Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2015, Vol. 10 Issue (2): 108102   https://doi.org/10.1007/s11467-015-0463-3
  REVIEW ARTICLE 本期目录
Tunable topological quantum states in three- and two-dimensional materials
Ming Yang(),Xiao-Long Zhang,Wu-Ming Liu()
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
 全文: PDF(1042 KB)  
Abstract

We review our theoretical advances in tunable topological quantum states in three- and twodimensional materials with strong spin–orbital couplings. In three-dimensional systems, we propose a new tunable topological insulator, bismuth-based skutterudites in which topological insulating states can be induced by external strains. The orbitals involved in the topological band-inversion process are the d- and p-orbitals, unlike typical topological insulators such as Bi2Se3and BiTeI, where only the p-orbitals are involved in the band-inversion process. Owing to the presence of large d-electronic states, the electronic interaction in our proposed topological insulator is much stronger than that in other conventional topological insulators. In two-dimensional systems, we investigated 3d-transition-metal-doped silicene. Using both an analytical model and first-principles Wannier interpolation, we demonstrate that silicene decorated with certain 3d transition metals such as vanadium can sustain a stable quantum anomalous Hall effect. We also predict that the quantum valley Hall effect and electrically tunable topological states could be realized in certain transition-metal-doped silicenes where the energy band inversion occurs. These findings provide realistic materials in which topological states could be arbitrarily controlled.

Key wordsfirst-principles calculations    topological insulator    quantum anomalous Hall effect
收稿日期: 2014-11-27      出版日期: 2015-03-13
Corresponding Author(s): Wu-Ming Liu   
 引用本文:   
. [J]. Frontiers of Physics, 2015, 10(2): 108102.
Ming Yang, Xiao-Long Zhang, Wu-Ming Liu. Tunable topological quantum states in three- and two-dimensional materials. Front. Phys. , 2015, 10(2): 108102.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-015-0463-3
https://academic.hep.com.cn/fop/CN/Y2015/V10/I2/108102
1 B. A. Bernevig, T. A. Hughes, and S. C. Zhang, Quantum spin Hall effect and topological phase transition in HgTe quantum wells, Science 314(5806), 1757 (2006)
https://doi.org/10.1126/science.1133734
2 H. Lin, L. A. Wray, Y. Xia, S. Y. Xu, S. Jia, R. J. Cava, A. Bansil, and M. Z. Hasan, Half-Heusler ternary compounds as new multifunctional experimental platforms for topological quantum phenomena, Nat. Mater. 9(7), 546 (2010)
https://doi.org/10.1038/nmat2771
3 S. Chadov, X. L. Qi, J. Kubler, G. H. Fecher, C. Felser, and S. C. Zhang, Tunable multifunctional topological insulators in ternary Heusler compounds, Nat. Mater. 9(7), 541 (2010)
https://doi.org/10.1038/nmat2770
4 X. L. Qi, T. L. Hughes, and S. C. Zhang, Topological field theory of time-reversal invariant insulators, Phys. Rev. B 78(19), 195424 (2008)
https://doi.org/10.1103/PhysRevB.78.195424
5 H. J. Zhang, C. X. Liu, X. L. Qi, X. Dai, Z. Fang, and S. C. Zhang, Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface, Nat. Phys. 5(6), 438 (2009)
https://doi.org/10.1038/nphys1270
6 M. Yang and W. M. Liu, The d-p band-inversion topological insulator in bismuth-based skutterudites, Scientific Reports 4, 5153 (2014)
7 L. Fu and C. L. Kane, Topological insulators with inversion symmetry, Phys. Rev. B 76(4), 045302 (2007)
https://doi.org/10.1103/PhysRevB.76.045302
8 Y. Xia, D. Qian, D. Hsieh, L. Wray, A. Pal, H. Lin, A. Bansil, D. Grauer, Y. S. Hor, R. J. Cava, and M. Z. Hasan, Observation of a large-gap topological-insulator class with a single Dirac cone on the surface, Nat. Phys. 5(6), 398 (2009)
https://doi.org/10.1038/nphys1274
9 Y. L. Chen, Studies on the electronic structures of threedimensional topological insulators by angle resolved photoemission spectroscopy, Front. Phys. 7(2), 175 (2012)
https://doi.org/10.1007/s11467-011-0197-9
10 B. H. Yan, L. Muchler, X. L. Qi, S. C. Zhang, and C. Felser, Topological insulators in filled skutterudites, Phys. Rev. B 85(16), 165125 (2012)
https://doi.org/10.1103/PhysRevB.85.165125
11 C. C. Liu, W. X. Feng, and Y. G. Yao, Quantum spin Hall effect in silicene and two-dimensional germanium, Phys. Rev. Lett. 107(7), 076802 (2011)
https://doi.org/10.1103/PhysRevLett.107.076802
12 F. D. Sun, X. L. Yu, J. W. Ye, H. Fan, and W. M. Liu, Topological quantum phase transition in synthetic non-abelian gauge potential: Gauge invariance and experimental detections, Scientific Reports 3, 2119 (2013)
https://doi.org/10.1038/srep02119
13 F. D. M. Haldane, Model for a quantum Hall effect without Landau levels: Condensed-matter realization of the “parity anomaly”, Phys. Rev. Lett. 61(18), 2015 (1988)
https://doi.org/10.1103/PhysRevLett.61.2015
14 C. X. Liu, X. L. Qi, X. Dai, Z. Fang, and S. C. Zhang, Quantum anomalous Hall effect in Hg1-yMnyTe quantum wells, Phys. Rev. Lett. 101(14), 146802 (2008)
https://doi.org/10.1103/PhysRevLett.101.146802
15 Z. H. Qiao, W. Tse, H. Jiang, Y. G. Yao, and Q. Niu, Twodimensional topological insulator state and topological phase transition in bilayer graphene, Phys. Rev. Lett. 107(25), 256801 (2011)
https://doi.org/10.1103/PhysRevLett.107.256801
16 R. Yu, W. Zhang, H. J. Zhang, S. C. Zhang, X. Dai, and Z. Fang, Quantized anomalous Hall effect in magnetic topological insulators, Science 329(5987), 61 (2010)
https://doi.org/10.1126/science.1187485
17 X. L. Zhang, L. F. Liu, and W. M. Liu, Quantum anomalous Hall effect and tunable topological states in 3d transition metals doped silicene, Scientific Reports 3, 2908 (2013)
18 Y. Y. Zhang, J. P. Hu, B. A. Bernevig, X. R. Wang, X. C. Xie, and W. M. Liu, Localization and the Kosterlitz– Thouless transition in disordered graphene, Phys. Rev. Lett. 102(10), 106401 (2009)
https://doi.org/10.1103/PhysRevLett.102.106401
19 R. Y. Liao, Y. X. Yu, and W. M. Liu, Tuning the tricritical point with spin-orbit coupling in polarized fermionic condensates, Phys. Rev. Lett. 108(8), 080406 (2012)
https://doi.org/10.1103/PhysRevLett.108.080406
20 J. M. Zhang, W. G. Zhu, Y. Zhang, D. Xiao, and Y. G. Yao, Tailoring magnetic doping in the topological insulator Bi2Se3, Phys. Rev. Lett. 109(26), 266405 (2012)
https://doi.org/10.1103/PhysRevLett.109.266405
21 Z. F. Wang, Z. Liu, and F. Liu, Quantum anomalous Hall effect in 2D organic topological insulators, Phys. Rev. Lett. 110(19), 196801 (2013)
https://doi.org/10.1103/PhysRevLett.110.196801
22 C. Z. Chang, J. Zhang, X. Feng, J. Shen, Z. Zhang, M. Guo, K. Li, Y. Ou, P. Wei, L. L. Wang, Z. Q. Ji, Y. Feng, S. Ji, X. Chen, J. Jia, X. Dai, Z. Fang, S. C. Zhang, K. He, Y. Wang, L. Lu, X. C. Ma, and Q. K. Xue, Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator, Science 340(6129), 167 (2013)
https://doi.org/10.1126/science.1234414
23 L. Fu and C. L. Kane, Superconducting proximity effect and Majorana fermions at the surface of a topological insulator, Phys. Rev. Lett. 100(9), 096407 (2008)
https://doi.org/10.1103/PhysRevLett.100.096407
24 R. P. Tiwari, U. Zülicke, and U. Bruder, Majorana fermions from Landau quantization in a superconductor and topological-insulator hybrid structure, Phys. Rev. Lett. 110(18), 186805 (2013)
https://doi.org/10.1103/PhysRevLett.110.186805
25 W. X. Feng, D. Xiao, J. Ding, and Y. G. Yao, Threedimensional topological insulators in IIII-VI2 and II-IVV2 chalcopyrite semiconductors, Phys. Rev. Lett. 106(1), 016402 (2011)
https://doi.org/10.1103/PhysRevLett.106.016402
26 W. L. Liu, X. Peng, C. Tang, L. Sun, K. Zhang, and J. Zhong, Anisotropic interactions and strain-induced topological phase transition in Sb2Se3 and Bi2Se3, Phys. Rev. B 84(24), 245105 (2011)
https://doi.org/10.1103/PhysRevB.84.245105
27 G. Seyfarth, J. Brison, M. A. Méasson, J. Flouquet, K. Izawa, Y. Matsuda, H. Sugawara, and H. Sato, Multiband superconductivity in the heavy fermion compound PrOs4Sb12, Phys. Rev. Lett. 95(10), 107004 (2005)
https://doi.org/10.1103/PhysRevLett.95.107004
28 M. Matsumoto and M. Koga, Exciton mediated superconductivity in PrOs4Sb12, J. Phys. Soc. Jpn. 73(5), 1135 (2004)
https://doi.org/10.1143/JPSJ.73.1135
29 J. C. Smith, S. Banerjee, V. Pardo, and W. E. Pickett, Dirac point degenerate with massive bands at a topological quantum critical point, Phys. Rev. Lett. 106(5), 056401 (2011)
https://doi.org/10.1103/PhysRevLett.106.056401
30 G. Kresse and J. Furthmuller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54(16), 11169 (1996)
https://doi.org/10.1103/PhysRevB.54.11169
31 G. Kresse and J. Furthmuller, Efficiency of abinitio total energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci. 6(1), 15 (1996)
https://doi.org/10.1016/0927-0256(96)00008-0
32 A. Kjekshus, T. Rakke, S. Rundqvist, T. Ostvold, A. Bjorseth, and D. L. Powell, Compounds with the skutterudite type crystal structure (III): Structural data for arsenides and antimonides, Acta Chem. Scand. A 28a, 99 (1974)
https://doi.org/10.3891/acta.chem.scand.28a-0099
33 There are nIr = 4 Ir atoms and nBi = 12 Bi atoms in an IrBi3 primitive cell. At GGA level, EIr = -8.69 eV for crystalline Ir with space group FM3 ˉM and EBi = -3.70 eV for crystalline Bi with space group IM3 ˉM. From Fig. 1(d) we read EIrBi3 = –82.81 eV. Substituting the above values in Eq. (1), we arrived at the binding energy Eb= –3.65 eV.
34 A. Becke and E. Johnson, A simple effective potential for exchange, J. Chem. Phys. 124(22), 221101 (2006)
https://doi.org/10.1063/1.2213970
35 F. Tran and P. Blaha, Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential, Phys. Rev. Lett. 102(22), 226401 (2009)
https://doi.org/10.1103/PhysRevLett.102.226401
36 W. X. Feng, D. Xiao, Y. Zhang, and Y. G. Yao, Half-Heusler topological insulators: A first principles study with the Tran–Blaha modified Becke–Johnson density functional, Phys. Rev. B 82(23), 235121 (2010)
https://doi.org/10.1103/PhysRevB.82.235121
37 D. Doennig, W. E. Pickett, and R. Pentcheva, Confinementdriven transitions between topological and Mott phases in (LaNiO3)N/(LaAlO3)M(111) superlattices, Phys. Rev. B 89, 12110(R) (2014)
38 J. Werner and F. F. Assaad, Interaction-driven transition between topological states in a Kondo insulator, Phys. Rev. B 88(3), 035113 (2013)
https://doi.org/10.1103/PhysRevB.88.035113
39 A. Go, W. Witczak-Krempa, G. S. Jeon, K. Park, and Y. B. Kim, Correlation effects on 3d topological phases: From bulk to boundary, Phys. Rev. Lett. 109(6), 066401 (2012)
https://doi.org/10.1103/PhysRevLett.109.066401
40 H. M. Weng, J. Z. Zhao, Z. J. Wang, Z. Fang, and X. Dai, Topological crystalline Kondo insulator in mixed valence ytterbium borides, Phys. Rev. Lett. 112(1), 016403 (2014)
https://doi.org/10.1103/PhysRevLett.112.016403
41 K. Miyamoto, A. Kimura, K. Kuroda, T. Okuda, K. Shimada, H. Namatame, M. Taniguchi, and M. Donath, Spinpolarized Dirac-cone-like surface state with d character at W(110), Phys. Rev. Lett. 108(6), 066808 (2012)
https://doi.org/10.1103/PhysRevLett.108.066808
42 C. J. Kang, J. Kim, K. Kim, J.-S. Kang, J. D. Denlinger, and B. I. Min, Band symmetries of mixed valence topological insulator: SmB6, arXiv: 1312.5898 (2013)
43 S. Okamoto, Wenguang Zhu, Y. Nomura, R. Arita, Di Xiao, and N. Nagaosa, Correlation effects in (111) bilayers of perovskite transition-metal oxides, arXiv: 1401.0009 (2014)
44 G. Chen and M. Hermele, Magnetic orders and topological phases from f-d exchange in pyrochlore iridates, Phys. Rev. B 86(23), 235129 (2012)
https://doi.org/10.1103/PhysRevB.86.235129
45 Y. H. Chen, H. S. Tao, D. X. Yao, and W. M. Liu, Kondo metal and ferrimagnetic insulator on the triangular Kagome lattice, Phys. Rev. Lett. 108(24), 246402 (2012)
https://doi.org/10.1103/PhysRevLett.108.246402
46 K. Niwa, D. Nomichi, M. Hasegawa, T. Okada, T. Yagi, and T. Kikegawa, Compression behaviors of binary skutterudite CoP3 in noble gases up to 40 GPa at room temperature, Inorg. Chem. 50(8), 3281 (2011)
https://doi.org/10.1021/ic101916c
47 A. Smalley, M. L. Jespersen, and D. C. Johnson, Synthesis and structural evolution of RuSb3, a new metastable skutterudite compound, Inorg. Chem. 43(8), 2486 (2004)
https://doi.org/10.1021/ic030209o
48 T. Caillat, J. P. Fleurial, and A. Borshchevsky, Bridgmansolution crystal growth and characterization of the skutterudite compounds CoSb3 and RhSb3, J. Cryst. Growth 166(1-4), 722 (1996)
https://doi.org/10.1016/0022-0248(95)00478-5
49 M. Akasaka, T. Iida, G. Sakuragi, S. Furuyama, M. Noda, S. Matsui, M. Ota, H. Suzuki, H. Sato, Y. Takanashi, and S. Sakuragi, Effects of post-annealing on thermoelectric properties of p-type CoSb3 grown by the vertical Bridgman method, J. Alloys Compd. 386(1-2), 228 (2005)
https://doi.org/10.1016/j.jallcom.2004.04.144
50 H. Takizawa, K. Miura, M. Ito, B. Suzuki, and T. Endo, Atom insertion into the CoSb skutterudite host lattice under high pressure, J. Alloys Compd. 282(1-2), 79 (1999)
https://doi.org/10.1016/S0925-8388(98)00802-0
51 X. X. Xi, C. Ma, Z. Liu, Z. Chen, W. Ku, H. Berger, C. Martin, D. B. Tanner, and G. L. Carr, Signatures of a pressure-induced topological quantum phase transition in BiTeI, Phys. Rev. Lett. 111(15), 155701 (2013)
https://doi.org/10.1103/PhysRevLett.111.155701
52 Y. Nakamoto, H. Sumiya, T. Matsuoka, K. Shimizu, T. Irifune, and Y. Ohishi, Generation of Multi-megabar pressure using nano-polycrystalline diamond anvils, Jpn. J. Appl. Phys. 46(25), L640 (2007)
https://doi.org/10.1143/JJAP.46.L640
53 J. L. Zhu, J. L. Zhang, P. P. Kong, S. J. Zhang, X. H. Yu, J. L. Zhu, Q. Q. Liu, X. Li, R. C. Yu, R. Ahuja, W. G. Yang, G. Y. Shen, H. K. Mao, H. M. Weng, X. Dai, Z. Fang, Y. S. Zhao, and C. Q. Jin, Superconductivity in topological insulator Sb2Te3 induced by pressure, Scientific Reports 3, 2016 (2013)
https://doi.org/10.1038/srep02016
54 J. J. Hamlin, J. R. Jeffries, N. P. Butch, P. Syers, D. A. Zocco, S. T. Weir, Y. K. Vohra, J. Paglione, and M. B. Maple, High pressure transport properties of the topological insulator Bi2Se3, J. Phys.: Condens. Matter 24(3), 035602 (2012)
https://doi.org/10.1088/0953-8984/24/3/035602
55 Y. Q. Li, K. H. Wu, J. R. Shi, and X. C. Xie, Electron transport properties of three-dimensional topological insulators, Front. Phys. 7(2), 165 (2012)
https://doi.org/10.1007/s11467-011-0190-3
56 B. Dóra and R. Moessner, Dynamics of the spin Hall effect in topological insulators and graphene, Phys. Rev. B 83(7), 073403 (2011)
https://doi.org/10.1103/PhysRevB.83.073403
57 P. Cheng, C. Song, T. Zhang, Y. Zhang, Y. Wang, J. F. Jia, J. Wang, Y. Wang, B. F. Zhu, X. Chen, X. Ma, K. He, L. Wang, X. Dai, Z. Fang, X. Xie, X. L. Qi, C. X. Liu, S. C. Zhang, and Q. K. Xue, Landau quantization of topological surface states in Bi2Se3, Phys. Rev. Lett. 105(7), 076801 (2010)
https://doi.org/10.1103/PhysRevLett.105.076801
58 C. L. Kane and E. J. Mele, Quantum spin Hall effect in graphene, Phys. Rev. Lett. 95(22), 226801 (2005)
https://doi.org/10.1103/PhysRevLett.95.226801
59 C. L. Kane and E. J. Mele, Z2 topological order and the quantum spin Hall effect, Phys. Rev. Lett. 95(14), 146802 (2005)
https://doi.org/10.1103/PhysRevLett.95.146802
60 K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Two-dimensional gas of massless Dirac fermions in graphene, Nature 438(7065), 197 (2005)
https://doi.org/10.1038/nature04233
61 S. Cahangirov, M. Topsakal, E. Aktürk, H. Sahin, and S. Ciraci, Two- and one-dimensional honeycomb structures of silicon and germanium, Phys. Rev. Lett. 102(23), 236804 (2009)
https://doi.org/10.1103/PhysRevLett.102.236804
62 M. Ezawa, Valley-polarized metals and quantum anomalous Hall effect in silicene, Phys. Rev. Lett. 109(5), 055502 (2012)
https://doi.org/10.1103/PhysRevLett.109.055502
63 M. Ezawa, A topological insulator and helical zero mode in silicene under an inhomogeneous electric field, New J. Phys. 14(3), 033003 (2012)
https://doi.org/10.1088/1367-2630/14/3/033003
64 M. Tahir and U. Schwingenschl?gl, Valley polarized quantum Hall effect and topological insulator phase transitions in silicene, Scientific Reports 3, 1075 (2013)
https://doi.org/10.1038/srep01075
65 W. F. Tsai, C.Y. Huang, T.R. Chang, H. Lin, H.T. Jeng, and A. Bansil, Gated silicene as a tunable source of nearly 100% spin-polarized electrons, Nat. Commun. 4, 1500 (2013)
https://doi.org/10.1038/ncomms2525
66 L. Chen, B. J. Feng, and K. H. Wu, Observation of a possible superconducting gap in silicene on Ag(111) surface, Appl. Phys. Lett. 102(8), 081602 (2013)
https://doi.org/10.1063/1.4793998
67 M. I. Katsnelson, V. Y. Irkhin, L. Chioncel, A. I. Lichtenstein, and R. A. de Groot, Half-metallic ferromagnets: From band structure to many-body effects, Rev. Mod. Phys. 80(2), 315 (2008)
https://doi.org/10.1103/RevModPhys.80.315
68 D. Xiao, W. Yao, and Q. Niu, Valley-contrasting physics in graphene: Magnetic moment and topological transport, Phys. Rev. Lett. 99(23), 236809 (2007)
https://doi.org/10.1103/PhysRevLett.99.236809
69 P. E. Bl?chl, Projector augmented-wave method, Phys. Rev. B 50(24), 17953 (1994)
https://doi.org/10.1103/PhysRevB.50.17953
70 C. C. Liu, H. Jiang, and Y. Yao, Low-energy effective Hamiltonian involving spin-orbit coupling in silicene and two-dimensional germanium and tin, Phys. Rev. B 84(19), 195430 (2011)
https://doi.org/10.1103/PhysRevB.84.195430
71 I. V. Solovyev, P. H. Dederichs, and V. I. Anisimov, Corrected atomic limit in the local-density approximation and the electronic structure of d impurities in Rb, Phys. Rev. B 50(23), 16861 (1994)
https://doi.org/10.1103/PhysRevB.50.16861
72 V. I. Anisimov, F. Aryasetiawan, and A. I. Lichtenstein, First-principles calculations of the electronic structure and spectra of strongly correlated systems: The LDA+ U method, J. Phys.: Condens. Matter 9(4), 767 (1997)
https://doi.org/10.1088/0953-8984/9/4/002
73 K. T. Chan, J. B. Neaton, and M. L. Cohen, Firstprinciples study of metal adatom adsorption on graphene, Phys. Rev. B 77(23), 235430 (2008)
https://doi.org/10.1103/PhysRevB.77.235430
74 J. Ding, Z. Qiao, W. Feng, Y. Yao, and Q. Niu, Engineering quantum anomalous/valley Hall states in graphene via metal-atom adsorption: An ab-initio study, Phys. Rev. B 84(19), 195444 (2011)
https://doi.org/10.1103/PhysRevB.84.195444
75 H. M. Weng, T. Ozaki, and K. Terakuta, Theoretical analysis of magnetic coupling in sandwich clusters Vn(C6H6)n+1, J. Phys. Soc. Jpn. 77(1), 014301 (2008)
https://doi.org/10.1143/JPSJ.77.014301
76 T. O. Wehling, A. V. Balatsky, M. I. Katsnelson, A. I. Lichtenstein, and A. Rosch, Orbitally controlled Kondo effect of Co adatoms on graphene, Phys. Rev. B 81(11), 115427 (2010)
https://doi.org/10.1103/PhysRevB.81.115427
77 H. Zhang, C. Lazo, S. Blügel, S. Heinze, and Y. Mokrousov, Electrically tunable quantum anomalous Hall effect in graphene decorated by 5d transition-metal adatoms, Phys. Rev. Lett. 108(5), 056802 (2012)
https://doi.org/10.1103/PhysRevLett.108.056802
78 Z. H. Qiao, S. A. Yang, W. X. Feng, W.-K. Tse, J. Ding, Y. G. Yao, J. Wang, and Q. Niu, Quantum anomalous Hall effect in graphene from Rashba and exchange effects, Phys. Rev. B 82, 161414(R) (2010)
79 D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs, Quantized Hall conductance in a two-Dimensional periodic potential, Phys. Rev. Lett. 49(6), 405 (1982)
https://doi.org/10.1103/PhysRevLett.49.405
80 D. Xiao, M. C. Chang, and Q. Niu, Berry phase effects on electronic properties, Rev. Mod. Phys. 82(3), 1959 (2010)
https://doi.org/10.1103/RevModPhys.82.1959
81 A. Mostofi, J. R. Yates, Y. S. Lee, I. Souza, D. Vanderbilt, and N. Marzari, Wannier90: A tool for obtaining maximally-localized Wannier functions, Comput. Phys. Commun. 178(9), 685 (2008)
https://doi.org/10.1016/j.cpc.2007.11.016
82 X. Wang, J. R. Yates, I. Souza, and D. Vanderbilt, Ab initio calculation of the anomalous Hall conductivity by Wannier interpolation, Phys. Rev. B 74(19), 195118 (2006)
https://doi.org/10.1103/PhysRevB.74.195118
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed