Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2015, Vol. 10 Issue (3): 104202   https://doi.org/10.1007/s11467-015-0456-2
  RESEARCH ARTICLE 本期目录
Optomechanically induced amplification and perfect transparency in double-cavity optomechanics
Xiao-Bo Yan1,2(),W. Z. Jia3,Yong Li4,Jin-Hui Wu2,*(),Xian-Li Li1,Hai-Wei Mu1
1. College of Electronic Science, Northeast Petroleum University, Daqing 163318, China
2. College of Physics, Jilin University, Changchun 130012, China
3. Quantum Optoelectronics Laboratory, School of Physical Science and Technology, Southwest Jiaotong University, Chengdu 610031, China
4. Beijing Computational Science Research Center, Beijing 100084, China
 全文: PDF(275 KB)  
Abstract

We study optomechanically induced amplification and perfect transparency in a double-cavity optomechanical system. We find that if two control lasers with appropriate amplitudes and detunings are applied to drive the system, optomechanically induced amplification of a probe laser can occur. In addition, perfect optomechanically induced transparency, which is robust to mechanical dissipation, can be realized by the same type of driving. These results indicate important progress toward signal amplification, light storage, fast light, and slow light in quantum information processes.

Key wordsoptomechanics    optomechanically induced amplification    optomechanically induced transparency
收稿日期: 2014-10-18      出版日期: 2015-06-11
Corresponding Author(s): Jin-Hui Wu   
 引用本文:   
. [J]. Frontiers of Physics, 2015, 10(3): 104202.
Xiao-Bo Yan, W. Z. Jia, Yong Li, Jin-Hui Wu, Xian-Li Li, Hai-Wei Mu. Optomechanically induced amplification and perfect transparency in double-cavity optomechanics. Front. Phys. , 2015, 10(3): 104202.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-015-0456-2
https://academic.hep.com.cn/fop/CN/Y2015/V10/I3/104202
1 T. J. Kippenberg and K. J. Vahala, Cavity optomechanics: Back-action at the mesoscale, Science 321(5893), 1172 (2008)
https://doi.org/10.1126/science.1156032
2 F. Marquardt and S. M. Girvin, Optomechanics, Physics 2, 40 (2009)
https://doi.org/10.1103/Physics.2.40
3 P. Verlot, A. Tavernarakis, T. Briant, P. F. Cohadon, and A. Heidmann, Back-action amplification and quantum limits in optomechanical measurements, Phys. Rev. Lett. 104(13), 133602 (2010)
https://doi.org/10.1103/PhysRevLett.104.133602
4 S. Mahajan, T. Kumar, A. B. Bhattacherjee, and ManMohan, Ground-state cooling of a mechanical oscillator and detection of a weak force using a Bose–Einstein condensate, Phys. Rev. A 87(1), 013621 (2013)
https://doi.org/10.1103/PhysRevA.87.013621
5 Y. W. Hu, Y. F. Xiao, Y. C. Liu, and Q. H. Gong, Optomechanical sensing with on-chip microcavities, Front. Phys. 8(5), 475 (2013)
https://doi.org/10.1007/s11467-013-0384-y
6 S. Gigan, H. B?hm, M. Paternostro, F. Blaser, G. Langer, J. Hertzberg, K. Schwab, D. B?uerle, M. Aspelmeyer, and A. Zeilinger, Self-cooling of a micromirror by radiation pressure, Nature 444(7115), 67 (2006)
https://doi.org/10.1038/nature05273
7 D. Kleckner and D. Bouwmeester, Sub-kelvin optical cooling of a micromechanical resonator, Nature 444(7115), 75 (2006)
https://doi.org/10.1038/nature05231
8 G. S. Agarwal and Sumei Huang, Electromagnetically induced transparency in mechanical effects of light, Phys. Rev. A 81, 041803(R) (2010)
9 T. J. Kippenberg and K. J. Vahala, Cavity opto-mechanics, Opt. Express 15(25), 17172 (2007)
https://doi.org/10.1364/OE.15.017172
10 D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Ultra-high-Q toroid microcavity on a chip, Nature 421(6926), 925 (2003)
https://doi.org/10.1038/nature01371
11 A. Schliesser, R. Rivière, G. Anetsberger, O. Arcizet, and T. J. Kippenberg, Resolved-sideband cooling of a micromechanical oscillator, Nat. Phys. 4(5), 415 (2008)
https://doi.org/10.1038/nphys939
12 M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, Optomechanical crystals, Nature 462(7269), 78 (2009)
https://doi.org/10.1038/nature08524
13 Y. Li, J. Zheng, J. Gao, J. Shu, M. S. Aras, and C. W. Wong, Design of dispersive optomechanical coupling and cooling in ultrahigh-Q/V slot-type photonic crystal cavities, Opt. Express 18(23), 23844 (2010)
https://doi.org/10.1364/OE.18.023844
14 J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt, S. M. Girvin, and J. G. E. Harris, Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane, Nature 452(7183), 72 (2008)
https://doi.org/10.1038/nature06715
15 H. K. Cheung, and C. K. Law, Nonadiabatic optomechanical Hamiltonian of a moving dielectric membrane in a cavity, Phys. Rev. A 84(2), 023812 (2011)
https://doi.org/10.1103/PhysRevA.84.023812
16 F. Brennecke, S. Ritter, T. Donner, and T. Esslinger, Cavity optomechanics with a Bose-Einstein condensate, Science 322(5899), 235 (2008)
https://doi.org/10.1126/science.1163218
17 K. Zhang, P. Meystre, and W. Zhang, Role reversal in a Bose-Condensed optomechanical system, Phys. Rev. Lett. 108(24), 240405 (2012)
https://doi.org/10.1103/PhysRevLett.108.240405
18 K. Y. Zhang, L. Zhou, G. J. Dong, and W. P. Zhang, Cavity optomechanics with cold atomic gas, Front. Phys. 6(3), 237 (2011)
https://doi.org/10.1007/s11467-011-0164-5
19 C. A. Regal, J. D. Teufel, and K. W. Lehnert, Measuring nanomechanical motion with a microwave cavity interferometer, Nat. Phys. 4(7), 555 (2008)
https://doi.org/10.1038/nphys974
20 Z. L. Xiang, S. Ashhab, J. Q. You, and F. Nori, Hybrid quantum circuits: Superconducting circuits interacting with other quantum systems, Rev. Mod. Phys. 85(2), 623 (2013)
https://doi.org/10.1103/RevModPhys.85.623
21 I. Wilson-Rae, N. Nooshi, W. Zwerger, and T. J. Kippenberg, Theory of ground state cooling of a mechanical oscillator using dynamical backaction, Phys. Rev. Lett. 99(9), 093901 (2007)
https://doi.org/10.1103/PhysRevLett.99.093901
22 F. Marquardt, J. P. Chen, A. A. Clerk, and S. M. Girvin, Quantum theory of cavity-assisted sideband cooling of mechanical motion, Phys. Rev. Lett. 99(9), 093902 (2007)
https://doi.org/10.1103/PhysRevLett.99.093902
23 Y. Li, L. A. Wu, and Z. D. Wang, Fast ground-state cooling of mechanical resonators with time-dependent optical cavities, Phys. Rev. A 83(4), 043804 (2011)
https://doi.org/10.1103/PhysRevA.83.043804
24 J. M. Dobrindt, I. Wilson-Rae, and T. J. Kippenberg, Parametric normal-mode splitting in cavity optomechanics, Phys. Rev. Lett. 101(26), 263602 (2008)
https://doi.org/10.1103/PhysRevLett.101.263602
25 S. Gr?blacher, K. Hammerer, M. Vanner, and M. Aspelmeyer, Observation of strong coupling between a micromechanical resonator and an optical cavity field, Nature 460(7256), 724 (2009)
https://doi.org/10.1038/nature08171
26 J. D. Teufel, D. Li, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, and R. W. Simmonds, Circuit cavity electromechanics in the strong-coupling regime, Nature 471(7337), 204 (2011)
https://doi.org/10.1038/nature09898
27 A. Kronwald and F. Marquardt, Optomechanically induced transparency in the nonlinear quantum regime, Phys. Rev. Lett. 111(13), 133601 (2013)
https://doi.org/10.1103/PhysRevLett.111.133601
28 S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, Optomechanically Induced Transparency, Science 330(6010), 1520 (2010)
https://doi.org/10.1126/science.1195596
29 A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, Electromagnetically induced transparency and slow light with optomechanics, Nature 472(7341), 69 (2011)
https://doi.org/10.1038/nature09933
30 M. Karuza, C. Biancofiore, M. Bawaj, C. Molinelli, M. Galassi, R. Natali, P. Tombesi, G. Di Giuseppe, and D. Vitali, Optomechanically induced transparency in a membrane-in-the-middle setup at room temperature, Phys. Rev. A 88(1), 013804 (2013)
https://doi.org/10.1103/PhysRevA.88.013804
31 D. E. Chang, A. H. Safavi-Naeini, M. Hafezi, and O. Painter, Slowing and stopping light using an optomechanical crystal array, New J. Phys. 13(2), 023003 (2011)
https://doi.org/10.1088/1367-2630/13/2/023003
32 V. Fiore, Y. Yang, M. C. Kuzyk, R. Barbour, L. Tian, and H. Wang, Storing optical information as a mechanical excitation in a silica optomechanical resonator, Phys. Rev. Lett. 107(13), 133601 (2011)
https://doi.org/10.1103/PhysRevLett.107.133601
33 T. Kippenberg, H. Rokhsari, T. Carmon, A. Scherer, and K. Vahala, Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity, Phys. Rev. Lett. 95(3), 033901 (2005)
https://doi.org/10.1103/PhysRevLett.95.033901
34 F. Marquardt, J. G. E. Harris, and S. M. Girvin, Dynamical multistability induced by radiation pressure in high-finesse micromechanical optical cavities, Phys. Rev. Lett. 96(10), 103901 (2006)
https://doi.org/10.1103/PhysRevLett.96.103901
35 K. Vahala, M. Herrmann, S. Knünz, V. Batteiger, G. Saathoff, T. W. H?nsch, and T. Udem, A phonon laser, Nat. Phys. 5(9), 682 (2009)
https://doi.org/10.1038/nphys1367
36 F. Massel, T. T. Heikkil?, J. M. Pirkkalainen, S. U. Cho, H. Saloniemi, P. J. Hakonen, and M. A. Sillanp??, Microwave amplification with nanomechanical resonators, Nature 480(7377), 351 (2011)
https://doi.org/10.1038/nature10628
37 A. Nunnenkamp, V. Sudhir, A. K. Feofanov, A. Roulet, and T. J. Kippenberg, Quantum-limited amplification and parametric instability in the reversed dissipation regime of cavity optomechanics, arXiv: 1312.5867 (2013)
38 A. Metelmann and A. A. Clerk, Quantum-limited amplification via reservoir engineering, Phys. Rev. Lett. 112(13), 133904 (2014)
https://doi.org/10.1103/PhysRevLett.112.133904
39 X. B. Yan, C. L. Cui, K. H. Gu, X. D. Tian, C. B. Fu, and J. H. Wu, Coherent perfect absorption, transmission, and synthesis in a double-cavity optomechanical system, Opt. Express 22(5), 4886 (2014)
https://doi.org/10.1364/OE.22.004886
40 M. Paternostro, D. Vitali, S. Gigan, M. S. Kim, C. Brukner, J. Eisert, and M. Aspelmeyer, Creating and probing multipartite macroscopic entanglement with light, Phys. Rev. Lett. 99(25), 250401 (2007)
https://doi.org/10.1103/PhysRevLett.99.250401
41 M. Bhattacharya and P. Meystre, Trapping and cooling a mirror to its quantum mechanical ground state, Phys. Rev. Lett. 99(7), 073601 (2007)
https://doi.org/10.1103/PhysRevLett.99.073601
42 Y. D. Wang, and A. A. Clerk, Using interference for high fidelity quantum state transfer in optomechanics, Phys. Rev. Lett. 108(15), 153603 (2012)
https://doi.org/10.1103/PhysRevLett.108.153603
43 R. W. Andrews, R. W. Peterson, T. P. Purdy, K. Cicak, R. W. Simmonds, C. A. Regal, and K. W. Lehnert, Bidirectional and efficient conversion between microwave and optical light, Nat. Phys. 10(4), 321 (2014)
https://doi.org/10.1038/nphys2911
44 J. T. Hill, A. H. Safavi-Naeini, J. Chan, and O. Painter, Coherent optical wavelength conversion via cavity optomechanics, Nat. Commun. 3, 1196 (2012)
https://doi.org/10.1038/ncomms2201
45 G. S. Agarwal and S. Huang, Nanomechanical inverse electromagnetically induced transparency and confinement of light in normal modes, New J. Phys. 16(3), 033023 (2014)
https://doi.org/10.1088/1367-2630/16/3/033023
46 D. F. Walls and G. J. Milburn, Quantum Optics, Berlin: Springer-Verlag, 1994
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed