonant behavior in asymmetric nonlinear stochastic systems, Phys. Rev. E 55(4), 4049 (1997)
https://doi.org/10.1103/PhysRevE.55.4049
23 S. Bouzat and H. S. Wio, Stochastic resonance in extended bistable systems: The role of potential symmetry, Phys. Rev. E 59(5), 5142 (1999)
https://doi.org/10.1103/PhysRevE.59.5142
24 L. Gammaitoni and A. R. Balsara, Noise activated nonlinear dynamic sensors, Phys. Rev. Lett. 88(23), 230601 (2002)
https://doi.org/10.1103/PhysRevLett.88.230601
25 J. H. Li, Effect of asymmetry on stochastic resonance and stochastic resonance induced by multiplicative noise and by mean-field coupling, Phys. Rev. E 66(3), 031104 (2002)
https://doi.org/10.1103/PhysRevE.66.031104
26 F. Long, L. C. Du, and D. C. Mei, Asymmetric effects on the associated relaxation time and the correlation function of a bistable system with correlated noises, Phys. Scr. 79(4), 045007 (2009)
https://doi.org/10.1088/0031-8949/79/04/045007
27 D. C. Mei, Z. L. Jia, and C. J. Wang, Combined effects of asymmetry and noise correlation on the noise-enhanced stability phenomenon in a bistable system, Phys. Scr. 84(4), 045012 (2011)
https://doi.org/10.1088/0031-8949/84/04/045012
28 A. J. R. Madureira, P. P. H?nggi, and H. S. Wio, Giant suppression of the activation rate in the presence of correlated white noise sources, Phys. Lett. A 217(4-5), 248 (1996)
https://doi.org/10.1016/0375-9601(96)00345-3
29 M. I. Dykman, D. G. Luchinsky, P. V. E. McClintock, N. D. Stein, and N. Stocks, Stochastic resonance for periodically modulated noise intensity, Phys. Rev. A 46(4), R1713 (1992)
https://doi.org/10.1103/PhysRevA.46.R1713
30 E. A. Novikov, Functionals and the random-force method in turbulence theory, Zh. Eksp. Teor. Fiz. 47, 1919 (1964) (Sov. Phys. JETP 20(5), 1290 (1965))
31 R. F. Fox, Uniform convergence to an effective Fokker–Planck equation for weakly colored noise, Phys. Rev. A 34(5), 4525 (1986)
https://doi.org/10.1103/PhysRevA.34.4525
32 P. H?nggi, T. T. Mroczkowski, F. Moss, and P. V. E. McClintock, Bistability driven by colored noise: Theory and experiment, Phys. Rev. A 32(1), 695 (1985)
https://doi.org/10.1103/PhysRevA.32.695
33 D. J. Wu, L. Cao, and S. Z. Ke, Bistable kinetic model driven by correlated noises: Steady-state analysis, Phys. Rev. E 50(5), 2496 (1994)
34 D. C. Mei, G. Z. Xie, L. Cao, and D. J. Wu, Mean firstpassage time of a bistable kinetic model driven by crosscorrelated noises, Phys. Rev. E 59(4), 3880 (1999)
https://doi.org/10.1103/PhysRevE.59.3880
35 K. Lindenberg and B. J. West, The first, the biggest, and other such considerations, J. Stat. Phys. 42, 201 (1986)
https://doi.org/10.1007/BF01010847
36 J. Masoliver, B. J. West, and K. Lindenbergerg, Bistability driven by Gaussian colored noise: First-passage times, Phys. Rev. A 35(7), 3086 (1987)
https://doi.org/10.1103/PhysRevA.35.3086
37 C. W. Gardiner, Handbook of Stochastic Methods, Springer Series in Synergetics, Vol. 13, Berlin: Springer-Verlag, 1983
https://doi.org/10.1007/978-3-662-02377-8
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed