Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  0, Vol. Issue (): 106801   https://doi.org/10.1007/s11467-015-0459-z
  REVIEW ARTICLE 本期目录
Graphene versus MoS2: A short review
Jin-Wu Jiang()
Shanghai Institute of Applied Mathematics and Mechanics, Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai University, Shanghai 200072, China
 全文: PDF(424 KB)  
Abstract

Graphene and MoS2 are two well-known quasi two-dimensional materials. This review presents a comparative survey of the complementary lattice dynamical and mechanical properties of graphene and MoS2, which facilitates the study of graphene/MoS2 heterostructures. These hybrid heterostructures are expected to mitigate the negative properties of each individual constituent and have attracted intense academic and industrial research interest.

Key wordsgraphene    molybdenum disulphide    lattice dynamics    mechanical properties
收稿日期: 2014-09-16      出版日期: 2015-06-11
Corresponding Author(s): Jin-Wu Jiang   
 引用本文:   
. [J]. Frontiers of Physics, 0, (): 106801.
Jin-Wu Jiang. Graphene versus MoS2: A short review. Front. Phys. , 0, (): 106801.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-015-0459-z
https://academic.hep.com.cn/fop/CN/Y0/V/I/106801
1 A. K. Geim and K. S. Novoselov, The rise of graphene, Nat. Mater. 6(3), 183 (2007)
https://doi.org/10.1038/nmat1849
2 A. H. C. Neto and K. Novoselov, New directions in science and technology: Two-dimensional crystals, Rep. Prog. Phys. 74(8), 082501 (2011)
https://doi.org/10.1088/0034-4885/74/8/082501
3 C. Lee, X. Wei, J. W. Kysar, and J. Hone, Measurement of the elastic properties and intrinsic strength of mono-layer graphene, Science 321(5887), 385 (2008)
https://doi.org/10.1126/science.1157996
4 R. C. Cooper, C. Lee, C. A. Marianetti, X. Wei, J. Hone, and J. W. Kysar, Nonlinear elastic behavior of two-dimensional molybdenum disulfide, Phys. Rev. B 87(3), 035423 (2013)
https://doi.org/10.1103/PhysRevB.87.035423
5 Z. C. Ouyang, Z. B. Su, and C. L. Wang, Coil formation in multishell carbon nanotubes: Competition between curvature elasticity and interlayer adhesion, Phys. Rev. Lett. 78(21), 4055 (1997)
https://doi.org/10.1103/PhysRevLett.78.4055
6 Z. C. Tu and Z. C. Ou-Yang, Single-walled and multiwalled carbon nanotubes viewed as elastic tubes with the effective Young’s moduli dependent on layer number, Phys. Rev. B 65(23), 233407 (2002)
https://doi.org/10.1103/PhysRevB.65.233407
7 M. Arroyo and T. Belytschko, An atomistic-based nite defor-mation membrane for single layer crystalline films, J. Mech. Phys. Solids 50(9), 1941 (2002)
https://doi.org/10.1016/S0022-5096(02)00002-9
8 Q. Lu, M. Arroyo, and R. Huang, Elastic bending modulus of monolayer graphene, J. Phys. D: Appl. Phys. 42(10), 102002 (2009)
https://doi.org/10.1088/0022-3727/42/10/102002
9 J. W. Jiang, Z. Qi, H. S. Park, and T. Rabczuk, Elastic bending modulus of single-layer molybdenum disul-phide (MoS2): Finite thickness effect, Nanotechnology 24(43), 435705 (2013)
https://doi.org/10.1088/0957-4484/24/43/435705
10 J. W. Jiang and H. S. Park, Negative Poisson’s ratio in single-layer black phosphorus, Nat. Commun. 5, 4727 (2014)
https://doi.org/10.1038/ncomms5727
11 A. C. Ferrari, Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects, Solid State Commun. 143(1-2), 47 (2007)
https://doi.org/10.1016/j.ssc.2007.03.052
12 A. H. Castro Neto, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, The electronic properties of graphene, Rev. Mod. Phys. 81(1), 109 (2009)
https://doi.org/10.1103/RevModPhys.81.109
13 A. K. Geim, Graphene: Status and prospects, Science 324(5934), 1530 (2009)
https://doi.org/10.1126/science.1158877
14 L. M. Malard, M. A. Pimenta, G. Dresselhaus, and M. S. Dressel-haus, Raman spectroscopy in graphene, Physics Reports 473, 51 (2009)
https://doi.org/10.1016/j.physrep.2009.02.003
15 C. N. R. Rao, A. K. Sood, K. S. Subrahmanyam, and A. Govin-daraj, Graphene: The new two-dimensional nanomaterial, Angew. Chem. Int. Ed. 48(42), 7752 (2009)
https://doi.org/10.1002/anie.200901678
16 M. J. Allen, V. C. Tung, and R. B. Kaner, Honeycomb carbon: A review of graphene, Chem. Rev. 110(1), 132 (2010)
https://doi.org/10.1021/cr900070d
17 F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, Graphene photonics and optoelectronics, Nat. Photonics 4(9), 611 (2010)
https://doi.org/10.1038/nphoton.2010.186
18 F. Schwierz, Graphene transistors, Nat. Nanotechnol. 5(7), 487 (2010)
https://doi.org/10.1038/nnano.2010.89
19 A. A. Balandin, Thermal properties of graphene and nanostructured carbon materials, Nat. Mater. 10(8), 569 (2011)
https://doi.org/10.1038/nmat3064
20 Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, Electronics and optoelectronics of twodimensional transition metal dichalcogenides, Nat. Nanotechnol. 7(11), 699 (2012)
https://doi.org/10.1038/nnano.2012.193
21 M. Chhowalla, H. S. Shin, G. Eda, L. Li, K. P. Loh, and H. Zhang, The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets, Nat. Chem. 5(4), 263 (2013)
https://doi.org/10.1038/nchem.1589
22 M. Xu, T. Liang, M. Shi, and H. Chen, Graphene-like twodimensional materials, Chem. Rev. 113(5), 3766 (2013)
https://doi.org/10.1021/cr300263a
23 S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutiérrez, T. F. Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V. Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G. Spencer, M. Terrones, W. Windl, and J. E. Goldberger, Progress, challenges, and opportunities in two-dimensional materials beyond graphene, ACS Nano 7(4), 2898 (2013)
https://doi.org/10.1021/nn400280c
24 X. Huang, Z. Zeng, and H. Zhang, Metal dichalcogenide nanosheets: Preparation, properties and applications, Chem. Soc. Rev. 42(5), 1934 (2013)
https://doi.org/10.1039/c2cs35387c
25 L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y. J. Kim, R. V. Gorbachev, T. Georgiou, S. V. Morozov, A. N. Grigorenko, A. K. Geim, C. Casiraghi, A. H. C.Neto, and K. S. Novoselov, Strong light-matter interactions in heterostructures of atomically thin films, Science 340(6138), 1311 (2013)
https://doi.org/10.1126/science.1235547
26 R. Zan, Q. M. Ramasse, R. Jalil, T. Georgiou, U. Bangert, and K. S. Novoselov, Control of radiation damage in MoS2 by graphene encapsulation, ACS Nano 7(11), 10167 (2013)
https://doi.org/10.1021/nn4044035
27 R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Physical Properties of Carbon Nanotubes, London: Imperial College, 1998
28 J. W. Jiang, H. S. Park, and T. Rabczuk, Molecular dynamics simulations of single-layer molybdenum disulphide (MoS2): Stillinger–Weber parametrization, mechanical properties, and thermal conductivity, J. Appl. Phys. 114(6), 064307 (2013)
https://doi.org/10.1063/1.4818414
29 A. Molina-Sánchez and L. Wirtz, Phonons in single-layer and few-layer MoS2 and WS2, Phys. Rev. B 84(15), 155413 (2011)
https://doi.org/10.1103/PhysRevB.84.155413
30 N. Wakabayashi, H. G. Smith, and R. M. Nicklow, Lattice dynamics of hexagonal MoS2 studied by neutron scattering, Phys. Rev. B 12(2), 659 (1975)
https://doi.org/10.1103/PhysRevB.12.659
31 G. Kresse and J. Furthmuller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54(16), 11169 (1996)
https://doi.org/10.1103/PhysRevB.54.11169
32 J. M. Soler, E. Artacho, J. D. Gale, A. Garcia, J. Jun-quera, P. Ordejon, and D. Sánchez-Portal, The siesta method for ab initio ordern materials simulation, J. Phys.: Condens. Matter 14(11), 2745 (2002) (Code available from http://www.icmab.es/dmmis/leem/siesta/.)
https://doi.org/10.1088/0953-8984/14/11/302
33 D. W. Brenner, O. A. Shenderova, J. A. Harrison, S. J. Stuart, B. Ni, and S. B. Sinnott, A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons, J. Phys.: Condens. Matter 14(4), 783 (2002)
https://doi.org/10.1088/0953-8984/14/4/312
34 J. Tersoff, Empirical interatomic potential for carbon, with applications to amorphous carbon, Phys. Rev. Lett. 61(25), 2879 (1988)
https://doi.org/10.1103/PhysRevLett.61.2879
35 F. H. Stillinger and T. A. Weber, Computer simulation of local order in condensed phases of silicon, Phys. Rev. B 31(8), 5262 (1985)
https://doi.org/10.1103/PhysRevB.31.5262
36 F. F. Abraham and I. P. Batra, Theoretical interpretation of atomic force microscope images of graphite, Surf. Sci. 209(1-2), L125 (1989)
37 T. Aizawa, R. Souda, S. Otani, Y. Ishizawa, and C. Oshima, Bond softening in monolayer graphite formed on transitionmetal carbide surfaces, Phys. Rev. B 42(18), 11469 (1990)
https://doi.org/10.1103/PhysRevB.42.11469
38 T. Liang, S. R. Phillpot, and S. B. Sinnott, Parametrization of a reactive many-body potential for Mo-S systems, Phys. Rev. B 79(24), 245110 (2009)
https://doi.org/10.1103/PhysRevB.79.245110
39 J. A. Stewart and D. E. Spearot, Atomistic simulations of nanoindentation on the basal plane of crystalline molyb-denum disulfide (MoS2), Model. Simul. Mater. Sci. Eng. 21(4), 045003 (2013)
https://doi.org/10.1088/0965-0393/21/4/045003
40 J. D. Gale, Gulp: A computer program for the symmetryadapted simulation of solids, J. Chem. Soc., Faraday Trans. 93(4), 629 (1997) (Code available from https://projects.ivec.org/gulp/.)
https://doi.org/10.1039/a606455h
41 Lammps, http://www.cs.sandia.gov/~sjplimp/lammps.html (2012)
42 S. Jiménez Sandoval, D. Yang, R. F. Frindt, and J. C. Irwin, Raman study and lattice dynamics of single molecular layers of MoS2, Phys. Rev. B 44(8), 3955 (1991)
https://doi.org/10.1103/PhysRevB.44.3955
43 E. Dobard?i?, I. Milosevic, B. Dakic, and M. Damnjanovic, Raman and infrared-active modes inMS2 nanotubes (M=Mo,W), Phys. Rev. B 74(3), 033403 (2006)
https://doi.org/10.1103/PhysRevB.74.033403
44 M. Damnjanovic, E. Dobardzic, I. Miloeevic, M. Virsek, and M. Remskar, Phonons in MoS2 and WS2 nanotubes, Mater. Manuf. Process. 23(6), 579 (2008)
https://doi.org/10.1080/10426910802160361
45 H. Wang, Y. Wang, X. Cao, M. Feng, and G. Lan, Vibrational properties of graphene and graphene layers, Journal of Raman Spectroscopy 40(12), 1791 (2009)
https://doi.org/10.1002/jrs.2321
46 X. Zhang, W. Han, J. Wu, S. Milana, Y. Lu, Q. Li, A. Ferrari, and P. Tan, Raman spectroscopy of shear and layer breathing modes in multilayer MoS2, Phys. Rev. B 87, 115413 (2013)
https://doi.org/10.1103/PhysRevB.87.115413
47 J. W. Jiang, H. S. Park, and T. Rabczuk, MoS2 nanoresonators: Intrinsically better than graphene? Nanoscale 6(7), 3618 (2014)
https://doi.org/10.1039/c3nr05991j
48 F. Liu, P. Ming, and J. Li, Ab initio calculation of ideal strength and phonon instability of graphene under tension, Phys. Rev. B 76(6), 064120 (2007)
https://doi.org/10.1103/PhysRevB.76.064120
49 F. Hao, D. Fang, and Z. Xu, Mechanical and thermal transport properties of graphene with defects, Appl. Phys. Lett. 99(4), 041901 (2011)
https://doi.org/10.1063/1.3615290
50 Z. Ni, H. Bu, M. Zou, H. Yi, K. Bi, and Y. Chen, Anisotropic mechanical properties of graphene sheets from molecular dynamics, Physica B 405(5), 1301 (2010)
https://doi.org/10.1016/j.physb.2009.11.071
51 Y. Gao and P. Hao, Mechanical properties of mono-layer graphene under tensile and compressive loading, Physica E 41(8), 1561 (2009)
https://doi.org/10.1016/j.physe.2009.04.033
52 Y. Guo, L. Jiang, and W. Guo, Opening carbon nanotubes into zigzag graphene nanoribbons by energy-optimum oxidation, Phys. Rev. B 82(11), 115440 (2010)
https://doi.org/10.1103/PhysRevB.82.115440
53 Y. Zheng, N. Wei, Z. Fan, L. Xu, and Z. Huang, Mechanical properties of grafold: A demonstration of strengthened graphene, Nanotechnology 22(40), 405701 (2011)
https://doi.org/10.1088/0957-4484/22/40/405701
54 Y. Wei, J. Wu, H. Yin, X. Shi, R. Yang, and M. Dresselhaus, The nature of strength enhancement and weakening by pentagonheptagon defects in graphene, Nat. Mater. 11(9), 759 (2012)
https://doi.org/10.1038/nmat3370
55 Y. Zhang and C. Pan, Measurements of mechanical properties and number of layers of graphene from nano-indentation, Diamond Related Materials 24, 1 (2012)
https://doi.org/10.1016/j.diamond.2012.01.033
56 Q. Yue, J. Kang, Z. Shao, X. Zhang, S. Chang, G. Wang, S. Qin, and J. Li, Mechanical and electronic properties of monolayer MoS2 under elastic strain, Phys. Lett. A 376(12-13), 1166 (2012)
https://doi.org/10.1016/j.physleta.2012.02.029
57 Y. Huang, J. Wu, and K. C. Hwang, Thickness of graphene and single-wall carbon nanotubes, Phys. Rev. B 74(24), 245413 (2006)
https://doi.org/10.1103/PhysRevB.74.245413
58 L. Shen, H. S. Shen, and C. L. Zhang, Temperaturedependent elastic properties of single layer graphene sheets, Mater. Des. 31(9), 4445 (2010)
https://doi.org/10.1016/j.matdes.2010.04.016
59 T. Han, P. He, Y. Luo, and X. Zhang, Research progress in the mechanical properties of graphene, Advances in Mechanics 41(3), 279 (2011)
60 L. Xu, N. Wei, Y. Zheng, Z. Fan, H. Q. Wang, and J. C. Zheng, Graphene-nanotube 3d networks: Intriguing thermal and mechanical properties, J. Mater. Chem. 22(4), 1435 (2011)
https://doi.org/10.1039/C1JM13799A
61 J. W. Jiang, J. S. Wang, and B. Li, Elastic and nonlinear stiffness of graphene: A simple approach, Phys. Rev. B 81(7), 073405 (2010)
https://doi.org/10.1103/PhysRevB.81.073405
62 S. Bertolazzi, J. Brivio, and A. Kis, Stretching and breaking of ultrathin MoS2, ACS Nano 5(12), 9703 (2011)
https://doi.org/10.1021/nn203879f
63 R. C. Cooper, C. Lee, C. A. Marianetti, X. Wei, J. Hone, and J. W. Kysar, Erratum: Nonlinear elastic behavior of twodimensional molybdenum disulfide [Phys. Rev. B 87, 035423 (2013)], Phys. Rev. B 87(7), 079901 (2013)
https://doi.org/10.1103/PhysRevB.87.079901
64 K. Liu, Q. Yan, M. Chen, W. Fan, Y. Sun, J. Suh, D. Y. Fu, S. Lee, J. Zhou, S. Tongay, J. Ji, J. B. Neaton, and J. Q. Wu, Elastic properties of chemical-vapor-deposited monolayer MoS2, WS2, and their bilayer heterostructures, arXiv: 1407.2669 (2014)
65 A. Castellanos-Gomez, M. Poot, G. A. Steele, H. S. J. van der Zant, N. Agrait, and G. Rubio-Bollinger, Elastic properties of freely suspended MoS2 nano sheets, Adv. Mater. 24(6), 772 (2012)
https://doi.org/10.1002/adma.201103965
66 E. Cadelano, P. L. Palla, S. Giordano, and L. Colombo, Nonlinear elasticity of monolayer graphene, Phys. Rev. Lett. 102(23), 235502 (2009)
https://doi.org/10.1103/PhysRevLett.102.235502
67 C. D. Reddy, S. Rajendran, and K. M. Liew, Equilibrium configuration and continuum elastic properties of finite sized graphene, Nanotechnology 17(3), 864 (2006)
https://doi.org/10.1088/0957-4484/17/3/042
68 H. Zhao, K. Min, and N. R. Aluru, Size and chirality dependent elastic properties of graphene nanoribbons under uniaxial tension, Nano Lett. 9(8), 3012 (2009)
https://doi.org/10.1021/nl901448z
69 P. Tao, H. Guo, T. Yang, and Z. Zhang, Strain-induced magnetism in MoS2 monolayer with defects, J. Appl. Phys. 115(5), 054305 (2014)
https://doi.org/10.1063/1.4864015
70 Y. C. Lin, D. O. Dumcenco, Y. S. Huang, and K. Suenaga, Atomic mechanism of the semiconducting-to-metallic phase transition in single-layered MoS2, Nat. Nanotechnol. 9(5), 391 (2014)
https://doi.org/10.1038/nnano.2014.64
71 J. W. Jiang, Phonon bandgap engineering of strained monolayer MoS2, Nanoscale 6(14), 8326 (2014)
https://doi.org/10.1039/c4nr00279b
72 M. Kan, J. Y. Wang, X. W. Li, S. H. Zhang, Y. W. Li, Y. Kawazoe, Q. Sun, and P. Jena, Structures and phase transition of a MoS2 monolayer, J. Phys. Chem. C 118(3), 1515 (2014)
https://doi.org/10.1021/jp4076355
73 K. Q. Dang, J. P. Simpson, and D. E. Spearot, Phase transformation in monolayer molybdenum disulphide (MoS2) under tension predicted by molecular dynamics simulations, Scr. Mater. 76, 41 (2014)
https://doi.org/10.1016/j.scriptamat.2013.12.011
74 Y. Wei, B. Wang, J. Wu, R. Yang, and M. L. Dunn, Bending rigidity and gaussian bending stiffness of single-layered graphene, Nano Lett. 13(1), 26 (2013)
https://doi.org/10.1021/nl303168w
75 X. Zhou, J. J. Zhou, and Z. C. Ou-Yang, Strain energy and Young’s modulus of single-wall carbon nanotubes calculated from electronic energy-band theory, Phys. Rev. B 62(20), 13692 (2000)
https://doi.org/10.1103/PhysRevB.62.13692
76 T. Ma, B. Li, and T. Chang, Chirality- and curvaturedependent bending stiffness of single layer graphene, Appl. Phys. Lett. 99(20), 201901 (2011)
https://doi.org/10.1063/1.3660739
77 Y. Shen and H. Wu, Interlayer shear effect on multilayer graphene subjected to bending, Appl. Phys. Lett. 100(10), 101909 (2012)
https://doi.org/10.1063/1.3693390
78 X. Shi, B. Peng, N. M. Pugno, and H. Gao, Stretch-induced softening of bending rigidity in graphene, Appl. Phys. Lett. 100(19), 191913 (2012)
https://doi.org/10.1063/1.4716024
79 M. Arroyo and T. Belytschko, Finite crystal elasticity of carbon nanotubes based on the exponential cauchy-born rule, Phys. Rev. B 69(11), 115415 (2004)
https://doi.org/10.1103/PhysRevB.69.115415
80 Y. Wang, R. Yang, Z. Shi, L. Zhang, D. Shi, E. Wang, and G. Zhang, Super-elastic graphene ripples for flexible strain sensors, ACS Nano 5(5), 3645 (2011)
https://doi.org/10.1021/nn103523t
81 J. Zhang, J. Xiao, X. Meng, C. Monroe, Y. Huang, and J. M. Zuo, Free folding of suspended graphene sheets by random mechanical stimulation, Phys. Rev. Lett. 104(16), 166805 (2010)
https://doi.org/10.1103/PhysRevLett.104.166805
82 J. X. Shi, Q. Q. Ni, X. W. Lei, and T. Natsuki, Nonlocal elasticity theory for the buckling of double-layer graphene nanoribbons based on a continuum model, Comput. Mater. Sci. 50(11), 3085 (2011)
https://doi.org/10.1016/j.commatsci.2011.05.031
83 C. Wang, L. Lan, and H. Tan, The physics of wrinkling in graphene membranes under local tension, Phys. Chem. Chem. Phys. 15(8), 2764 (2013)
https://doi.org/10.1039/c2cp44033d
84 S. Timoshenko and S. Woinowsky-Krieger, Theory of Plates and Shells, 2nd Ed., New York: McGraw-Hill, 1987
85 J. W. Jiang, The buckling of single-layer MoS2 under uniaxial compression, Nanotechnology 25(35), 355402 (2014)
https://doi.org/10.1088/0957-4484/25/35/355402
86 M. Zhou, Y. Zhai, and S. Dong, Electrochemical sensing and biosensing platform based on chemically reduced graphene oxide, Anal. Chem. 81(14), 5603 (2009)
https://doi.org/10.1021/ac900136z
87 Y. Xu, C. Chen, V. V. Deshpande, F. A. DiRenno, A. Gondarenko, D. B. Heinz, S. Liu, P. Kim, and J. Hone, Radio frequency electrical transduction of graphene mechanical resonators, Appl. Phys. Lett. 97(24), 243111 (2010)
https://doi.org/10.1063/1.3528341
88 X. Q. He, S. Kitipornchai, and K. M. Liew, Resonance analysis of multi-layered graphene sheets used as nanoscale resonators, Nanotechnology 16(10), 2086 (2005)
https://doi.org/10.1088/0957-4484/16/10/018
89 Y. Liu, Z. Xu, and Q. Zheng, The interlayer shear effect on graphene multilayer resonators, J. Mech. Phys. Solids 59(8), 1613 (2011)
https://doi.org/10.1016/j.jmps.2011.04.014
90 J. Wang, X. He, S. Kitipornchai, and H. Zhang, Geometrical nonlinear free vibration of multi-layered graphene sheets, J. Phys. D: Appl. Phys. 44(13), 135401 (2011)
https://doi.org/10.1088/0022-3727/44/13/135401
91 Y. Xu, S. Yan, Z. Jin, and Y. Wang, Quantum-squeezing effects of strained multilayer graphene nems, Nanoscale Res. Lett. 6(1), 355 (2011)
https://doi.org/10.1186/1556-276X-6-355
92 F. Gu, J. H. Zhang, L. J. Yang, and B. Gu, Molecular dynamics simulation of resonance properties of strain graphene nanoribbons, Acta Phys. Sin. 60(5), 056103 (2011)
93 Z. B. Shen, H. L. Tang, D. K. Li, and G. J. Tang, Vibration of single-layered graphene sheet-based nanomechanical sensor via nonlocal Kirchhoff plate theory, Comput. Mater. Sci. 61, 200 (2012)
https://doi.org/10.1016/j.commatsci.2012.04.003
94 S. M. Zhou, L. P. Sheng, and Z. B. Shen, Transverse vibration of circular graphene sheet-based mass sensor via nonlocal Kirchhoff plate theory, Comput. Mater. Sci. 86, 73 (2014)
https://doi.org/10.1016/j.commatsci.2014.01.031
95 K. L. Ekinci and M. L. Roukes, Nanoelectromechanical systems, Rev. Sci. Instrum. 76(6), 061101 (2005)
https://doi.org/10.1063/1.1927327
96 A. M. Zande, R. A. Barton, J. S. Alden, C. S. Ruiz-Vargas, W. S. Whitney, P. H. Q. Pham, J. Park, J. M. Parpia, H. G. Craighead, and P. L. McEuen, Large-scale arrays of singlelayer graphene resonators, Nano Lett. 10(12), 4869 (2010)
https://doi.org/10.1021/nl102713c
97 C. Chen, S. Rosenblatt, K. I. Bolotin, W. Kalb, P. Kim, I. Kymissis, H. L. Stormer, T. F. Heinz, and J. Hone, Performance of monolayer graphene nanomechanical resonators with electrical read-out, Nat. Nanotechnol. 4(12), 861 (2009)
https://doi.org/10.1038/nnano.2009.267
98 J. W. Jiang, B. S. Wang, H. S. Park, and T. Rabczuk, Adsorbate migration effects on continuous and discontinuous temperature-dependent transitions in the quality factors of graphene nanoresonators, Nanotechnology 25(2), 025501 (2014)
https://doi.org/10.1088/0957-4484/25/2/025501
99 C. Edblom and A. Isacsson, Diffusion-induced dissipation and mode coupling in nanomechanical resonators, arXiv: 1406.1365v1 (2014)
100 A. Eichler, J. Moser, J. Chaste, M. Zdrojek, I. Wilson- Rae, and A. Bachtold, Nonlinear damping in mechanical resonators made from carbon nanotubes and graphene, Nat. Nanotechnol. 6(6), 339 (2011)
https://doi.org/10.1038/nnano.2011.71
101 A. Castellanos-Gomez, R. van Leeuwen, M. Buscema, H. S. J. van der Zant, G. A. Steele, and W. J. Venstra, Singlelayer MoS2 mechanical resonators, Adv. Mater. 25(46), 6719 (2013)
https://doi.org/10.1002/adma.201303569
102 J. Lee, Z. Wang, K. He, J. Shan, and P. X. L. Feng, High frequency MoS2 nanomechanical resonators, ACS Nano 7(7), 6086 (2013)
https://doi.org/10.1021/nn4018872
103 A. A. Balandin, Low-frequency 1/f noise in graphene devices, Nat. Nanotechnol. 8(8), 549 (2013)
https://doi.org/10.1038/nnano.2013.144
104 Y. M. Lin and P. Avouris, Strong suppression of electrical noise in bilayer graphene nanodevices, Nano Lett. 8(8), 2119 (2008)
https://doi.org/10.1021/nl080241l
105 A. N. Pal and A. Ghosh, Resistance noise in electrically biased bilayer graphene, Phys. Rev. Lett. 102(12), 126805 (2009)
https://doi.org/10.1103/PhysRevLett.102.126805
106 Z. Cheng, Q. Li, Z. Li, Q. Zhou, and Y. Fang, Suspended graphene sensors with improved signal and reduced noise, Nano Lett. 10(5), 1864 (2010)
https://doi.org/10.1021/nl100633g
107 S. Rumyantsev, G. Liu, W. Stillman, M. Shur, and A. A. Balandin, Electrical and noise characteristics of graphene fieldeffect transistors: Ambient effects, noise sources and physical mechanisms, J. Phys.: Condens. Matter 22(39), 395302 (2010)
https://doi.org/10.1088/0953-8984/22/39/395302
108 G. Liu, S. Rumyantsev, M. Shur, and A. A. Balandin, Graphene thickness-graded transistors with reduced electronic noise, Appl. Phys. Lett. 100(3), 033103 (2012)
https://doi.org/10.1063/1.3676277
109 M. Z. Hossain, S. L. Roumiantsev, M. Shur, and A. A. Balandin, Reduction of 1/f noise in graphene after electronbeam irradiation, Appl. Phys. Lett. 102(15), 153512 (2013)
https://doi.org/10.1063/1.4802759
110 K. Saito, J. Nakamura, and A. Natori, Ballistic thermal conductance of a graphene sheet, Phys. Rev. B 76(11), 115409 (2007)
https://doi.org/10.1103/PhysRevB.76.115409
111 S. Yien, V. Tayari, J. O. Island, J. M. Porter, and A. R. Champagne, Electronic thermal conductivity measurements in intrinsic graphene, Phys. Rev. B 87(24), 241411 (2013)
https://doi.org/10.1103/PhysRevB.87.241411
112 J. S. Wang, J. Wang, and J. T. Lü, Quantum thermal transport in nanostructures, Eur. Phys. J. B 62(4), 381 (2008)
https://doi.org/10.1140/epjb/e2008-00195-8
113 J. S. Wang, B. K. Agarwalla, H. Li, and J. Thingna, Nonequilibrium greens function method for quantum thermal transport, Front. Phys. 9(6), 673 (2013)
https://doi.org/10.1007/s11467-013-0340-x
114 S. Chen, Q. Wu, C. Mishra, J. Kang, H. Zhang, K. Cho, W. Cai, A. A. Balandin, and R. S. Ruoff, Thermal conductivity of isotopically modified graphene, Nat. Mater. 11(3), 203 (2012)
https://doi.org/10.1038/nmat3207
115 Z. Guo, D. Zhang, and X. G. Gong, Thermal conductivity of graphene nanoribbons, Appl. Phys. Lett. 95(16), 163103 (2009)
https://doi.org/10.1063/1.3246155
116 Y. Xu, X. Chen, B. L. Gu, and W. Duan, Intrinsic anisotropy of thermal conductance in graphene nanoribbons, Appl. Phys. Lett. 95(23), 233116 (2009)
https://doi.org/10.1063/1.3272678
117 S. Chen, A. L. Moore, W. Cai, J. W. Suk, J. An, C. Mishra, C. Amos, C. W. Magnuson, J. Kang, L. Shi, and R. S. Ruoff, Raman measurements of thermal transport in suspended monolayer graphene of variable sizes in vacuum and gaseous environments, ACS Nano 5(1), 321 (2011)
https://doi.org/10.1021/nn102915x
118 N. Wei, L. Xu, H. Q. Wang, and J. C. Zheng, Strain engineering of thermal conductivity in graphene sheets and nanoribbons: A demonstration of magic flexibility, Nanotechnology 22(10), 105705 (2011)
https://doi.org/10.1088/0957-4484/22/10/105705
119 Z. Wei, Z. Ni, K. Bi, M. Chen, and Y. Chen, In-plane lattice thermal conductivities of multilayer graphene films, Carbon 49(8), 2653 (2011)
https://doi.org/10.1016/j.carbon.2011.02.051
120 Z. X. Xie, K. Q. Chen, and W. Duan, Thermal transport by phonons in zigzag graphene nanoribbons with structural defects, J. Phys.: Condens. Matter 23(31), 315302 (2011)
https://doi.org/10.1088/0953-8984/23/31/315302
121 X. Zhai and G. Jin, Stretching-enhanced ballistic thermal conductance in graphene nanoribbons, Europhys. Lett. 96(1), 16002 (2011)
https://doi.org/10.1209/0295-5075/96/16002
122 X. F. Peng, X. J. Wang, Z. Q. Gong, and K. Q. Chen, Ballistic thermal conductance in graphene nanoribbon with double-cavity structure, Appl. Phys. Lett. 99(23), 233105 (2011)
https://doi.org/10.1063/1.3666221
123 F. Ma, H. B. Zheng, Y. J. Sun, D. Yang, K. W. Xu, and P. K. Chu, Strain effect on lattice vibration, heat capacity, and thermal conductivity of graphene, Appl. Phys. Lett. 101(11), 111904 (2012)
https://doi.org/10.1063/1.4752010
124 Z. X. Guo, J. W. Ding, and X. G. Gong, Substrate effects on the thermal conductivity of epitaxial graphene nanoribbons, Phys. Rev. B 85(23), 235429 (2012)
https://doi.org/10.1103/PhysRevB.85.235429
125 N. Mingo and D. A. Broido, Carbon nanotube ballistic thermal conductance and its limits, Phys. Rev. Lett. 95(9), 096105 (2005)
https://doi.org/10.1103/PhysRevLett.95.096105
126 N. Mingo and D. A. Broido, Length dependence of carbon nanotube thermal conductivity and the “problem of long waves”, Nano Lett. 5(7), 1221 (2005)
https://doi.org/10.1021/nl050714d
127 D. L. Nika, E. P. Pokatilov, A. S. Askerov, and A. A. Balandin, Phonon thermal conduction in graphene: Role of umklapp and edge roughness scattering, Phys. Rev. B 79(15), 155413 (2009)
https://doi.org/10.1103/PhysRevB.79.155413
128 D. L. Nika, A. S. Askerov, and A. A. Balandin, Anomalous size dependence of the thermal conductivity of graphene ribbons, Nano Lett. 12(6), 3238 (2012)
https://doi.org/10.1021/nl301230g
129 X. Xu, L. F. Pereira, Y. Wang, J. Wu, K. Zhang, X. Zhao, S. Bae, C. Tinh Bui, R. Xie, J. T. L. Thong, B. H. Hong, K. P. Loh, D. Donadio, B. Li, and B. ?zyilmaz, Lengthdependent thermal conductivity in suspended single-layer graphene, Nat. Commun. 5, 3689 (2014)
https://doi.org/10.1038/ncomms4689
130 D. L. Nika, E. P. Pokatilov, and A. A. Balandin, Theoretical description of thermal transport in graphene: The issues of phonon cut-off frequencies and polarization branches, Phys. Status Solidi B 248(11), 2609 (2011)
https://doi.org/10.1002/pssb.201100186
131 J. Wang, X. M. Wang, Y. F. Chen, and J. S. Wang, Dimensional crossover of thermal conductance in graphene nanoribbons: A first-principles approach, J. Phys.: Condens. Matter 24(29), 295403 (2012)
https://doi.org/10.1088/0953-8984/24/29/295403
132 D. L. Nika and A. A. Balandin, Two-dimensional phonon transport in graphene, J. Phys.: Condens. Matter 24(23), 233203 (2012)
https://doi.org/10.1088/0953-8984/24/23/233203
133 N. Li, J. Ren, L. Wang, G. Zhang, P. H?nggi, and B. Li, Phononics: Manipulating heat flow with electronic analogs and beyond, Rev. Mod. Phys. 84(3), 1045 (2012)
https://doi.org/10.1103/RevModPhys.84.1045
134 J. W. Jiang, J. Lan, J. S. Wang, and B. Li, Iso-topic effects on the thermal conductivity of graphene nanoribbons: Localization mechanism, J. Appl. Phys. 107(5), 054314 (2010)
https://doi.org/10.1063/1.3329541
135 W. Cai, A. L. Moore, Y. Zhu, X. Li, S. Chen, L. Shi, and R. S. Ruoff, Thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition, Nano Lett. 10(5), 1645 (2010)
https://doi.org/10.1021/nl9041966
136 A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, Superior thermal conductivity of single-layer graphene, Nano Lett. 8(3), 902 (2008)
https://doi.org/10.1021/nl0731872
137 S. Ghosh, I. Calizo, D. Teweldebrhan, E. P. Pokatilov, D. L. Nika, A. A. Balandin, W. Bao, F. Miao, and C. N. Lau, Extremely high thermal conductivity of graphene: Prospects for thermal management applications in nanoelectronic circuits, Appl. Phys. Lett. 92(15), 151911 (2008)
https://doi.org/10.1063/1.2907977
138 L. Lindsay, D. A. Broido, and N. Mingo, Flexural phonons and thermal transport in multilayer graphene and graphite, Phys. Rev. B 83(23), 235428 (2011)
https://doi.org/10.1103/PhysRevB.83.235428
139 Z. Aksamija and I. Knezevic, Lattice thermal conductivity of graphene nanoribbons: Anisotropy and edge roughness scattering, Appl. Phys. Lett. 98(14), 141919 (2011)
https://doi.org/10.1063/1.3569721
140 L. Chen and S. Kumar, Thermal transport in graphene supported on copper, J. Appl. Phys. 112(4), 043502 (2012)
https://doi.org/10.1063/1.4740071
141 Z. Wei, J. Yang, K. Bi, and Y. Chen, Mode dependent lattice thermal conductivity of single layer graphene, J. Appl. Phys. 116(15), 153503 (2014)
https://doi.org/10.1063/1.4898338
142 S. Ghosh, W. Bao, D. L. Nika, S. Subrina, E. P. Pokatilov, C. N. Lau, and A. A. Balandin, Dimensional crossover of thermal transport in few-layer graphene, Nat. Mater. 9(7), 555 (2010)
https://doi.org/10.1038/nmat2753
143 D. Singh, J. Y. Murthy, and T. S. Fisher, Mechanism of thermal conductivity reduction in few-layer graphene, J. Appl. Phys. 110(4), 044317 (2011)
https://doi.org/10.1063/1.3622300
144 G. Zhang and H. Zhang, Thermal conduction and rectification in few-layer graphene y junctions, Nanoscale 3(11), 4604 (2011)
https://doi.org/10.1039/c1nr10945f
145 W.R. Zhong, M.P. Zhang, B.Q. Ai, and D.Q. Zheng, Chirality and thickness-dependent thermal conductivity of fewlayer graphene: A molecular dynamics study, Appl. Phys. Lett. 98(11), 113107 (2011)
https://doi.org/10.1063/1.3567415
146 W. R. Zhong, W. H. Huang, X. R. Deng, and B. Q. Ai, Thermal rectification in thickness-asymmetric graphene nanoribbons, Appl. Phys. Lett. 99(19), 193104 (2011)
https://doi.org/10.1063/1.3659474
147 A. Rajabpour and S. M. Vaez Allaei, Tuning thermal conductivity of bilayer graphene by inter-layer sp3 bonding: A molecular dynamics study, Appl. Phys. Lett. 101(5), 053115 (2012)
https://doi.org/10.1063/1.4740259
148 H. Y. Cao, Z. X. Guo, H. Xiang, and X. G. Gong, Layer and size dependence of thermal conductivity in multilayer graphene nanoribbons, Phys. Lett. A 376(4), 525 (2012)
https://doi.org/10.1016/j.physleta.2011.11.016
149 T. Sun, J. Wang, and W. Kang, Van der waals interactiontuned heat transfer in nanostructures, Nanoscale 5(1), 128 (2012)
https://doi.org/10.1039/C2NR32481D
150 S. Sahoo, A. P. S. Gaur, M. Ahmadi, M. J. F. Guinel, and R. S. Katiyar, Temperature dependent raman studies and thermal conductivity of few layer MoS2, J. Phys. Chem. C 117(17), 9042 (2013)
https://doi.org/10.1021/jp402509w
151 V. Varshney, S. S. Patnaik, C. Muratore, A. K. Roy, A. A. Voevodin, and B. L. Farmer, Md simulations of molybdenum disulphide (MoS2): Force-field parameterization and thermal transport behavior, Comput. Mater. Sci. 48(1), 101 (2010)
https://doi.org/10.1016/j.commatsci.2009.12.009
152 W. Huang, H. Da, and G. Liang, Thermoelectric performance of MX2 (M=Mo, W; X=S, Se) monolayers, J. Appl. Phys. 113(10), 104304 (2013)
https://doi.org/10.1063/1.4794363
153 J. W. Jiang, X. Y. Zhuang, and T. Rabczuk, Orientation dependent thermal conductance in single-layer MoS2, Scientific Reports 3, 2209 (2013)
https://doi.org/10.1038/srep02209
154 J. W. Jiang, J. S. Wang, and B. Li, Thermal conductance of graphene and dimerite, Phys. Rev. B 79(20), 205418 (2009)
https://doi.org/10.1103/PhysRevB.79.205418
155 X. Liu, G. Zhang, Q. X. Pei, and Y. W. Zhang, Phonon thermal conductivity of monolayer MoS2 sheet and nanoribbons, Appl. Phys. Lett. 103(13), 133113 (2013)
https://doi.org/10.1063/1.4823509
156 Z. Yan, G. Liu, J. M. Khan, and A. A. Balandin, Graphene quilts for thermal management of high-power gan transistors, Nat. Commun. 3, 827 (2012)
https://doi.org/10.1038/ncomms1828
157 V. Goyal and A. A. Balandin, Thermal properties of the hybrid graphene-metal nano-micro-composites: Applications in thermal interface materials, Appl. Phys. Lett. 100(7), 073113 (2012)
https://doi.org/10.1063/1.3687173
158 K. M. F. Shahil and A. A. Balandin, Graphenemultilayer graphene nanocomposites as highly efficient thermal interface materials, Nano Lett. 12(2), 861 (2012)
https://doi.org/10.1021/nl203906r
159 P. Goli, S. Legedza, A. Dhar, R. Salgado, J. Renteria, and A. A. Balandin, Graphene-enhanced hybrid phase change materials for thermal management of Li-ion batteries, J. Power Sources 248(15), 37 (2014)
https://doi.org/10.1016/j.jpowsour.2013.08.135
160 H. Malekpour, K. H. Chang, J. C. Chen, C. Y. Lu, D. L. Nika, K. S. Novoselov, and A. A. Balandin, Thermal conductivity of graphene laminate, Nano Lett. 14(9), 5155 (2014)
https://doi.org/10.1021/nl501996v
161 P. Song, Z. Cao, Y. Cai, L. Zhao, Z. Fang, and S. Fu, Fabrication of exfoliated graphene-based polypropy-lene nanocomposites with enhanced mechanical and thermal properties, Polymer 52(18), 4001 (2011)
https://doi.org/10.1016/j.polymer.2011.06.045
162 W. Yu, H. Xie, and D. Bao, Enhanced thermal conductivities of nanofluids containing graphene oxide nanosheets, Nanotechnology 21(5), 055705 (2010)
https://doi.org/10.1088/0957-4484/21/5/055705
163 W. Yu, H. Xie, and W. Chen, Experimental investigation on thermal conductivity of nanofluids containing graphene oxide nanosheets, J. Appl. Phys. 107(9), 094317 (2010)
https://doi.org/10.1063/1.3372733
164 W. Yu, H. Xie, X. Wang, and X. Wang, Significant thermal conductivity enhancement for nanofluids containing graphene nanosheets, Phys. Lett. A 375(10), 1323 (2011)
https://doi.org/10.1016/j.physleta.2011.01.040
165 Y. Wang, Z. Shi, Y. Huang, Y. Ma, C. Wang, M. Chen, , Supercapacitor devices based on graphene materials, J. Phys. Chem. C 113, 131030 (2009)
https://doi.org/10.1021/jp902214f
166 K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Two-dimensional gas of massless Dirac fermions in graphene, Nature 438(7065), 197 (2005)
https://doi.org/10.1038/nature04233
167 S. Y. Zhou, G. H. Gweon, J. Graf, A. V. Fedorov, C. D. Spataru, R. D. Diehl, Y. Kopelevich, D.H. Lee, S. G. Louie, and A. Lanzara, First direct observation of Dirac fermions in graphite, Nat. Phys. 2(9), 595 (2006)
https://doi.org/10.1038/nphys393
168 B. Partoens and F. M. Peeters, Normal and dirac fermions in graphene multilayers: Tight-binding description of the electronic structure, Phys. Rev. B 75(19), 193402 (2007)
https://doi.org/10.1103/PhysRevB.75.193402
169 J. Hass, F. Varchon, J. E. Millan-Otoya, M. Sprinkle, N. Sharma, W. A. de Heer, C. Berger, P. First, L. Magaud, and E. Conrad, Why multi-layer graphene on 4h-sic 000ī behaves like a single sheet of graphene, Phys. Rev. Lett. 100(12), 125504 (2008)
https://doi.org/10.1103/PhysRevLett.100.125504
170 S. Reich, J. Maultzsch, C. Thomsen, and P. Ordejon, Tightbinding description of graphene, Phys. Rev. B 66(3), 035412 (2002)
https://doi.org/10.1103/PhysRevB.66.035412
171 V. Pereira, A. Castro Neto, and N. Peres, Tight-binding approach to uniaxial strain in graphene, Phys. Rev. B 80(4), 045401 (2009)
https://doi.org/10.1103/PhysRevB.80.045401
172 F. Guinea, M. I. Katsnelson, and A. K. Geim, Energy gaps and a zero-field quantum hall effect in graphene by strain engineering, Nat. Phys. 6(1), 30 (2010)
https://doi.org/10.1038/nphys1420
173 K. Nakada, M. Fujita, G. Dresselhaus, and M. S. Dresselhaus, Edge state in graphene ribbons: Nanometer size effect and edge shape dependence, Phys. Rev. B 54(24), 17954 (1996)
https://doi.org/10.1103/PhysRevB.54.17954
174 K. K. Kam and B. A. Parkinson, Detailed photocurrent spectroscopy of the semiconducting group vi transition metal dichalcogenides, J. Phys. Chem. 86(4), 463 (1982)
https://doi.org/10.1021/j100393a010
175 T. Eknapakul, P. D. C. King, M. Asakawa, P. Buaphet, R. H. He, S. K. Mo, H. Takagi, K. M. Shen, F. Baumberger, T. Sasagawa, S. Jungthawan, and W. Meevasana, Electronic structure of a quasi-freestanding MoS2 monolayer, Nano Lett. 14(3), 1312 (2014)
https://doi.org/10.1021/nl4042824
176 Y. Li, Z. Zhou, S. Zhang, and Z. Chen, MoS2 nanorib-bons: High stability and unusual electronic and magnetic properties, J. Am. Chem. Soc. 130(49), 16739 (2008)
https://doi.org/10.1021/ja805545x
177 P. Lu, X. Wu, W. Guo, and X. C. Zeng, Strain-dependent electronic and magnetic properties of MoS2 monolayer, bilayer, nanoribbons and nanotubes, Phys. Chem. Chem. Phys. 14(37), 13035 (2012)
https://doi.org/10.1039/c2cp42181j
178 B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, Single-layer MoS2 transistors, Nat. Nanotechnol. 6(3), 147 (2011)
https://doi.org/10.1038/nnano.2010.279
179 V. K. Sangwan, H. N. Arnold, D. Jariwala, T. J. Marks, L. J. Lauhon, and M. C. Hersam, Low-frequency electronic noise in single-layer MoS2 transistors, Nano Lett. 13(9), 4351 (2013)
https://doi.org/10.1021/nl402150r
180 E. Scalise, M. Houssa, G. Pourtois, V. Afanasev, and A. Stesmans, Strain-induced semiconductor to metal transition in the two-dimensional honeycomb structure of MoS2, Nano Research 5(1), 43 (2012)
https://doi.org/10.1007/s12274-011-0183-0
181 H. J. Conley, B. Wang, J. I. Ziegler, R. F. Jr Haglund, S. T. Pantelides, and K. I. Bolotin, Bandgap engineering of strained monolayer and bilayer MoS2, Nano Lett. 13(8), 3626 (2013)
https://doi.org/10.1021/nl4014748
182 K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, Atomically thin MoS2: A new direct-gap semiconductor, Phys. Rev. Lett. 105(13), 136805 (2010)
https://doi.org/10.1103/PhysRevLett.105.136805
183 R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, Fine structure constant defines visual transparency of graphene, Science 320(5881), 1308 (2008)
https://doi.org/10.1126/science.1156965
184 F. Xia, T. Mueller, Y. Lin, A. Valdes-Garcia, and P. Avouris, Ultrafast graphene photodetector, Nat. Nanotechnol. 4(12), 839 (2009)
https://doi.org/10.1038/nnano.2009.292
185 O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Raden-ovic, and A. Kis, Ultrasensitive photodetectors based on monolayer MoS2, Nat. Nanotechnol. 8(7), 497 (2013)
https://doi.org/10.1038/nnano.2013.100
186 C. H. Lui, A. J. Frenzel, D. V. Pilon, Y. H. Lee, X. Ling, G. M. Akselrod, , Trion induced negative photoconductivity in monolayer MoS2, arXiv: 1406.5100 (2014)
187 K. Roy, M. Padmanabhan, S. Goswami, T. P. Sai, S. Kaushal, and A. Ghosh, Optically active heterostructures of graphene and ultrathin MoS2, Solid State Commun. 175-176, 35 (2013)
https://doi.org/10.1016/j.ssc.2013.09.021
188 G. Algara-Siller, S. Kurasch, M. Sedighi, O. Lehtinen, and U. Kaiser, The pristine atomic structure of MoS2 monolayer protected from electron radiation damage by graphene, Appl. Phys. Lett. 103(20), 203107 (2013)
https://doi.org/10.1063/1.4830036
189 N. Myoung, K. Seo, S. J. Lee, and G. Ihm, Large current modulation and spin-dependent tunneling of vertical graphene/MoS2 heterostructures, ACS Nano 7(8), 7021 (2013)
https://doi.org/10.1021/nn402919d
190 S. Bertolazzi, D. Krasnozhon, and A. Kis, Nonvolatile memory cells based on MoS2/graphene heterostructures, Nano Lett. 7(4), 3246 (2013)
https://doi.org/10.1021/nn3059136
191 S. Larentis, J. R. Tolsma, B. Fallahazad, D. C. Dillen, K. Kim, A. H. MacDonald, and E. Tutuc, Band offset and negative compressibility in graphene- MoS2 heterostructures, Nano Lett. 14(4), 2039 (2014)
https://doi.org/10.1021/nl500212s
192 W. Zhang, C. P. Chuu, J. K. Huang, C. H. Chen, M. L. Tsai, Y. H. Chang, , Ultrahigh-gain photodetectors based on atomically thin graphene-MoS2 heterostructures, Scientific Reports 4, 3826 (2014)
https://doi.org/10.1038/srep03826
193 F. Xia, X. Hu, Y. Sun, W. Luo, and Y. Huang, Layer-bylayer assembled MoO2 graphene thin film as a high-capacity and binder-free anode for lithium-ion batteries, Nanoscale 4(15), 4707 (2012)
https://doi.org/10.1039/c2nr30742a
194 W. Zhang, C. P. Chuu, J. K. Huang, C. H. Chen, M. L. Tsai, Y. H. Chang, , Ultrahigh-gain photodetectors based on atomically thin graphene-MoS2 heterostructures, Scientific Reports 4, 3826 (2013)
195 H. Xu, D. He, M. Fu, W. Wang, H. Wu, and Y. Wang, Optical identification of MoS2/graphene heterostructure on SiO2/Si substrate, Opt. Express 22(13), 15969 (2014)
https://doi.org/10.1364/OE.22.015969
196 L. F. Wang, T. B. Ma, Y. Z. Hu, Q. Zheng, H. Wang, and J. Luo, Superlubricity of two-dimensional fluorographene/ MoS2 heterostructure: A first-principles study, Nanotechnology 25(38), 385701 (2014)
https://doi.org/10.1088/0957-4484/25/38/385701
197 Y. Ma, Y. Dai, M. Guo, C. Niu, and B. Huang, Graphene adhesion on MoS2 monolayer: An ab initio study, Nanoscale 3(9), 3883 (2011)
https://doi.org/10.1039/c1nr10577a
198 L. Yu, Y. H. Lee, X. Ling, E. J. G. Santos, Y. C. Shin, Y. Lin, M. Dubey, E. Kaxiras, J. Kong, H. Wang, and T. Palacios, Graphene/MoS2 hybrid technology for large-scale two-dimensional electronics, Nano Lett. 14(6), 3055 (2014)
https://doi.org/10.1021/nl404795z
199 R. H. Miwa and W. L. Scopel, Lithium incorporation at the MoS2/graphene interface: An ab initio investigation, J. Phys.: Condens. Matter 25(44), 445301 (2013)
https://doi.org/10.1088/0953-8984/25/44/445301
200 J. W. Jiang and H. S. Park, Mechanical properties of MoS2/graphene heterostructures, Appl. Phys. Lett. 105(3), 033108 (2014)
https://doi.org/10.1063/1.4891342
201 K. K. Karkkainen, A. H. Sihvola, and K. I. Nikoskinen, Effective permittivity of mixtures: Numerical validation by the FDTD method, IEEE Trans. Geosci. Rem. Sens. 38(3), 1303 (2000)
https://doi.org/10.1109/36.843023
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed