Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2015, Vol. 10 Issue (3): 102101   https://doi.org/10.1007/s11467-015-0474-0
  RESEARCH ARTICLE 本期目录
Shape coexistence and α-decay chains of 293Lv
Zhao-Xi Li(李兆玺)1,Zhen-Hua Zhang(张振华)2,3,Peng-Wei Zhao(赵鹏巍)2,*()
1. School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191, China
2. State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, China
3. Mathematics and Physics Department, North China Electric Power University, Beijing 102206, China
 全文: PDF(591 KB)  
Abstract

Two recently observed 293Lv (Z = 116) α-decay chains [Eur. Phys. J. A 48, 62 (2012)] are investigated in the framework of covariant density functional theory with PC-PK1, where the pairing correlations are treated by the Bardeen–Cooper–Schrieffer method with a density-independent zerorange force. From the calculated potential energy curves, it is found that two minima always occur, with one having an almost spherical shape and the other exhibiting a large deformed prolate shape. Originating from the ground state and the shape-isomeric state of 293Lv, the two observed α-decay chains are constructed and the calculated Qαvalues are found to be in good agreement with the data.

Key wordsshape coexistence    α decay    293Lv    covariant density functional theory
收稿日期: 2015-01-24      出版日期: 2015-06-11
Corresponding Author(s): Peng-Wei Zhao(赵鹏巍)   
 引用本文:   
. [J]. Frontiers of Physics, 2015, 10(3): 102101.
Zhao-Xi Li(李兆玺), Zhen-Hua Zhang(张振华), Peng-Wei Zhao(赵鹏巍). Shape coexistence and α-decay chains of 293Lv. Front. Phys. , 2015, 10(3): 102101.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-015-0474-0
https://academic.hep.com.cn/fop/CN/Y2015/V10/I3/102101
1 W. D. Myers and W. J. Swiatecki, Nuclear masses and deformations, Nucl. Phys. 81(2), 1(1966)
https://doi.org/10.1016/S0029-5582(66)80001-9
2 A. Sobiczewski, F. A. Gareev, and B. N. Kalinkin, Closed shells for Z>82 and N>126 in a diffuse potential well, Phys. Lett. 22(4), 500(1966)
https://doi.org/10.1016/0031-9163(66)91243-1
3 H. Meldner, Predictions of new magic regions and masses for super-heavy nuclei from calculations with realistic shell model single particle Hamiltonians, Ark. Fys. 36, 593 (1967)
4 S. G. Nilsson, J. R. Nix, A. Sobiczewski, Z. Szymański, S. Wycech, C. Gustafson, and P. M?ller, On the spontaneous fission of nuclei with Z near 114 and N near 184, Nucl.Phys. A 115(3), 545(1968)
https://doi.org/10.1016/0375-9474(68)90748-3
5 S. G. Nilsson, C. F. Tsang, A. Sobiczewski, Z. Szymański, S. Wycech, C. Gustafson, I. L. Lamm, P. M?ller, and B. Nilsson, On the nuclear structure and stability of heavy and superheavy elements, Nucl. Phys. A 131(1), 1(1969)
https://doi.org/10.1016/0375-9474(69)90809-4
6 S. G. Nilsson, S. G. Thompson, and C. F. Tsang, Stability of superheavy nuclei and their possible occurrence in nature, Phys. Lett. B 28(7), 458(1969)
https://doi.org/10.1016/0370-2693(69)90514-0
7 U. Mosel and W. Greiner, On the stability of superheavy nuclei against fission, Z. Phys. 222(3), 261(1969)
https://doi.org/10.1007/BF01392125
8 J. Grumann, U. Mosel, B. Fink, and W. Greiner, Investigation of the stability of superheavy nuclei around Z = 114 and Z = 164, Z. Phys. 228(5), 371(1969)
https://doi.org/10.1007/BF01406719
9 S. Hofmann and G. Münzenberg, The discovery of the heaviest elements, Rev. Mod. Phys. 72(3), 733(2000)
https://doi.org/10.1103/RevModPhys.72.733
10 Yu. Ts. Oganessian, Heaviest nuclei from 48Ca-induced reactions, J. Phys. G 34(4), R165(2007)
https://doi.org/10.1088/0954-3899/34/4/R01
11 Yu. Ts. Oganessian, F. Sh. Abdullin, P. D. Bailey, D. E. Benker, M. E. Bennett, S. N. Dmitriev, J. G. Ezold, J. H. Hamilton, R. A. Henderson, M. G. Itkis, Yu. V. Lobanov, A. N. Mezentsev, K. J. Moody, S. L. Nelson, A. N. Polyakov, C. E. Porter, A. V. Ramayya, F. D. Riley, J. B. Roberto, M. A. Ryabinin, K. P. Rykaczewski, R. N. Sagaidak, D. A. Shaughnessy, I. V. Shirokovsky, M. A. Stoyer, V. G. Subbotin, R. Sudowe, A. M. Sukhov, Yu. S. Tsyganov, V. K. Utyonkov, A. A. Voinov, G. K. Vostokin, and P. A. Wilk, Synthesis of a new element with atomic number Z = 117, Phys. Rev. Lett. 104(14), 142502(2010)
https://doi.org/10.1103/PhysRevLett.104.142502
12 K. Morita, K. Morimoto, D. Kaji, T. Akiyama, S. I. Goto, H. Haba, E. Ideguchi, R. Kanungo, K. Katori, H. Koura, H. Kudo, T. Ohnishi, A. Ozawa, T. Suda, K. Sueki, H. S. Xu, T. Yamaguchi, A. Yoneda, A. Yoshida, and Y. L. Zhao, Experiment on the synthesis of element 113 in the reaction 209Bi(70Zn, n)278 113, J. Phys. Soc. Jpn. 73(10), 2593(2004)
https://doi.org/10.1143/JPSJ.73.2593
13 K. Morita, K. Morimoto, D. Kaji, T. Akiyama, S. I. Goto, H. Haba, E. Ideguchi, K. Katori, H. Koura, H. Kikunaga, H. Kudo, T. Ohnishi, A. Ozawa, N. Sato, T. Suda, K. Sueki, F. Tokanai, T. Yamaguchi, A. Yoneda, and A. Yoshida, Observation of second decay chain from 278113, J. Phys. Soc. Jpn. 76(4), 045001(2007)
https://doi.org/10.1143/JPSJ.76.045001
14 A. Sobiczewski and K. Pomorski, Description of structure and properties of superheavy nuclei, Prog. Part. Nucl. Phys. 58(1), 292(2007)
https://doi.org/10.1016/j.ppnp.2006.05.001
15 M. Bender, P. H. Heenen, and P. G. Reinhard, Selfconsistent mean-field models for nuclear structure, Rev. Mod. Phys. 75(1), 121(2003)
https://doi.org/10.1103/RevModPhys.75.121
16 G. A. Lalazissis, M. M. Sharma, P. Ring, and Y. K. Gambhir, Superheavy nuclei in the relativistic mean-field theory, Nucl. Phys. A 608(2), 202(1996)
https://doi.org/10.1016/0375-9474(96)00273-4
17 J. Meng and N. Takigawa, Structure of superheavy elements suggested in the reaction of 86Kr with 208Pb, Phys. Rev. C 61(6), 064319(2000)
https://doi.org/10.1103/PhysRevC.61.064319
18 Z. Z. Ren and H. Toki, Superdeformation in the newly discovered superheavy elements, Nucl. Phys. A 689(3-4), 691 (2001)
https://doi.org/10.1016/S0375-9474(00)00689-8
19 M. Bender, K. Rutz, P. G. Reinhard, J. A. Maruhn, and W. Greiner, Shell structure of superheavy nuclei in selfconsistent mean-field models, Phys. Rev. C 60(3), 034304(1999)
https://doi.org/10.1103/PhysRevC.60.034304
20 A. T. Kruppa, M. Bender, W. Nazarewicz, P. G. Reinhard, T. Vertse, and S. ?wiok, Shell corrections of superheavy nuclei in self-consistent calculations, Phys. Rev. C 61(3), 034313(2000)
https://doi.org/10.1103/PhysRevC.61.034313
21 W. Zhang, S. S. Zhang, S. Q. Zhang, and J. Meng, Shell correction at the saddle point for superheavy nucleus, Chin. Phys. Lett. 20(10), 1694(2003)
https://doi.org/10.1088/0256-307X/20/10/312
22 W. Zhang, J. Meng, S. Q. Zhang, L. S. Geng, and H. Toki, Magic numbers for superheavy nuclei in relativistic continuum Hartree–Bogoliubov theory, Nucl. Phys. A 753(1-2), 106 (2005)
https://doi.org/10.1016/j.nuclphysa.2005.02.086
23 W. H. Long, J. Meng, and S. G. Zhou, Structure of the new nuclide 259Db and its α-decay daughter nuclei, Phys. Rev. C 65(4), 047306(2002)
https://doi.org/10.1103/PhysRevC.65.047306
24 L. S. <?Pub Caret?>Geng, H. Toki, and J. Meng, α-decay chains of 115173288 and 115172287 in the relativistic mean field theory, Phys. Rev. C 68, 061303(R) (2003)
25 T. Bürvenich, M. Bender, J. A. Maruhn, and P. G. Reinhard, Systematics of fission barriers in superheavy elements, Phys. Rev. C 69(1), 014307(2004)
https://doi.org/10.1103/PhysRevC.69.014307
26 Z. P. Li, T. Nik?i?, D. Vretenar, P. Ring, and J. Meng, Relativistic energy density functionals: Low-energy collective states of 240Pu and 166Er, Phys. Rev. C 81(6), 064321(2010)
https://doi.org/10.1103/PhysRevC.81.064321
27 B. N. Lu, E. G. Zhao, and S. G. Zhou, Potential energy surfaces of actinide nuclei from a multidimensional constrained covariant density functional theory: Barrier heights and saddle point shapes, Phys. Rev. C 85(1), 011301(R) (2012)
28 H. Abusara, A. V. Afanasjev, and P. Ring, Fission barriers in covariant density functional theory: Extrapolation to superheavy nuclei, Phys. Rev. C 85(2), 024314(2012)
https://doi.org/10.1103/PhysRevC.85.024314
29 M. Warda and J. L. Egido, Fission half-lives of superheavy nuclei in a microscopic approach, Phys. Rev. C 86(1), 014322(2012)
https://doi.org/10.1103/PhysRevC.86.014322
30 V. Prassa, T. Nik?i?, G. A. Lalazissis, and D. Vretenar, Relativistic energy density functional description of shape transitions in superheavy nuclei, Phys. Rev. C 86(2), 024317(2012)
https://doi.org/10.1103/PhysRevC.86.024317
31 G. G. Adamian, N. V. Antonenko, W. Scheid, and V. V. Volkov, Fusion cross sections for superheavy nuclei in the dinuclear system concept, Nucl. Phys. A 633(3), 409(1998)
https://doi.org/10.1016/S0375-9474(98)00124-9
32 Z. Q. Feng, G. M. Jin, J. Q. Li, and W. Scheid, Formation of superheavy nuclei in cold fusion reactions, Phys. Rev. C 76(4), 044606(2007)
https://doi.org/10.1103/PhysRevC.76.044606
33 E. G. Zhao, N. Wang, Z. Q. Feng, J. Q. Li, S. G. Zhou, and W. Scheid, The isotopic and nuclear orientation effects on the production of super-heavy elements, Int. J. Mod. Phys. E 17(09), 1937(2008)
https://doi.org/10.1142/S021830130801091X
34 A. K. Nasirov, G. Giardina, G. Mandaglio, M. Manganaro, F. Hanappe, S. Heinz, S. Hofmann, A. I. Muminov, and W. Scheid, Quasifission and fusion-fission in reactions with massive nuclei: Comparison of reactions leading to the Z = 120 element, Phys. Rev. C 79(2), 024606(2009)
https://doi.org/10.1103/PhysRevC.79.024606
35 J. Q. Li, Z. Q. Feng, Z. G. Gan, X. H. Zhou, H. F. Zhang, and W. Scheid, Production of superheavy nuclei in massive fusion reactions, Nucl. Phys. A 834(1-4), 353c (2010)
https://doi.org/10.1016/j.nuclphysa.2010.01.038
36 Z. Q. Feng, G. M. Jin, and J. Q. Li, Dynamics in production of superheavy nuclei in low-energy heavy-ion collision, Nucl. Phys. Rev. 28, 1 (2011)
37 N. Wang, E. G. Zhao, W. Scheid, and S. G. Zhou, Theoretical study of the synthesis of superheavy nuclei with Z = 119 and 120 in heavy-ion reactions with transuranium targets, Phys. Rev. C 85(4), 041601(R) (2012)
38 Y. Aritomo, T. Wada, M. Ohta, and Y. Abe, Fluctuation dissipation model for synthesis of superheavy elements, Phys. Rev. C 59(2), 796(1999)
https://doi.org/10.1103/PhysRevC.59.796
39 J. D. Bao and Y. Z. Zhuo, Investigation on anomalous diffusion for nuclear fusion reactions, Phys. Rev. C 67(6), 064606(2003)
https://doi.org/10.1103/PhysRevC.67.064606
40 W. J. ?wiatecki, K. Siwek-Wilczyńska, and J. Wilczyński, Fusion by diffusion (II): Synthesis of transfermium elements in cold fusion reactions, Phys. Rev. C 71(1), 014602(2005)
https://doi.org/10.1103/PhysRevC.71.014602
41 Z. H. Liu and J. D. Bao, Optimal reaction for synthesis of superheavy element 117, Phys. Rev. C 80(3), 034601(2009)
https://doi.org/10.1103/PhysRevC.80.034601
42 K. Siwek-Wilczyńska, T. Cap, M. Kowal, A. Sobiczewski, and J. Wilczyński, Predictions of the fusion-by-diffusion model for the synthesis cross sections of Z = 114–120 elements based on macroscopic-microscopic fission barriers, Phys. Rev. C 86(1), 014611(2012)
https://doi.org/10.1103/PhysRevC.86.014611
43 N. Wang, X. Z. Wu, Z. X. Li, M. Liu, and W. Scheid, Applications of Skyrme energy-density functional to fusion reactions for synthesis of superheavy nuclei, Phys. Rev. C 74(4), 044604(2006)
https://doi.org/10.1103/PhysRevC.74.044604
44 B. A. Bian, F. S. Zhang, and H. Y. Zhou, Entrance channel mass asymmetry dependence of compound nucleus formation, Phys. Lett. B 665(4), 314(2008)
https://doi.org/10.1016/j.physletb.2008.06.006
45 C. W. Shen, G. Kosenko, and Y. Abe, Two-step model of fusion for the synthesis of superheavy elements, Phys. Rev. C 66(6), 061602(R) (2002)
46 V. I. Zagrebaev, Synthesis of superheavy nuclei: Nucleon collectivization as a mechanism for compound nucleus formation, Phys. Rev. C 64(3), 034606(2001)
https://doi.org/10.1103/PhysRevC.64.034606
47 V. I. Zagrebaev and W. Greiner, Synthesis of superheavy nuclei: A search for new production reactions, Phys. Rev. C 78(3), 034610(2008)0
48 Yu. Ts. Oganessian, V. K. Utyonkov, Yu. V. Lobanov, F. Sh. Abdullin, A. N. Polyakov, I. V. Shirokovsky, Yu. S. Tsyganov, G. G. Gulbekian, S. L. Bogomolov, B. N. Gikal, A. N. Mezentsev, S. Iliev, V. G. Subbotin, A. M. Sukhov, A. A. Voinov, G. V. Buklanov, K. Subotic, V. I. Zagrebaev, M. G. Itkis, J. B. Patin, K. J. Moody, J. F. Wild, M. A. Stoyer, N. J. Stoyer, D. A. Shaughnessy, J. M. Kenneally, and R. W. Lougheed, Measurements of cross sections for the fusion-evaporation reactions 244Pu(48Ca,xn)292-x 114 and 245Cm(48Ca,xn)293-x 116, Phys. Rev. C 69(5), 054607(2004)
https://doi.org/10.1103/PhysRevC.69.054607
49 Yu. Ts. Oganessian, V. K. Utyonkov, Yu. V. Lobanov, F. Sh. Abdullin, A. N. Polyakov, I. V. Shirokovsky, Yu. S. Tsyganov, G. G. Gulbekian, S. L. Bogomolov, B. N. Gikal, A. N. Mezentsev, S. Iliev, V. G. Subbotin, A. M. Sukhov, A. A. Voinov, G. V. Buklanov, K. Subotic, V. I. Zagrebaev, M. G. Itkis, J. B. Patin, K. J. Moody, J. F. Wild, M. A. Stoyer, N. J. Stoyer, D. A. Shaughnessy, J. M. Kenneally, P. A.Wilk, R. W. Lougheed, R. I. Il’kaev, and S. P. Vesnovskii, Measurements of cross sections and decay properties of the isotopes of elements 112, 114, and 116 produced in the fusion reactions 233,238U, 242Pu, and 248Cm+48Ca, Phys. Rev. C 70, 064609 (2004)
https://doi.org/10.1103/PhysRevC.70.064609
50 S. K. Singh, M. Ikram, and S. K. Patra, Ground state properties and bubble structure of synthesized superheavy nuclei, Int. J. Mod. Phys. E 22(01), 1350001(2013)
https://doi.org/10.1142/S0218301313500018
51 M. Bhattacharya and G. Gangopadhyay, α-decay lifetime in superheavy nuclei with A>282, Phys. Rev. C 77(4), 047302(2008)
https://doi.org/10.1103/PhysRevC.77.047302
52 H. F. Zhang, W. Zuo, J. Q. Li, and G. Royer, α decay halflives of new superheavy nuclei within a generalized liquid drop model, Phys. Rev. C 74(1), 017304(2006)
https://doi.org/10.1103/PhysRevC.74.017304
53 A. Bhagwat, X. Vi?as, M. Centelles, P. Schuck, and R. Wyss, Microscopic-macroscopic approach for binding energies with the Wigner–Kirkwood method (II): Deformed nuclei, Phys. Rev. C 86(4), 044316(2012)
https://doi.org/10.1103/PhysRevC.86.044316
54 A. N. Kuzmina, G. G. Adamian, and N. V. Antonenko, Role of quasiparticle structure in α decays of the heaviest nuclei, Phys. Rev. C 85(2), 027308(2012)
https://doi.org/10.1103/PhysRevC.85.027308
55 Y. B. Qian, Z. Z. Ren, and D. D. Ni, Calculations of α- decay half-lives for heavy and superheavy nuclei, Phys. Rev. C 83(4), 044317(2011)
https://doi.org/10.1103/PhysRevC.83.044317
56 D. D. Ni and Z. Z. Ren, Microscopic calculation of α-decay half-lives within the cluster model, Nucl. Phys. A 825(3-4), 145 (2009)
https://doi.org/10.1016/j.nuclphysa.2009.04.010
57 D. D. Ni and Z. Z. Ren, Calculations of new α-decay data within the generalized density-dependent cluster model, J. Phys. G 37(10), 105107(2010)
https://doi.org/10.1088/0954-3899/37/10/105107
58 J. M. Dong, W. Zuo, J. Z. Gu, Y. Z. Wang, and B. B. Peng, α-decay half-lives and Qα values of superheavy nuclei, Phys. Rev. C 81(6), 064309(2010)
https://doi.org/10.1103/PhysRevC.81.064309
59 S. Hofmann, S. Heinz, R. Mann, J. Maurer, J. Khuyagbaatar, D. Ackermann, S. Antalic, W. Barth, M. Block, H. G. Burkhard, V. F. Comas, L. Dahl, K. Eberhardt, J. Gostic, R. A. Henderson, J. A. Heredia, F. P. Hesberger, J. M. Kenneally, B. Kindler, I. Kojouharov, J. V. Kratz, R. Lang, M. Leino, B. Lommel, K. J. Moody, G. Münzenberg, S. L. Nelson, K. Nishio, A. G. Popeko, J. Runke, S. Saro, D. A. Shaughnessy, M. A. Stoyer, P. Th?rle-Pospiech, K. Tinschert, N. Trautmann, J. Uusitalo, P. A. Wilk, and A. V. Yeremin, The reaction 48Ca+ 248Cm→ 296116? studied at the GSI-SHIP, Eur. Phys. J. A 48(5), 62(2012)
https://doi.org/10.1140/epja/i2012-12062-1
60 F. R. Xu, E. G. Zhao, R. Wyss, and P. M.Walker, Enhanced stability of superheavy nuclei due to high-spin isomerism, Phys. Rev. Lett. 92(25), 252501(2004)
https://doi.org/10.1103/PhysRevLett.92.252501
61 D. S. Delion, R. J. Liotta, and R. Wyss, α decay of highspin isomers in superheavy nuclei, Phys. Rev. C 76(4), 044301(2007)
https://doi.org/10.1103/PhysRevC.76.044301
62 P. Ring, Relativistic mean field theory in finite nuclei, Prog. Part. Nucl. Phys. 37, 193 (1996)
https://doi.org/10.1016/0146-6410(96)00054-3
63 D. Vretenar, A. V. Afanasjev, G. A. Lalazissis, and P. Ring, Relativistic Hartree–Bogoliubov theory: Static and dynamic aspects of exotic nuclear structure, Phys. Rep. 409(3-4), 101 (2005)
https://doi.org/10.1016/j.physrep.2004.10.001
64 J. Meng, H. Toki, S. G. Zhou, S. Q. Zhang, W. H. Long, and L. S. Geng, Relativistic continuum Hartree Bogoliubov theory for ground-state properties of exotic nuclei, Prog. Part. Nucl. Phys. 57(2), 470(2006)
https://doi.org/10.1016/j.ppnp.2005.06.001
65 T. Nik?i?, D. Vretenar, and P. Ring, Relativistic nuclear energy density functionals: Mean-field and beyond, Prog. Part. Nucl. Phys. 66(3), 519(2011)
https://doi.org/10.1016/j.ppnp.2011.01.055
66 J. Meng, J. Peng, S. Q. Zhang, and P. W. Zhao, Progress on tilted axis cranking covariant density functional theory for nuclear magnetic and antimagnetic rotation, Front. Phys. 8(1), 55(2013)
https://doi.org/10.1007/s11467-013-0287-y
67 P. W. Zhao, Z. P. Li, J. M. Yao, and J. Meng, New parametrization for the nuclear covariant energy density functional with a point-coupling interaction, Phys. Rev. C 82(5), 054319(2010)
https://doi.org/10.1103/PhysRevC.82.054319
68 P. W. Zhao, S. Q. Zhang, J. Peng, H. Z. Liang, P. Ring, and J. Meng, Novel structure for magnetic rotation bands in 60Ni, Phys. Lett. B 699(3), 181(2011)
https://doi.org/10.1016/j.physletb.2011.03.068
69 P. W. Zhao, J. Peng, H. Z. Liang, P. Ring, and J. Meng, Antimagnetic rotation band in nuclei: A microscopic description, Phys. Rev. Lett. 107(12), 122501(2011)
https://doi.org/10.1103/PhysRevLett.107.122501
70 P. W. Zhao, J. Peng, H. Z. Liang, P. Ring, and J. Meng, Covariant density functional theory for antimagnetic rotation, Phys. Rev. C 85(5), 054310(2012)
https://doi.org/10.1103/PhysRevC.85.054310
71 J. M. Yao, J. Meng, P. Ring, Z. X. Li, Z. P. Li, and K. Hagino, Microscopic description of quantum shape fluctuation in C isotopes, Phys. Rev. C 84(2), 024306(2011)
https://doi.org/10.1103/PhysRevC.84.024306
72 Z. P. Li, C. Y. Li, J. Xiang, J. M. Yao, and J. Meng, Enhanced collectivity in neutron-deficient Sn isotopes in energy functional based collective Hamiltonian, Phys. Lett. B 717(4-5), 470 (2012)
https://doi.org/10.1016/j.physletb.2012.09.061
73 B. H. Sun, P. W. Zhao, and J. Meng, Mass prediction of proton-rich nuclides with the Coulomb displacement energies in the relativistic point-coupling model, Sci. China Ser. G 54, 210 (2011)
https://doi.org/10.1007/s11433-010-4222-8
74 P. W. Zhao, L. S. Song, B. H. Sun, H. Geissel, and J. Meng, Crucial test for covariant density functional theory with new and accurate mass measurements from Sn to Pa, Phys. Rev. C 86(6), 064324(2012)
https://doi.org/10.1103/PhysRevC.86.064324
75 Q. S. Zhang, Z. M. Niu, Z. P. Li, J. M. Yao, and J. Meng, Global dynamical correlation energies in covariant density functional theory: Cranking approximation, Front. Phys. 9(4), 529(2014)
https://doi.org/10.1007/s11467-014-0413-5
76 W. Zhang, Z. P. Li, and S. Q. Zhang, Description of α-decay chains for 293,294117 within covariant density functional theory, Phys. Rev. C 88(5), 054324(2013)
https://doi.org/10.1103/PhysRevC.88.054324
77 S. J. Krieger, P. Bonche, H. Flocard, P. Quentin, and M. S. Weiss, An improved pairing interaction for mean field calculations using Skyrme potentials, Nucl. Phys. A 517(2), 275(1990)
https://doi.org/10.1016/0375-9474(90)90035-K
78 M. Bender, K. Rutz, P. G. Reinhard, and J. A. Maruhn, Pairing gaps from nuclear mean-field models, Eur. Phys. J. A 8(1), 59(2000)
https://doi.org/10.1007/s10050-000-4504-z
79 P. Ring and P. Schuck, The Nuclear Many-Body Problem, Berlin: Springer-Verlag, 1980
https://doi.org/10.1007/978-3-642-61852-9
80 M. Bender, K. Rutz, P. G. Reinhard, and J. A. Maruhn, Consequences of the center-of-mass correction in nuclear mean-field models, Eur. Phys. J. A 7(4), 467(2000)
https://doi.org/10.1007/PL00013645
81 P. W. Zhao, B. Y. Sun, and J. Meng, Deformation effect on the center-of-mass correction energy in nuclei ranging from Oxygen to Calcium, Chin. Phys. Lett. 26(11), 112102(2009)
https://doi.org/10.1088/0256-307X/26/11/112102
82 P. Ring, Y. K. Gambhir, and G. A. Lalazissis, Computer program for the relativistic mean field description of the ground state properties of even-even axially deformed nuclei, Comput. Phys. Commun. 105(1), 77(1997)
https://doi.org/10.1016/S0010-4655(97)00022-2
83 J. Meng, J. Peng, S. Q. Zhang, and S. G. Zhou, Possible existence of multiple chiral doublets in 106Rh, Phys. Rev. C 73(3), 037303(2006)
https://doi.org/10.1103/PhysRevC.73.037303
84 S. ?wiok, W. Nazarewicz, and P. H. Heenen, Structure of odd-N superheavy elements, Phys. Rev. Lett. 83(6), 1108(1999)
https://doi.org/10.1103/PhysRevLett.83.1108
85 L. S. Geng, H. Toki, and J. Meng, Masses, deformations and charge radii—Nuclear ground-state properties in the relativistic mean field model, Prog. Theor. Phys. 113(4), 785(2005)
https://doi.org/10.1143/PTP.113.785
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed