Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2015, Vol. 10 Issue (3): 100503   https://doi.org/10.1007/s11467-015-0462-4
  RESEARCH ARTICLE 本期目录
Optimal configuration for vibration frequencies in a ring of harmonic oscillators: The nonidentical mass effect
Shuai Liu1,Guo-Yong Zhang2,3,Zhiwei He2,4,Meng Zhan2,*()
1. College of Science, Northwest A&F University, Yangling 712100, China
2. Wuhan Center for Magnetic Resonance, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
3. College of Computer Science and Technology, Hubei Normal University, Huangshi 435002, China
4. University of the Chinese Academy of Sciences, Beijing 100049, China
 全文: PDF(760 KB)  
Abstract

The parameter diversity effect in coupled nonidentical elements has attracted persistent interest in nonlinear dynamics. Of fundamental importance is the so-called optimal configuration problem for how the spatial position of elements with different parameters precisely determines the dynamics of the whole system. In this work, we study the optimal configuration problem for the vibration spectra in the classical mass–spring model with a ring configuration, paying particular attention to how the configuration of different masses affects the second smallest vibration frequency (ω2) and the largest one (ωN). For the extreme values of ω2 and ωN, namely, (ω2)min, (ω2)max, (ωN)min, and (ωN)max, we find some explicit organization rules for the optimal configurations and some approximation rules when the explicit organization rules are not available. The different distributions of ω2 and ωNare compared. These findings are interesting and valuable for uncovering the underlying mechanism of the parameter diversity effect in more general cases.

Key wordssynchronization    vibration frequencies    normal modes    complex systems
收稿日期: 2014-10-23      出版日期: 2015-06-11
Corresponding Author(s): Meng Zhan   
 引用本文:   
. [J]. Frontiers of Physics, 2015, 10(3): 100503.
Shuai Liu, Guo-Yong Zhang, Zhiwei He, Meng Zhan. Optimal configuration for vibration frequencies in a ring of harmonic oscillators: The nonidentical mass effect. Front. Phys. , 2015, 10(3): 100503.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-015-0462-4
https://academic.hep.com.cn/fop/CN/Y2015/V10/I3/100503
1 Y. Bar-Yam, Dynamics of Complex Systems, Westview Press, 1997
2 M. E. J. Newman, Networks: An Introduction, Oxford University Press, 2009
3 I. Rigoutsos and G. Stephanopoulos, Systems Biology (Volume II): Networks, Models, and Applications, Oxford University Press, USA, 2006
4 I. N. Serdyuk, Methods in Molecular Biophysics: Structure, Dynamics, Function, Cambridge University Press, 2007
https://doi.org/10.1017/CBO9780511811166
5 T. P. Trappenberg, Fundamentals of Computational Neuroscience, Oxford University Press, 2010
6 S. Boccaletti, The Synchronized Dynamics of Complex Systems, Elsevier Science, 2008
https://doi.org/10.1016/s1574-6917(07)06001-1
7 S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and D. U. Hwang, Complex networks: Structure and dynamics, Phys. Rep. 424(4-5), 175 (2006)
https://doi.org/10.1016/j.physrep.2005.10.009
8 R. Albert and A. L. Barabàsi, Statistical mechanics of complex networks, Rev. Mod. Phys. 74(1), 47 (2002)
https://doi.org/10.1103/RevModPhys.74.47
9 A. Arenas, A. Díaz-Guilera, J. Kurths, Y. Moreno, and C. Zhou, Synchronization in complex networks, Phys. Rep. 469(3), 93 (2008)
https://doi.org/10.1016/j.physrep.2008.09.002
10 S. N. Dorogovtsev, A. V. Goltsev, and J. F. Mendes, Critical phenomena in complex networks, Rev. Mod. Phys. 80(4), 1275 (2008)
https://doi.org/10.1103/RevModPhys.80.1275
11 S. Liu, Z. W. He, and M. Zhan, Firing rates of coupled noisy excitable elements, Front. Phys. 9(1), 120 (2014)
https://doi.org/10.1007/s11467-013-0365-1
12 P. Ke and Z. Zheng, Dynamics of rotator chain with dissipative boundary, Front. Phys. 9(4), 511 (2014)
https://doi.org/10.1007/s11467-014-0427-z
13 X. Y. Wu and Z. G. Zheng, Hierarchical cluster-tendency analysis of the group structure in the foreign exchange market, Front. Phys. 8(4), 451 (2013)
https://doi.org/10.1007/s11467-013-0346-4
14 Z. Q. Yuan and Z. G. Zheng, Propagation dynamics on the Fermi-Pasta-Ulam lattices, Front. Phys. 8(3), 349 (2013)
https://doi.org/10.1007/s11467-013-0333-9
15 L. M. Pecora and T. L. Carroll, Master stability functions for synchronized coupled systems, Phys. Rev. Lett. 80(10), 2109 (1998)
https://doi.org/10.1103/PhysRevLett.80.2109
16 J. Yang, G. Hu, and J. Xiao, Chaos synchronization in coupled chaotic oscillators with multiple positive Lyapunov exponents, Phys. Rev. Lett. 80(3), 496 (1998)
https://doi.org/10.1103/PhysRevLett.80.496
17 G. Wei, M. Zhan, and C. H. Lai, Tailoring wavelets for chaos control, Phys. Rev. Lett. 89(28), 284103 (2002)
https://doi.org/10.1103/PhysRevLett.89.284103
18 M. Zhan, G. Hu, and J. Yang, Synchronization of chaos in coupled systems, Phys. Rev. E 62(2), 2963 (2000)
https://doi.org/10.1103/PhysRevE.62.2963
19 A. E. Motter, C. Zhou, and J. Kurths, Network synchronization, diffusion, and the paradox of heterogeneity, Phys. Rev E 71(1), 016116 (2005)
https://doi.org/10.1103/PhysRevE.71.016116
20 C. Zhou, A. E. Motter, and J. Kurths, Universality in the synchronization of weighted random networks, Phys. Rev. Lett. 96(3), 034101 (2006)
https://doi.org/10.1103/PhysRevLett.96.034101
21 M. Chavez, D. U. Hwang, A. Amann, H. Hentschel, and S. Boccaletti, Synchronization is enhanced in weighted complex networks, Phys. Rev. Lett. 94(21), 218701 (2005)
https://doi.org/10.1103/PhysRevLett.94.218701
22 X. Wang, Y. C. Lai, and C. H. Lai, Enhancing synchronization based on complex gradient networks, Phys. Rev. E 75(5), 056205 (2007)
https://doi.org/10.1103/PhysRevE.75.056205
23 S. Liu and M. Zhan, Clustering versus non-clustering phase synchronizations, Chaos: An Interdisciplinary J. Nonlinear Sci. 24, 013104 (2014)
24 K. Wiesenfeld, C. Bracikowski, G. James, and R. Roy, Observation of antiphase states in a multimode laser, Phys. Rev. Lett. 65(14), 1749 (1990)
https://doi.org/10.1103/PhysRevLett.65.1749
25 M. Zhan, G. Hu, Y. Zhang, and D. He, Generalized splay state in coupled chaotic oscillators induced by weak mutual resonant interactions, Phys. Rev. Lett. 86(8), 1510 (2001)
https://doi.org/10.1103/PhysRevLett.86.1510
26 W. Zou and M. Zhan, Splay states in a ring of coupled oscillators: From local to global coupling, SIAM J. Appl. Dyn. Syst. 8(3), 1324 (2009)
https://doi.org/10.1137/09075398X
27 D. Aronson, G. Ermentrout, and N. Kopell, Amplitude response of coupled oscillators, Physica D 41(3), 403 (1990)
https://doi.org/10.1016/0167-2789(90)90007-C
28 W. Zou and M. Zhan, Partial time-delay coupling enlarges death island of coupled oscillators, Phys. Rev. E 80(6), 065204 (2009)
https://doi.org/10.1103/PhysRevE.80.065204
29 W. Zou, X. Zheng, and M. Zhan, Insensitive dependence of delay-induced oscillation death on complex networks, Chaos: An Interdisciplinary J. Nonlinear Sci. 21, 023130 (2011)
30 P. Bak, How Nature Works: The Science of Self-Organized Criticality, Vol. 212, New York: Copernicus, 1996
https://doi.org/10.1007/978-1-4757-5426-1
31 W. Ren, R. W. Beard, and E. M. Atkins, A survey of consensus problems in multi-agent coordination, American Control Conference, 2005, Proceedings of the 2005 (IEEE), 1859-1864 (2005)
32 R. Pastor-Satorras and A. Vespignani, Epidemic spreading in scale-free networks, Phys. Rev. Lett. 86(14), 3200 (2001)
https://doi.org/10.1103/PhysRevLett.86.3200
33 G. Filatrella, A. H. Nielsen, and N. F. Pedersen, Analysis of a power grid using a Kuramoto-like model, Eur. Phys. J. B 61(4), 485 (2008)
https://doi.org/10.1140/epjb/e2008-00098-8
34 A. E. Motter, S. A. Myers, M. Anghel, and T. Nishikawa, Spontaneous synchrony in power-grid networks, Nat. Phys. 9(3), 191 (2013)
https://doi.org/10.1038/nphys2535
35 P. J. Menck, J. Heitzig, J. Kurths, and H. J. Schellnhuber, How dead ends undermine power grid stability, Nat. Commun. 5, 3969 (2014)
https://doi.org/10.1038/ncomms4969
36 Y. Braiman, J. F. Lindner, and W. L. Ditto, Taming spatiotemporal chaos with disorder, Nature 378(6556), 465 (1995)
https://doi.org/10.1038/378465a0
37 S. de Monte, F. d’Ovidio, and E. Mosekilde, Coherent regimes of globally coupled dynamical systems, Phys. Rev. Lett. 90(5), 054102 (2003)
https://doi.org/10.1103/PhysRevLett.90.054102
38 S. F. Brandt, B. K. Dellen, and R. Wessel, Synchronization from disordered driving forces in arrays of coupled oscillators, Phys. Rev. Lett. 96(3), 034104 (2006)
https://doi.org/10.1103/PhysRevLett.96.034104
39 C. Zhou, J. Kurths, and B. Hu, Array-enhanced coherence resonance: Nontrivial effects of heterogeneity and spatial independence of noise, Phys. Rev. Lett. 87(9), 098101 (2001)
https://doi.org/10.1103/PhysRevLett.87.098101
40 C. J. Tessone, C. R. Mirasso, R. Toral, and J. D. Gunton, Diversity-induced resonance, Phys. Rev. Lett. 97(19), 194101 (2006)
https://doi.org/10.1103/PhysRevLett.97.194101
41 R. Toral, C. J. Tessone, and J. V. Lopes, Collective effects induced by diversity in extended systems, Eur. Phys. J. Spec. Top. 143(1), 59 (2007)
https://doi.org/10.1140/epjst/e2007-00071-5
42 C. J. Tessone and R. Toral, Diversity-induced resonance in a model for opinion formation, Eur. Phys. J. B 71(4), 549 (2009)
https://doi.org/10.1140/epjb/e2009-00343-8
43 A. Szolnoki, M. Perc, and G. Szabó, Diversity of reproduction rate supports cooperation in the prisoner’s dilemma game on complex networks, Eur. Phys. J. B 61(4), 505 (2008)
https://doi.org/10.1140/epjb/e2008-00099-7
44 M. Brede, Synchrony-optimized networks of non-identical Kuramoto oscillators, Phys. Lett. A 372(15), 2618 (2008)
https://doi.org/10.1016/j.physleta.2007.11.069
45 S. Acharyya and R. E. Amritkar, Synchronization of coupled nonidentical dynamical systems, EPL 99(4), 40005 (2012)
https://doi.org/10.1209/0295-5075/99/40005
46 T. Pereira, D. Eroglu, G. B. Bagci, U. Tirnakli, and H. J. Jensen, Connectivity-driven coherence in complex networks, Phys. Rev. Lett. 110(23), 234103 (2013)
https://doi.org/10.1103/PhysRevLett.110.234103
47 Y. Wu, J. Xiao, G. Hu, and M. Zhan, Synchronizing large number of nonidentical oscillators with small coupling, Europhys. Lett. 97(4), 40005 (2012)
https://doi.org/10.1209/0295-5075/97/40005
48 X. Huang, M. Zhan, F. Li, and Z. Zheng, Single-clustering synchronization in a ring of Kuramoto oscillators, J. Phys. A 47(12), 125101 (2014)
https://doi.org/10.1088/1751-8113/47/12/125101
49 Y. Wu, W. Liu, J. Xiao, W. Zou, and J. Kurths, Effects of spatial frequency distributions on amplitude death in an array of coupled Landau–Stuart oscillators, Phys. Rev. E 85(5), 056211 (2012)
https://doi.org/10.1103/PhysRevE.85.056211
50 H. Ma, W. Liu, Y. Wu, M. Zhan, and J. Xiao, Ragged oscillation death in coupled nonidentical oscillators, Commun. Nonlinear Sci. Numer. Simul. 19(8), 2874 (2014)
https://doi.org/10.1016/j.cnsns.2014.01.014
51 M. Zhan, S. Liu, and Z. He, Matching rules for collective behaviors on complex networks: Optimal configurations for vibration frequencies of networked harmonic oscillators, PloS ONE 8(12), e82161 (2013)
https://doi.org/10.1371/journal.pone.0082161
52 H. Goldstein, C. P. Poole, and J. L. Safko, Classical Mechanics, 3rd Ed., New York: Addison-Wesley, 2002
53 D. Morin, Introduction to Classical Mechanics: With Problems and Solutions, Cambridge University Press, 2008
https://doi.org/10.1017/CBO9780511808951
54 Q. Cui and I. Bahar, Normal Mode Analysis: Theory and Applications to Biological and Chemical Systems, CRC Press, 2010
55 N. W. Ashcroft and N. D. Mermin, Solid State Physics, Philadelphia: Saunders College, 1976
56 B. J. Kim, H. Hong, and M. Choi, Netons: Vibrations of complex networks, J. Phys. Math. Gen. 36(23), 6329 (2003)
https://doi.org/10.1088/0305-4470/36/23/304
57 E. Estrada, Universality in protein residue networks, Biophys. J. 98(5), 890 (2010)
https://doi.org/10.1016/j.bpj.2009.11.017
58 E. Estrada, N. Hatano, and M. Benzi, The physics of communicability in complex networks, Phys. Rep. 514(3), 89 (2012)
https://doi.org/10.1016/j.physrep.2012.01.006
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed