Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2015, Vol. 10 Issue (2): 181-190   https://doi.org/10.1007/s11467-014-0440-2
  本期目录
Molecular dynamics study of the infiltration of lipid-wrapping C60 and polyhydroxylated single-walled nanotubes into lipid bilayers
Guan-Xing Guo, Lei Zhang, Yong Zhang()
School of Physics and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
 全文: PDF(482 KB)  
Abstract

Because of the many potential medical applications of nanoparticles, considerable research has been conducted on the interactions between nanoparticles and biomembranes. We employed coarsegrained molecular dynamics simulations to study the infiltration of lipid-wrapping C60 and polyhydroxylated single-walled nanotubes. Diffusion coefficients and scaling factors are adopted to quantify the diffusivity of the biomembranes, and the rupture tension is used to measure the lateral strength of the lipid bilayer. According to our simulations, all wrapped nanoparticles, except those wrapped by dipalmitoyl-glycero-phosphoglycerol, can be inserted into the bilayers. Our simulations also reveal that the bilayers remain in free diffusion after the nanoparticle insertions while their diffusion coefficient can be altered significantly. The polyhydroxylated single-walled nanotubes lead to significant changes to the lateral strength of biomembranes and this effect depends on the quantity of the inserted nanoparticles. The simulations demonstrate the feasibility of using these methods to deliver nanoparticles while some suggestions are given for choosing the appropriate lipids for wrapping. The results also suggest that the functionalized nanoparticles could be applied in strengthening or weakening the lateral strength of biomembranes for specific purposes.

Key wordslipid bilayer    carbon nanoparticle    molecular dynamics
收稿日期: 2014-05-08      出版日期: 2015-03-13
 引用本文:   
. [J]. Frontiers of Physics, 2015, 10(2): 181-190.
Guan-Xing Guo, Lei Zhang, Yong Zhang. Molecular dynamics study of the infiltration of lipid-wrapping C60 and polyhydroxylated single-walled nanotubes into lipid bilayers. Front. Phys. , 2015, 10(2): 181-190.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-014-0440-2
https://academic.hep.com.cn/fop/CN/Y2015/V10/I2/181
1 M. E. Samberg, S. J. Oldenburg, and N. A. Monteiro-Riviere, Evaluation of silver nanoparticle toxicity in skin in vivo and keratinocytes in vitro, Environ. Health Perspect.118(3), 407 (2010)
https://doi.org/10.1289/ehp.0901398
2 B. J. Marquis, S. A. Love, K. L. Braun, and C. L. Haynes, Analytical methods to assess nanoparticle toxicity, Analyst134(3), 425 (2009)
https://doi.org/10.1039/b818082b
3 X. Yang, A. P. Gondikas, S. M. Marinakos, M. Auffan, J. Liu, H. Hsu-Kim, and J. N. Meyer, Mechanism of silver nanoparticle toxicity is dependent on dissolved silver and surface coating in caenorhabditis elegans, Environ. Sci. Technol.46(2), 1119 (2012)
https://doi.org/10.1021/es202417t
4 M. Schulz, A. Olubummo, and W. H. Binder, Beyond the lipid-bilayer: Interaction of polymers and nanoparticles with membranes, Soft Matter8(18), 4849 (2012)
https://doi.org/10.1039/c2sm06999g
5 A. A. Skandani, R. Zeineldin, and M. Al-Haik, Effect of chirality and length on the penetrability of single-walled carbon nanotubes into lipid bilayer cell membranes, Langmuir28(20), 7872 (2012)
https://doi.org/10.1021/la3011162
6 Y. I. Prylutskyy, V. M. Yashchuk, K. M. Kushnir, A. A. Golub, V. A. Kudrenko, S. V. Prylutska, I. I. Grynyuk, E. V. Buzaneva, P. Scharff, T. Braun, and O. P. Matyshevska, Biophysical studies of fullerene-based composite for bio-nanotechnology, Mater. Sci. Eng. C23(1−2), 109 (2003)
https://doi.org/10.1016/S0928-4931(02)00244-8
7 N. A. Kouklin, W. E. Kim, A. D. Lazareck, and J. M. Xu, Carbon nanotube probes for single-cell experimentation and assays, Appl. Phys. Lett.87(17), 173901 (2005)
https://doi.org/10.1063/1.2112183
8 S. D. Caruthers, S. A. Wickline, and G. M. Lanza, Nanotechnological applications in medicine, Curr. Opin. Biotechnol.18(1), 26 (2007)
https://doi.org/10.1016/j.copbio.2007.01.006
9 L. Zhang, F. X. Gu, J. M. Chan, A. Z. Wang, R. S. Langer, and O. C. Farokhzad, Nanoparticles in medicine: therapeutic applications and developments, Clin. Pharmacol. Ther.83(5), 761 (2008)
https://doi.org/10.1038/sj.clpt.6100400
10 D. A. Groneberg, M. Giersig, T. Welte, and U. Pison, Nanoparticle-based diagnosis and therapy, Curr. Drug Targets7(6), 643 (2006)
https://doi.org/10.2174/138945006777435245
11 P. Mroz, A. Pawlak, M. Satti, H. Lee, T. Wharton, H. Gali, T. Sarna, and M. R. Hamblin, Functionalized fullerenes mediate photodynamic killing of cancer cells: Type I versus Type II photochemical mechanism, Free Radic. Biol. Med.43(5), 711 (2007)
https://doi.org/10.1016/j.freeradbiomed.2007.05.005
12 J. Lin, H. Zhang, Z. Chen, and Y. Zheng, Penetration of lipid membranes by gold nanoparticles: insights into cellular uptake, cytotoxicity, and their relationship, ACS Nano4(9), 5421 (2010)
https://doi.org/10.1021/nn1010792
13 Y. Li, X. Chen, and N. Gu, Computational investigation of interaction between nanoparticles and membranes: Hydrophobic/ hydrophilic effect, J. Phys. Chem. B112(51), 16647 (2008)
https://doi.org/10.1021/jp8051906
14 J. Wong-Ekkabut, S. Baoukina, W. Triampo, I. M. Tang, D. P. Tieleman, and L. Monticelli, Computer simulation study of fullerene translocation through lipid membranes, Nat. Nanotechnol.3(6), 363 (2008)
https://doi.org/10.1038/nnano.2008.130
15 K. Yang and Y. Q. Ma, Computer simulation of the translocation of nanoparticles with different shapes across a lipid bilayer, Nat. Nanotechnol.5(8), 579 (2010)
https://doi.org/10.1038/nnano.2010.141
16 K. Lai, B. Wang, Y. Zhang, and Y. Zheng, Computer simulation study of nanoparticle interaction with a lipid membrane under mechanical stress, Phys. Chem. Chem. Phys.15(1), 270 (2013)
https://doi.org/10.1039/C2CP42027A
17 X. Zhang, Y. Zhang, Y. Zheng, and B. Wang, Mechanical characteristics of human red blood cell membrane change due to C60 nanoparticle infiltration, Phys. Chem. Chem. Phys.15(7), 2473 (2013)
https://doi.org/10.1039/c2cp42850d
18 J. Kolosnjaj, H. Szwarc, and F. Moussa, Bio-Applications of Nanoparticles, Springer, 2007, page 168
https://doi.org/10.1007/978-0-387-76713-0_13
19 C. A. Poland, R. Duffin, I. Kinloch, A. Maynard, W. A. Wallace, A. Seaton, V. Stone, S. Brown, W. Macnee, and K. Donaldson, Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study, Nat. Nanotechnol.3(7), 423 (2008)
https://doi.org/10.1038/nnano.2008.111
20 T. Xia, M. Kovochich, J. Brant, M. Hotze, J. Sempf, T. Oberley, C. Sioutas, J. I. Yeh, M. R. Wiesner, and A. E. Nel, Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm, Nano Lett.6(8), 1794 (2006)
https://doi.org/10.1021/nl061025k
21 G. Jia, H. Wang, L. Yan, X. Wang, R. Pei, T. Yan, Y. Zhao, and X. Guo, Cytotoxicity of carbon nanomaterials: Singlewall nanotube, multi-wall nanotube, and fullerene, Environ. Sci. Technol.39(5), 1378 (2005)
https://doi.org/10.1021/es048729l
22 H. Lee, Interparticle dispersion, membrane curvature, and penetration induced by single-walled carbon nanotubes wrapped with lipids and PEGylated lipids, J. Phys. Chem. B117(5), 1337 (2013)
https://doi.org/10.1021/jp308912r
23 A. Z. Wang, R. Langer, and O. C. Farokhzad, Nanoparticle delivery of cancer drugs, Annu. Rev. Med.63(1), 185 (2012)
https://doi.org/10.1146/annurev-med-040210-162544
24 A. Babu, A. K. Templeton, A. Munshi and R. Ramesh, Nanoparticle-based drug delivery for therapy of lung cancer: progress and challenges, Journal of Nanomaterials, 2013 (2013)
25 D. Pozzi, C. Marchini, F. Cardarelli, A. Rossetta, V. Colapicchioni, A. Amici, M. Montani, S. Motta, P. Brocca, L. Cantù, and G. Caracciolo, Mechanistic understanding of gene delivery mediated by highly efficient multicomponent envelope-type nanoparticle systems, Mol. Pharm.10(12), 4654 (2013)
https://doi.org/10.1021/mp400470p
26 S. Tan, X. Li, Y. Guo, and Z. Zhang, Lipid-enveloped hybrid nanoparticles for drug delivery, Nanoscale5(3), 860 (2013)
https://doi.org/10.1039/c2nr32880a
27 P. Majewski and B. Thierry, Functionalized magnetite nanoparticles- synthesis, properties, and bio-applications, Crit. Rev. Solid State Mater. Sci.32(3), 203 (2007)
https://doi.org/10.1080/10408430701776680
28 S. G. Grancharov, H. Zeng, S. Sun, S. X. Wang, S. O’Brien, C. B. Murray, J. R. Kirtley, and G. A. Held, Bio-functionalization of monodisperse magnetic nanoparticles and their use as biomolecular labels in a magnetic tunnel junction based sensor, J. Phys. Chem. B109(26), 13030 (2005)
https://doi.org/10.1021/jp051098c
29 S. Yu, and G. M. Chow, Carboxyl group (-CO2H) functionalized ferrimagnetic iron oxide nanoparticles for potential bio-applications, J. Mater. Chem.14(18), 2781 (2004)
https://doi.org/10.1039/b404964k
30 J. D. Peters, Cellular Transport of Functionalized Gold Nanoparticles, Ph. D. Thesis, Worcester: Worcester Polytechnic Institute, 2013
31 Z. Chen, L. Ma, Y. Liu, and C. Chen, Applications of functionalized fullerenes in tumor theranostics., Theranostics2(3), 238 (2012)
https://doi.org/10.7150/thno.3509
32 W. Hong, H. Bai, Y. Xu, Z. Yao, Z. Gu, and G. Shi, Preparation of gold nanoparticle/graphene composites with controlled weight contents and their application in biosensors, J. Phys. Chem. C114(4), 1822 (2010)
https://doi.org/10.1021/jp9101724
33 J. Grebowski, A. Krokosz and M. Puchala, Membrane fluidity and activity of membrane ATPases in human erythrocytes under the influence of polyhydroxylated fullerene, Biochimica et Biophysica Acta (BBA)-Biomembranes1828, 241 (2012)
https://doi.org/10.1016/j.bbamem.2012.09.008
34 D. Baowan, B. J. Cox, and J. M. Hill, Instability of C60 fullerene interacting with lipid bilayer, J. Mol. Model.18(2), 549 (2012)
https://doi.org/10.1007/s00894-011-1086-4
35 S. J. Marrink, H. J. Risselada, S. Yefimov, D. P. Tieleman, and A. H. de Vries, The MARTINI force field: coarse grained model for biomolecular simulations, J. Phys. Chem. B111(27), 7812 (2007)
https://doi.org/10.1021/jp071097f
36 S. J. Marrink, A. H. de Vries, and A. E. Mark, Coarse grained model for semiquantitative lipid simulations, J. Phys. Chem. B108(2), 750 (2004)
https://doi.org/10.1021/jp036508g
37 H. Lee and H. Kim, Self-assembly of lipids and single-walled carbon nanotubes: Effects of lipid structure and PEGylation, J. Phys. Chem. C116(16), 9327 (2012)
https://doi.org/10.1021/jp3010663
38 TubeGen 3.4, J. T. Frey and D. J. Doren, University of Delaware, Newark DE, 2011
39 H. J. C. Berendsen, D. van der Spoel, and R. van Drunen, GROMACS: A message-passing parallel molecular dynamics implementation, Comput. Phys. Commun.91(1−3), 43 (1995)
https://doi.org/10.1016/0010-4655(95)00042-E
40 E. Lindahl, B. Hess and D. Van Der Spoel, GROMACS 3.0: A package for molecular simulation and trajectory analysis Molecular modeling annual 7, 306 (2001)
41 H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. DiNola, and J. R. Haak, Molecular dynamics with coupling to an external bath, J. Chem. Phys.81(8), 3684 (1984)
https://doi.org/10.1063/1.448118
42 R. Qiao, A. P. Roberts, A. S. Mount, S. J. Klaine, and P. C. Ke, Translocation of C60 and its derivatives across a lipid bilayer, Nano Lett.7(3), 614 (2007)
https://doi.org/10.1021/nl062515f
43 X. Li, Y. Shi, B. Miao, and Y. Zhao, Effects of embedded carbon nanotube on properties of biomembrane, J. Phys. Chem. B116(18), 5391 (2012)
https://doi.org/10.1021/jp301864z
44 R. Abedi Karjiban, N. S. Shaari, U. V. Gunasakaran and M. Basri, A Coarse-Grained Molecular Dynamics Study of DLPC, DMPC, DPPC, and DSPC Mixtures in Aqueous Solution, Journal of Chemistry, 2013 (2013)
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed