Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2015, Vol. 10 Issue (2): 104203   https://doi.org/10.1007/s11467-014-0439-8
  RESEARCH ARTICLE 本期目录
Fano resonances in complex plasmonic super-nanoclusters: The effect of environmental modifications on the LSPR sensitivity
Arash Ahmadivand1,*(),Saeed Golmohammadi2
1. Young Researchers and Elite Club, Ahar Branch, Islamic Azad University, Ahar, Iran
2. School of Engineering-Emerging Technologies, University of Tabriz, Tabriz 5166614761, Iran
 全文: PDF(473 KB)  
Abstract

In this study, gold nanodisk clusters in heptamer orientations as clusters were used to design a super-heptamer consisting of one central and six peripheral heptamers. We examined the position and movement of the plasmon and Fano resonances by sketching the spectral response of the superstructure for various nanodisk dimensions. The quality of the interference between the superradiant and subradiant plasmon resonance modes of the nanodisk clusters was found to depend strongly on the structural configuration and the refractive index of the environmental medium. We replaced the central heptamer with a nanodisk and probed the position of the Fano resonance by geometrically altering the nanodisk structure. Finally, the effect of the dielectric environment on the plasmon response of both of the studied structures was examined numerically and theoretically. The localized surface plasmon resonance sensitivity of the finite plasmonic structures to the presence of liquid substances was investigated and shown by plotting the linear figure of merit. The finite-difference time-domain method was used as a numerical tool to investigate the plasmon response of the structure.

Key wordsgold nanodisk    spectral response    Fano resonance    localized surface plasmon resonance (LSPR)    figure of merit (FoM)
收稿日期: 2014-05-01      出版日期: 2015-03-13
Corresponding Author(s): Arash Ahmadivand   
 引用本文:   
. [J]. Frontiers of Physics, 2015, 10(2): 104203.
Arash Ahmadivand, Saeed Golmohammadi. Fano resonances in complex plasmonic super-nanoclusters: The effect of environmental modifications on the LSPR sensitivity. Front. Phys. , 2015, 10(2): 104203.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-014-0439-8
https://academic.hep.com.cn/fop/CN/Y2015/V10/I2/104203
1 H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings; Berlin: Springer-Verlag, 1988
2 U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters, Berlin: Springer-Verlag, 1995
https://doi.org/10.1007/978-3-662-09109-8
3 B. E. A. Saleh and M. C. Tiech, Fundamentals of Photonics, New York: Wiley, 1991
https://doi.org/10.1002/0471213748
4 S. A. Maier, Plasmonics: Fundamentals and Applications, New York: Springer, 2007
5 W. L. Barnes, A. Dereux, and T. W. Ebbesen, Surface plasmon subwavelength optics, Nature 424(6950), 824 (2003)
https://doi.org/10.1038/nature01937
6 D. K. Gramotnev and S. I. Bozhevolnyi, Plasmonics beyond the diffraction limit, Nat. Photonics 4(2), 83 (2010)
https://doi.org/10.1038/nphoton.2009.282
7 J. J. Mock, D. R. Smith, and S. Schultz, Local refractive index dependence of plasmon resonance spectra from individual nanoparticles, Nano Lett. 3(4), 485 (2003)
https://doi.org/10.1021/nl0340475
8 S. Linic, P. Christopher, and D. B. Ingram, Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy, Nat. Mater. 10(12), 911 (2011)
https://doi.org/10.1038/nmat3151
9 J. B. Pendry, A. Aubry, D. R. Smith, and S. A. Maier, Transformation optics and subwavelength control of light, Science 337(6094), 549 (2012)
https://doi.org/10.1126/science.1220600
10 J. Zhu, J. J. Li, L. Yuan, and J. W. Zhao, Optimization of three-layered Au-Ag bimetallic nanoshells for triple-bands surface plasmon resonance, J. Phys. Chem. C 116(21), 11734 (2012)
https://doi.org/10.1021/jp301470p
11 C. Y. Tsai, J. W. Lin, C. Y. Wu, P. T. Lin, T. W. Lu, and P. T. Lee, Plasmonic coupling in gold nanoring dimers: observation of coupled bonding mode, Nano Lett. 12(3), 1648 (2012)
https://doi.org/10.1021/nl300012m
12 B. Lassiter, J. Aizpurua, L. I. Hernandez, D. W. Brandl, I. Romero, S. Lal, J. H. Hafner, P. Nordlander, and N. J. Halas, Close encounters between two nanoshells, Nano Lett. 8(4), 1212 (2008)
https://doi.org/10.1021/nl080271o
13 L. Cheng, J. Song, J. Yin, and H. Duan, Self-assembled plasmonic dimers of amphiphilic gold nanocrystals, J. Phys. Chem. Lett. 2(17), 2258 (2011)
https://doi.org/10.1021/jz201011b
14 S. S. A?movi?, M. P. Kreuzer, M. U. González, and R. Quidant, Plasmon near-field coupling in metal dimers as a step toward single-molecule sensing, ACS Nano 3(5), 1231 (2009)
https://doi.org/10.1021/nn900102j
15 D. W. Brandl, N. A. Mirin, and P. Nordlander, Plasmon modes of nanosphere trimers and quadrumers, J. Phys. Chem. B 110(25), 12302 (2006)
https://doi.org/10.1021/jp0613485
16 P. K. Jain and M. A. El-Sayed, Surface plasmon coupling and its universal size scaling in metal nanostructures of complex geometry: Elongated particle pairs and nanosphere trimers, J. Phys. Chem. C 112(13), 4954 (2008)
https://doi.org/10.1021/jp7120356
17 L. Chuntonov and G. Haran, Trimeric plasmonic molecules: The role of symmetry, Nano Lett. 11(6), 2440 (2011)
https://doi.org/10.1021/nl2008532
18 J. A. Fan, K. Bao, C. Wu, J. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, G. Schvets, P. Nordlander, and F. Capasso, Fano-like interference in self-assembled plasmonic quadrumer clusters, Nano Lett. 10(11), 4680 (2010)
https://doi.org/10.1021/nl1029732
19 J. A. Fan, K. Bao, L. Sun, J. Bao, V. N. Manoharan, P. Nordlander, and F. Capasso, Plasmonic mode engineering with templated self-assembled nanoclusters, Nano Lett. 12(10), 5318 (2012)
https://doi.org/10.1021/nl302650t
20 J. A. Fan, C. H. Wu, K. Bao, J. M. Bao, R. Bardhan, N. J. Halas, V. N. Manoharan, P. Nordlander, G. Shvets, and F. Capasso, Self-assembled plasmonic nanoparticle clusters, Science 328(5982), 1135 (2010)
https://doi.org/10.1126/science.1187949
21 N. Liu, S. Mukherjee, K. Bao, Y. Li, L. V. Brown, P. Nordlander, and N. J. Halas, Manipulating magnetic plasmon propagation in metallic nanocluster networks, ACS Nano 6(6): 5482 (2012)
https://doi.org/10.1021/nn301393x
22 B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, The Fano resonance in plasmonic nanostructures and metamaterials, Nat. Mater. 9(9), 707 (2010)
https://doi.org/10.1038/nmat2810
23 Z. Fan, H. Zhang, and A. O. Govorov, Optical properties of chiral plasmonic tetramers: Circular dichroism and multipole effects, J. Phys. Chem. C 117(28), 14770 (2013)
https://doi.org/10.1021/jp404987v
24 B. Hopkins, A. N. Poddubny, A. E. Miroshnichenko, and Y. S. Kivshar, Revisiting the physics of Fano resonances for nanoparticle oligomers, Phys. Rev. A 88(5), 053819 (2013)
https://doi.org/10.1103/PhysRevA.88.053819
25 E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, A hybridization model for the plasmon response of complex nanostructures, Science 302(5644), 419 (2003)
https://doi.org/10.1126/science.1089171
26 P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, Plasmon hybridization in nanoparticle dimers, Nano Lett. 4(5), 899 (2004)
https://doi.org/10.1021/nl049681c
27 H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, Z. W. Liu, C. Sun, S. N. Zhu, and X. Zhang, Magnetic plasmon hybridization and optical activity at optical frequencies in metallic nanostructures, Phys. Rev. B 76(7), 073101 (2007)
https://doi.org/10.1103/PhysRevB.76.073101
28 M. Liu, T. W. Lee, S. K. Gray, P. Guyot-Sionnest, and M. Pelton, Excitation of dark plasmons in metal nanoparticles by a localized emitter, Phys. Rev. Lett. 102(10), 107401 (2009)
https://doi.org/10.1103/PhysRevLett.102.107401
29 Z. Nie, A. Petukhova, and E. Kumacheva, Properties and emerging applications of self-assembled structures made from inorganic nanoparticles, Nat. Nanotechnol. 5, 15 (2010)
https://doi.org/10.1038/nnano.2009.453
30 E. Prodan and P. Nordlander, Plasmon hybridization in spherical nanoparticles, J. Chem. Phys. 120(11), 5444 (2004)
https://doi.org/10.1063/1.1647518
31 Y. Sonnefraud, N. Verellen, H. Sobhani, G. A. E. Vandenbosch, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, Experimental realization of subradiant, superradiant, and fano resonances in ring/disk plasmonic nanocavities, ACS Nano 4(3), 1664 (2010)
https://doi.org/10.1021/nn901580r
32 J. Ye, P. Van Dorpe, L. Lagae, G. Maes, and G. Borghs, Observation of plasmonic dipolar anti-bonding mode in silver nanoring structures, Nanotechnology 20(46), 465203 (2009)
https://doi.org/10.1088/0957-4484/20/46/465203
33 C. M. Sweeney, C. L. Stender, C. L. Nehl, W. Hasan, K. L. Shuford, and T. W. Odom, Optical properties of tipless gold nanopyramids, Small 7(14), 2032 (2011)
https://doi.org/10.1002/smll.201100758
34 C. S. Levin, C. Hofmann, T. A. Ali, A. T. Kelly, E. Morosan, and P. Nordlander, Magnetictplasmonic coretshell nanoparticles, ACS Nano 3, 1379 (2009)
https://doi.org/10.1021/nn900118a
35 T. Ambjornsson, G. Mukhopadhyay, S. P. Apell, and M. Kall, Resonant coupling between localized plasmons and anisotropic molecular coatings in ellipsoidal metal nanoparticles, Phys. Rev. B 73, 085412 (2006)
https://doi.org/10.1103/PhysRevB.73.085412
36 W. S. Chang, J. B. Lassiter, P. Swanglap, H. Sobhani, S. Khatua, P. Nordlander, N. J. Halas, and S. A. Link, A plasmonic fano switch, Nano Lett. 12(9), 4977 (2012)
https://doi.org/10.1021/nl302610v
37 F. López-Tejeira, R. Paniagua-Domínguez, R. Rodríguez-Oliveros, and J. A. Sánchez-Gil, Fano-like interference of plasmon resonances at a single rod-shaped nanoantennas, New J. Phys. 14, 023035 (2012)
https://doi.org/10.1088/1367-2630/14/2/023035
38 J. Zhao, J. Z. Yang, P. P. Zhu, C. Sun, and J. Xu, A comparative study of the effects of sulfate reducing bacteria on corrosion of carbon steel Q235 under simulated disbonded coating with different width of aperture, Adv. Mater. Res. 503-504, 247 (2012)
https://doi.org/10.4028/www.scientific.net/AMR.503-504.247
39 Z. Chen, R. Hu, L. Cui, L. Yu, L. Wang, and J. Xiao, Plasmonic wavelength demultiplexers based on tunable Fano resonance in coupled-resonator systems, Opt. Commun. 320, 6 (2014)
https://doi.org/10.1016/j.optcom.2013.12.079
40 E. D. Palik, Handbook of Optical Constant of Solids, London: Academic Press, 1991
41 E. D. Palik and G. Ghosh, The Electronic Handbook of Optical Constants of Solids, London: Academic Press, 1999
42 D. M. Sullivan, Electromagnetic Simulation Using the FDTD Method, New Jersey: Wiley & Sons, 2013
https://doi.org/10.1002/9781118646700
43 U. S. Inan and R. A. Marshall, Numerical Electromagnetic: The FDTD Method, New York: Cambridge University Press, 2011
https://doi.org/10.1017/CBO9780511921353
44 J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, Fano resonances in plasmonic nanoclusters: Geometrical and chemical tunability, Nano Lett. 10(8), 3184 (2010)
https://doi.org/10.1021/nl102108u
45 Y. Shao, S. Xu, X. Zheng, Y. Wang, and W. Xu, Optical fiber LSPR biosensor prepared by gold nanoparticle assembly on polyelectrolyte multilayer, Sensors 10(4), 3585 (2010)
https://doi.org/10.3390/s100403585
46 Y. Q. Chen and C. J. Lu, Surface modification on silver nanoparticles for enhancing vapor selectivity of localized surface plasmon resonance sensors, Sens. Actuators B 135(2), 492 (2009)
https://doi.org/10.1016/j.snb.2008.09.030
47 J. Ye, F. Wen, H. Sobhani, J. B. Lassiter, P. V. Dorpe, P. Nordlander, and N. J. Halas, Plasmonic nanoclusters: Near field properties of the fano resonance interrogated with SERS, Nano Lett. 12(3), 1660 (2012)
https://doi.org/10.1021/nl3000453
48 E. M. Larsson, J. Alegret, M. K?ll, and D. S. Sutherland, Sensing characteristics of NIR localized surface plasmon resonances in gold nanorings for application as ultrasensitive biosensors, Nano Lett. 7(5), 1256 (2007)
https://doi.org/10.1021/nl0701612
49 L. J. Sherry, S. H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. Xia, Localized surface plasmon resonance spectroscopy of single silver nanocubes, Nano Lett. 5(10), 2034 (2005)
https://doi.org/10.1021/nl0515753
50 F. Hao, Y. Sonnefraud, P. V. Drope, S. A. Maier, N. J. Halas, and P. Nordlander, Symmetry breaking in plasmonic nanocavities: Subradiant LSPR sensing and a tunable fano resonance, Nano Lett. 8(11), 3983 (2008)
https://doi.org/10.1021/nl802509r
51 N. Liu, T. Wiess, M. Mesch, L. Langguth, U. Eignthaler, M. Hirscher, C. S?nnichsen, and H. Giessen, Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing, Nano Lett. 10(4), 1103 (2010)
https://doi.org/10.1021/nl902621d
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed