Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

邮发代号 80-965

2019 Impact Factor: 2.502

Frontiers of Physics  2015, Vol. 10 Issue (6): 102501   https://doi.org/10.1007/s11467-015-0479-8
  本期目录
Dynamical effects of spin-dependent interactions in low- and intermediate-energy heavy-ion reactions
Jun Xu1,2,*(),Bao-An Li3,Wen-Qing Shen1,Yin Xia1,4
1. Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
2. Kavli Institute for Theoretical Physics China, Chinese Academy of Sciences, Beijing 100190, China
3. Department of Physics and Astronomy, Texas A&M University–Commerce, Commerce, TX 75429-3011, USA
4. University of Chinese Academy of Sciences, Beijing 100049, China
 全文: PDF(810 KB)  
Abstract

It is well known that noncentral nuclear forces, such as the spin–orbital coupling and the tensor force, play important roles in understanding many interesting features of nuclear structures. However, their dynamical effects in nuclear reactions are poorly known because only the spin-averaged observables are normally studied both experimentally and theoretically. Realizing that spin-sensitive observables in nuclear reactions may convey useful information about the in-medium properties of noncentral nuclear interactions, besides earlier studies using the time-dependent Hartree–Fock approach to understand the effects of spin–orbital coupling on the threshold energy and spin polarization in fusion reactions, some efforts have been made recently to explore the dynamical effects of noncentral nuclear forces in intermediate-energy heavy-ion collisions using transport models. The focus of these studies has been on investigating signatures of the density and isospin dependence of the form factor in the spin-dependent single-nucleon potential. Interestingly, some useful probes were identified in the model studies but so far there are still no data to compare with. In this brief review, we summarize the main physics motivations as well as the recent progress in understanding the spin dynamics and identifying spin-sensitive observables in heavy-ion reactions at intermediate energies. We hope the interesting, important, and new physics potentials identified in the spin dynamics of heavy-ion collisions will stimulate more experimental work in this direction.

Key wordsheavy-ion collisions    transport model    spin–orbit interaction    tensor force    polarization
收稿日期: 2015-06-19      出版日期: 2015-12-28
Corresponding Author(s): Jun Xu   
 引用本文:   
. [J]. Frontiers of Physics, 2015, 10(6): 102501.
Jun Xu,Bao-An Li,Wen-Qing Shen,Yin Xia. Dynamical effects of spin-dependent interactions in low- and intermediate-energy heavy-ion reactions. Front. Phys. , 2015, 10(6): 102501.
 链接本文:  
https://academic.hep.com.cn/fop/CN/10.1007/s11467-015-0479-8
https://academic.hep.com.cn/fop/CN/Y2015/V10/I6/102501
1 P. Danielewicz, R. Lacey, and W. G. Lynch, Determination of the equation of state of dense matter, Science 298(5598), 1592 (2002)
https://doi.org/10.1126/science.1078070
2 V. Baran, M.Colonna, V. Greco, and M. Di Toro, Reaction dynamics with exotic nuclei, Phys. Rep.410(5–6), 335 (2005)
https://doi.org/10.1016/j.physrep.2004.12.004
3 B. A. Li, L. W.Chen, and C. M. Ko, Recent progress and new challenges in isospin physics with heavy-ion reactions, Phys. Rep.464(4–6), 113 (2008)
https://doi.org/10.1016/j.physrep.2008.04.005
4 H.Liang, J. Meng, and S. G. Zhou, Hidden pseudospin and spin symmetries and their origins in atomic nuclei, Phys. Rep.570, 1 (2015)
https://doi.org/10.1016/j.physrep.2014.12.005
5 J. E. Hirsch, Spin Hall effect, Phys. Rev. Lett.83(9), 1834 (1999)
https://doi.org/10.1103/PhysRevLett.83.1834
6 M. I. Dyakonov and V. I.Perel, Possibility of orientating electron spins with current, Sov. Phys. JETP Lett.13, 467 (1971)
7 M. I. Dyakonov, and V. I.Perel, Current-induced spin orientation of electrons in semiconductors, Phys. Lett. A 35(6), 459 (1971)
https://doi.org/10.1016/0375-9601(71)90196-4
8 Lecture Notes of R. Machleidt, CNS Summer School, University of Tokyo, <Date>Aug. 18-23</Date>, 2005
9 M. G. Mayer, On closed shells in nuclei, Phys. Rev.74(3), 235 (1948);M. G.Mayer, On closed shells in nuclei (II), Phys. Rev.75(12), 1969 (1949)
https://doi.org/10.1103/PhysRev.75.1969
10 O.Haxel, J. H. D. Jensen, and H. E. Suess, On the “magic numbers” in nuclear structure, Phys. Rev.75(11), 1766 (1949)
https://doi.org/10.1103/PhysRev.75.1766.2
11 D.Vautherin and D. M. Brink, Hartree – Fock calculations with Skyrme’s interaction (I): Spherical nuclei, Phys. Rev. C 5(3), 626 (1972)
https://doi.org/10.1103/PhysRevC.5.626
12 P.Ring, Relativistic mean field theory in finite nuclei, Prog. Part. Nucl. Phys.37, 193 (1996)
https://doi.org/10.1016/0146-6410(96)00054-3
13 M. Bender, P. Heenen, and P.-G Reinhard, Self-consistent mean-field models for nuclear structure, Rev. Mod. Phys. 75, 121 (2003)
https://doi.org/10.1103/RevModPhys.75.121
14 P. G. Reinhard, The relativistic mean-field description of nuclei and nuclear dynamics, Rep. Prog. Phys.52(4), 439 (1989)
https://doi.org/10.1088/0034-4885/52/4/002
15 A. Sulaksono, T. B�rvenich, J. A. Maruhn, P. G. Reinhard, and W. Greiner, The nonrelativistic limit of the relativistic point coupling model, Ann. Phys. 308(1), 354 (2003)
https://doi.org/10.1016/S0003-4916(03)00146-5
16 J. M. Pearson and M.Farine, Relativistic mean-field theory and a density-dependent spin – orbit Skyrme force, Phys. Rev. C 50(1), 185 (1994)
https://doi.org/10.1103/PhysRevC.50.185
17 B. G. Todd-Rutel, J. Piekarewicz, and P. D. Cottle, Spin–orbit splitting in low-j neutron orbits and proton densities in the nuclear interior, Phys. Rev. C 69, 021301 (2004)
https://doi.org/10.1103/PhysRevC.69.021301
18 M.Grasso, L. Gaudefroy, E. Khan, T.Nikšić, J. Piekarewicz, O. Sorlin, N. V.Giai, and D. Vretenar, Nuclear “bubble” structure in Si34, Phys. Rev. C 79(3), 034318 (2009)
https://doi.org/10.1103/PhysRevC.79.034318
19 O.Sorlin and M. G. Porquet, Evolution of the N = 28 shell closure: A test bench for nuclear forces, Phys. Scr. T 152, 014003 (2013)
https://doi.org/10.1088/0031-8949/2013/T152/014003
20 P. G. Reinhard and H.Flocard, Nuclear effective forces and isotope shifts, Nucl. Phys. A 584(3), 467 (1995)
https://doi.org/10.1016/0375-9474(94)00770-N
21 M. M. Sharma, G.Lalazissis, J. König, and P. Ring, Isospin dependence of the spin – orbit force and effective nuclear potentials, Phys. Rev. Lett.74(19), 3744 (1995)
https://doi.org/10.1103/PhysRevLett.74.3744
22 M.Onsi, R. C. Nayak, J. M. Pearson, H.Freyer, and W. Stocker, Skyrme representation of a relativistic spin – orbit field, Phys. Rev. C 55(6), 3166 (1997)
https://doi.org/10.1103/PhysRevC.55.3166
23 J. M. Pearson, Skyrme Hartree–Fock method and the spin–orbit term of the relativistic mean field, Phys. Lett. B 513(3–4), 319 (2001)
https://doi.org/10.1016/S0370-2693(01)00375-6
24 G. A. Lalazissis, D.Vretenar, W. Pöschl, and P. Ring, Reduction of the spin – orbit potential in light drip-line nuclei, Phys. Lett. B 418(1-2), 7 (1998)
https://doi.org/10.1016/S0370-2693(97)01473-1
25 B. S. Pudliner., A.Smerzi, J. Carlson, V. R. Pandharipande, S. C.Pieper, and D. G. Ravenhall, Neutron drops and Skyrme energy-density functionals, Phys. Rev. Lett.76(14), 2416 (1996)
https://doi.org/10.1103/PhysRevLett.76.2416
26 J. P. Schiffer, S. J. Freeman, J. A. Caggiano, C. Deibel, A. Heinz, C.L. Jiang, R. Lewis, A. Parikh, P. D. Parker, K. E. Rehm, S. Sinha, and J. S. Thomas, Is the nuclear spin-orbit interaction changing with neutron excess? Phys. Rev. Lett.92(16), 162501 (2004) [Erratum, Phys. Rev. Lett.,110, 169901 (2013)]
https://doi.org/10.1103/PhysRevLett.92.162501
27 T.Lesinski, M. Bender, K. Bennaceur, T.Duguet, and J. Meyer, Tensor part of the Skyrme energy density functional: Spherical nuclei, Phys. Rev. C 76(1), 014312 (2007)
https://doi.org/10.1103/PhysRevC.76.014312
28 M.Zalewski, J. Dobaczewski, W. Satuła, and T. R.Werner, Spin – orbit and tensor mean-field effects on spin – orbit splitting including self-consistent core polarizations, Phys. Rev. C 77(2), 024316 (2008)
https://doi.org/10.1103/PhysRevC.77.024316
29 M.Bender, K. Bennaceur, T. Duguet, P.H.Heenen, T. Lesinski, and J. Meyer, Tensor part of the Skyrme energy density functional (II): Deformation properties of magic and semi-magic nuclei, Phys. Rev. C 80(6), 064302 (2009)
https://doi.org/10.1103/PhysRevC.80.064302
30 Y. M. Engel, D. M.Brink, K. Goeke, S. J.Krieger, and D. Vautherin, Time-dependent Hartree – Fock theory with Skyrme’s interaction, Nucl. Phys. A 249(2), 215 (1975)
https://doi.org/10.1016/0375-9474(75)90184-0
31 T. H. R. Skyrme, The effective nuclear potential, Nucl. Phys.9(4), 615 (1958)
https://doi.org/10.1016/0029-5582(58)90345-6
32 T.Otsuka, T. Suzuki, R. Fujimoto, H.Grawe, and Y. Akaishi, Evolution of nuclear shells due to the tensor force, Phys. Rev. Lett.95(23), 232502 (2005)
https://doi.org/10.1103/PhysRevLett.95.232502
33 T.Otsuka, T. Matsuo, and D. Abe, Mean field with tensor force and shell structure of exotic nuclei, Phys. Rev. Lett.97(16), 162501 (2006)
https://doi.org/10.1103/PhysRevLett.97.162501
34 T.Otsuka, T. Suzuki, M. Honma, Y.Utsuno, N. Tsunoda, K. Tsukiyama, and M.Hjorth-Jensen, Novel features of nuclear forces and shell evolution in exotic nuclei, Phys. Rev. Lett.104(1), 012501 (2010)
https://doi.org/10.1103/PhysRevLett.104.012501
35 L.Gaudefroy, O. Sorlin, D. Beaumel, Y.Blumenfeld, Z. Dombrádi, S. Fortier, S.Franchoo, M. Gélin, J. Gibelin, S.Grévy, F. Hammache, F.Ibrahim, K. W. Kemper, K.L. Kratz, S. M.Lukyanov, C. Monrozeau, L. Nalpas, F.Nowacki, A. N. Ostrowski, T. Otsuka, Y.E.Penionzhkevich, J.Piekarewicz , E. C. Pollacco, P.Roussel-Chomaz, E. Rich, J. A. Scarpaci, M. G.St. Laurent, D. Sohler, M.Stanoiu , T.Suzuki, E. Tryggestad, and D. Verney, Reduction of the spin – orbit splittings at the N = 28 shell closure, Phys. Rev. Lett.97(9), 092501 (2006)
https://doi.org/10.1103/PhysRevLett.97.092501
36 G.Colò, H. Sagawa, S. Fracasso, and P. F.Bortignon, Spin–orbit splitting and the tensor component of the Skyrme interaction, Phys. Lett. B 646(5–6), 227 (2007) [Erratum, Phys. Lett. B, 668, 457(2008)]
https://doi.org/10.1016/j.physletb.2007.01.033
37 L. G. Cao, G.Colò, H. Sagawa, P. F.Bortignon, and L. Sciacchitano, Effects of the tensor force on the multipole response in finite nuclei, Phys. Rev. C 80(6), 064304 (2009)
https://doi.org/10.1103/PhysRevC.80.064304
38 C. L. Bai, H. Q.Zhang, H. Sagawa, X. Z.Zhang, G. Coló, and F. R. Xu, Effect of the tensor force on the charge exchange spin-dipole excitations of Pb208, Phys. Rev. Lett.105(7), 072501 (2010)
https://doi.org/10.1103/PhysRevLett.105.072501
39 C. L. Bai, H. Q.Zhang, H. Sagawa, X. Z.Zhang, G. Coló, and F. R. Xu, Spin – isospin excitations as quantitative constraints for the tensor force, Phys. Rev. C 83(5), 054316 (2011)
https://doi.org/10.1103/PhysRevC.83.054316
40 E. B. Suckling and P. D.Stevenson, The effect of the tensor force on the predicted stability of superheavy nuclei, Eur. Phys. Lett.90(1), 12001 (2010)
https://doi.org/10.1209/0295-5075/90/12001
41 H. A. Bethe, Theory of nuclear matter, Annu. Rev. Nucl. Part. Sci.21(1), 93 (1971)
https://doi.org/10.1146/annurev.ns.21.120171.000521
42 V. R. Pandharipande, Variational calculation of nuclear matter, Nucl. Phys. A 181(1), 33 (1972)
https://doi.org/10.1016/0375-9474(72)90899-8
43 S.Fantoni and V. R. Pandharipande, Momentum distribution of nucleons in nuclear matter, Nucl. Phys. A 427(3), 473 (1984)
https://doi.org/10.1016/0375-9474(84)90226-4
44 S. C. Pieper, R. B.Wiringa, and V. R. Pandharipande, Variational calculation of the ground state of O16, Phys. Rev. C 46(5), 1741 (1992)
https://doi.org/10.1103/PhysRevC.46.1741
45 C.Ciofi degli Atti and S.Simula, Realistic model of the nucleon spectral function in few- and many-nucleon systems, Phys. Rev. C 53(4), 1689 (1996)
https://doi.org/10.1103/PhysRevC.53.1689
46 A.Tang, J. W. Watson, J. Aclander, J.Alster, G. Asryan, Y. Averichev, D.Barton, V. Baturin, N.Bukhtoyarova , A.Carroll, S. Gushue, S. Heppelmann, A.Leksanov, Y. Makdisi, A. Malki, E.Minina, I. Navon, H. Nicholson, A.Ogawa, Y. Panebratsev, E. Piasetzky, A.Schetkovsky, S. Shimanskiy, and D. Zhalov, n-p short-range correlations from (p, 2p+n) measurements, Phys. Rev. Lett.90(4), 042301 (2003)
https://doi.org/10.1103/PhysRevLett.90.042301
47 K. S. Egiyan, CLAS Collaboration), Measurement of two- and three-nucleon short-range correlation probabilities in nuclei, Phys. Rev. Lett.96(8), 082501 (2006)
https://doi.org/10.1103/PhysRevLett.96.082501
48 E.Piasetzky, M. Sargsian, L. Frankfurt, M.Strikman, and J. W. Watson, Evidence for strong dominance of proton – neutron correlations in nuclei, Phys. Rev. Lett.97(16), 162504 (2006)
https://doi.org/10.1103/PhysRevLett.97.162504
49 R.Subedi, R. Shneor, P. Monaghan, B. D.Anderson, K. Aniol, J. Annand, J.Arrington, H. Benaoum, F. Benmokhtar, W.Boeglin, , Probing cold dense nuclear matter, Science 320(5882), 1476(2008)
https://doi.org/10.1126/science.1156675
50 O.Hen, . (Jefferson Lab CLAS Collaboration), Momentum sharing in imbalanced Fermi systems, Science 346(6209), 614 (2014)
https://doi.org/10.1126/science.1256785
51 R.Schiavilla, R. B. Wiringa, S. C. Pieper, and J.Carlson, Tensor forces and the ground-state structure of nuclei, Phys. Rev. Lett.98(13), 132501 (2007)
https://doi.org/10.1103/PhysRevLett.98.132501
52 M.Alvioli, C. Ciofi degli Atti, and H. Morita, Proton – neutron and proton – proton correlations in medium-weight nuclei and the role of the tensor force, Phys. Rev. Lett.100(16), 162503 (2008)
https://doi.org/10.1103/PhysRevLett.100.162503
53 J.Arrington, D. W. Higinbotham, G. Rosner, and M.Sargsian, Hard probes of short-range nucleon–nucleon correlations, Prog. Part. Nucl. Phys.67(4), 898 (2012)
https://doi.org/10.1016/j.ppnp.2012.04.002
54 I. Vidaña, A. Polls, and C. Providencia, Nuclear symmetry energy and the role of the tensor force, Phys. Rev. C 84, 062801(R) (2011)
55 A.Carbone, A. Polls, and A. Rios, High-momentum components in the nuclear symmetry energy, Eur. Phys. Lett.97(2), 22001 (2012)
https://doi.org/10.1209/0295-5075/97/22001
56 C.Xu, A. Li, and B. A. Li, Delineating effects of tensor force on the density dependence of nuclear symmetry energy, J. Phys.: Conf. Ser.420, 012090 (2013)
https://doi.org/10.1088/1742-6596/420/1/012090
57 K.Pomorski and J. Dudek, Nuclear liquid-drop model and surface-curvature effects, Phys. Rev. C 67(4), 044316 (2003)
https://doi.org/10.1103/PhysRevC.67.044316
58 O.Hen, B. A. Li, W. J. Guo, L. B.Weinstein, and E. Piasetzky, Symmetry energy of nucleonic matter with tensor correlations, Phys. Rev. C 91(2), 025803 (2015)
https://doi.org/10.1103/PhysRevC.91.025803
59 B. A. Li, W. J.Guo, and Z. Z. Shi, Effects of the kinetic symmetry energy reduced by short-range correlations in heavy-ion collisions at intermediate energies, Phys. Rev. C 91(4), 044601 (2015)
https://doi.org/10.1103/PhysRevC.91.044601
60 P.Hoodbhoy and J. W. Negele, Solution of Hartree-Fock equations in coordinate space for axially symmetric nuclei, Nucl. Phys. A.288(1), 23 (1977)
https://doi.org/10.1016/0375-9474(77)90079-3
61 K. T. R. Davies and S. E.Koonin, Skyrme-force time-dependent Hartree – Fock calculations with axial symmetry, Phys. Rev. C 23(5), 2042 (1981) (Erratum, Phys. Rev. C, 24, 1820 (1981) )
https://doi.org/10.1103/PhysRevC.24.1820.2
62 A. S. Umar, M. R.Strayer, and P. G. Reinhard, Resolution of the fusion window anomaly in heavy-ion collisions, Phys. Rev. Lett.56(26), 2793 (1986)
https://doi.org/10.1103/PhysRevLett.56.2793
63 P. G. Reinhard, A. S.Umar, K. T. R. Davies, M. R. Strayer, and S.J.Lee, Dissipation and forces in time-dependent Hartree – Fock calculations, Phys. Rev. C 37(3), 1026 (1988)
https://doi.org/10.1103/PhysRevC.37.1026
64 A. S. Umar, M. R.Strayer, P.G. Reinhard, K. T. R. Davies, and S.J.Lee, Spin-orbit force in time-dependent Hartree – Fock calculations of heavy-ion collisions, Phys. Rev. C 40(2), 706 (1989)
https://doi.org/10.1103/PhysRevC.40.706
65 J. A. Maruhn, P.G.Reinhard, P. D. Stevenson, and M. R. Strayer, Spin-excitation mechanisms in Skyrme-force time-dependent Hartree – Fock calculations, Phys. Rev. C 74(2), 027601 (2006)
https://doi.org/10.1103/PhysRevC.74.027601
66 A. S. Umar and V. E.Oberacker, Three-dimensional unrestricted time-dependent Hartree – Fock fusion calculations using the full Skyrme interaction, Phys. Rev. C 73(5), 054607 (2006)
https://doi.org/10.1103/PhysRevC.73.054607
67 G. F. Dai, L.Guo, E. G. Zhao, and S. G.Zhou, Dissipation dynamics and spin-orbit force in time-dependent Hartree – Fock theory, Phys. Rev. C 90(4), 044609 (2014)
https://doi.org/10.1103/PhysRevC.90.044609
68 Y.Iwata and J. A. Maruhn, Enhanced spin-current tensor contribution in collision dynamics, Phys. Rev. C 84(1), 014616 (2011)
https://doi.org/10.1103/PhysRevC.84.014616
69 G. F. Dai,L.Guo, E. G. Zhao, and S. G.Zhou, Effect of tensor force on dissipation dynamics in time-dependent Hartree-Fock theory, Science China- Physics, Mechanics & Astronomy 57(9), 1618 (2014)
https://doi.org/10.1007/s11433-014-5536-8
70 P. D. Stevenson., E. B.Suckling, S. Fracasso, M. C. Barton, and A. S. Umar, The Skyrme tensor force in heavy ion collisions, arXiv: 1507.00645[nucl-th]
71 C. Y. Wong, Dynamics of nuclear fluid. VIII. Time-dependent Hartree – Fock approximation from a classical point of view, Phys. Rev. C 25(3), 1460 (1982)
https://doi.org/10.1103/PhysRevC.25.1460
72 G. F. Bertsch and S. Das Gupta, A guide to microscopic models for intermediate energy heavy ion collisions, Phys. Rep.160(4), 189 (1988)
https://doi.org/10.1016/0370-1573(88)90170-6
73 J. Xu and B. A. Li, Probing in-medium spin–orbit interaction with intermediate-energy heavy-ion collisions, Phys. Lett. B 724(4-5), 346 (2013)
https://doi.org/10.1016/j.physletb.2013.06.033
74 Y. Xia, J. Xu, B. A. Li, and W. Q. Shen, Spin – orbit coupling and the up-down differential transverse flow in intermediate-energy heavy-ion collisions, Phys. Rev. C 89(6), 064606 (2014)
https://doi.org/10.1103/PhysRevC.89.064606
75 Y. Xia, J. Xu, B. A. Li, and W. Q. Shen, The spin-splitting of collective flows in intermediate-energy heavy-ion collisions, arXiv: 1411.3057[nucl-th]
76 J. Xu, B. A. Li, Y. Xia, and W. Q. Shen, Spin effects in intermediate-energy heavy-ion collisions, Nucl. Phys. Rev.31, 306 (2014)
77 J. Xu, Y. Xia, B. A. Li, and W. Q. Shen, Spin-orbit coupling in intermediate-energy heavy-ion collisions, Nucl. Technol.37, 100513 (2014) (in Chinese)
78 G. G. Ohlsen, Polarization transfer and spin correlation experiments in nuclear physics, Rep. Prog. Phys.35(2), 717 (1972)
https://doi.org/10.1088/0034-4885/35/2/305
79 W. G. Love and M. A. Franey, Effective nucleon – nucleon interaction for scattering at intermediate energies, Phys. Rev. C 24(3), 1073 (1981) W. G. Love and M. A. Franey, Erratum: Effective nucleon – nucleon interaction for scattering at intermediate energies, Phys. Rev. C 27(1), 438 (1983)
https://doi.org/10.1103/PhysRevC.27.438
80 P. Danielewicz and G. Odyniec, Transverse momentum analysis of collective motion in relativistic nuclear collisions, Phys. Lett. B 157(2–3), 146 (1985)
https://doi.org/10.1016/0370-2693(85)91535-7
81 V. Greco, C. M. Ko, and P. Lévai, Parton coalescence and the antiproton/pion anomaly at RHIC, Phys. Rev. Lett.90(20), 202302 (2003)
https://doi.org/10.1103/PhysRevLett.90.202302
82 V. Greco, C. M. Ko, and P. Lévai, Partonic coalescence in relativistic heavy ion collisions, Phys. Rev. C 68(3), 034904 (2003)
https://doi.org/10.1103/PhysRevC.68.034904
83 L. W. Chen, C. M. Ko, and B. A. Li, Light cluster production in intermediate energy heavy-ion collisions induced by neutron-rich nuclei, Nucl. Phys. A 729(2–4), 809 (2003)
https://doi.org/10.1016/j.nuclphysa.2003.09.010
84 L. W. Chen, C. M. Ko, and B. A. Li, Light clusters production as a probe to nuclear symmetry energy, Phys. Rev. C 68(1), 017601 (2003)
https://doi.org/10.1103/PhysRevC.68.017601
85 Y. Xia, J. Xu, B. A. Li, and W. Q. Shen, in preparation
86 L. W. Chen, C. M. Ko, B. A. Li, and J. Xu, Density slope of the nuclear symmetry energy from the neutron skin thickness of heavy nuclei, Phys. Rev. C 82(2), 024321 (2010)
https://doi.org/10.1103/PhysRevC.82.024321
87 C. Hartnack, L. Zhuxia, L. Neise, G. Peilert, A. Rosenhauer, H. Sorge, J. Aichelin, H. Stöcker, and W. Greiner, Quantum molecular dynamics a microscopic model from UNILAC to CERN energies, Nucl. Phys. A.495(1–2), 303 (1989)
https://doi.org/10.1016/0375-9474(89)90328-X
88 J. Aichelin, “Quantum” molecular dynamics — a dynamical microscopic n-body approach to investigate fragment formation and the nuclear equation of state in heavy ion collisions, Phys. Rep.202(5–6), 233 (1991)
https://doi.org/10.1016/0370-1573(91)90094-3
89 C. C. Guo, Y. J. Wang, Q. F. Li, and F. S. Zhang, Effect of the spin – orbit interaction on flows in heavy-ion collisions at intermediate energies, Phys. Rev. C 90(3), 034606 (2014)
https://doi.org/10.1103/PhysRevC.90.034606
90 K. Asahi, M. Ishihara, N. Inabe, T. Ichihara, T. Kubo, M. Adachi, H. Takanashi, M. Kouguchi, M. Fukuda, D. Mikolas, D. J. Morrissey, D. Beaumel, T. Shimoda, H. Miyatake, and N. Takahashi, New aspect of intermediate energy heavy ion reactions: Large spin polarization of fragments, Phys. Lett. B 251(4), 488 (1990)
https://doi.org/10.1016/0370-2693(90)90784-4
91 H. Okuno, K. Asahi, H. Sato, H. Ueno, J. Kura, M. Adachi, T. Nakamura, T. Kubo, N. Inabe, A. Yoshida, T. Ichihara, Y. Kobayashi, Y. Ohkubo, M. Iwamoto, F. Ambe, T. Shimoda, H. Miyatake, N. Takahashi, J. Nakamura, D. Beaumel, D. J. Morrissey, W.D. Schmidt-Ott, and M. Ishihara, Systematic behavior of ejectile spin polarization in the projectile fragmentation reaction, Phys. Lett. B 335(1), 29 (1994)
https://doi.org/10.1016/0370-2693(94)91553-9
92 W. -D. Schmidt-Ott, K. Asahi, Y. Fujita, H. Geissel, K. -D. Gross, T. Hild, H. Irnich, M. Ishihara, K. Krumbholz, V. Kunze, A. Magel, F. Meissner, K. Muto, F. Nickel, H. Okuno, M. Pfützner, C. Scheidenberger, K. Suzuki, M. Weber, C. Wennemann, Spin alignment of 43Sc produced in the fragmentation of 500 MeV/u 46Ti, Z. Phys. A 350(3), 215 (1994)
https://doi.org/10.1007/BF01289585
93 D. E. Groh, P. F. Mantica, A. E. Stuchbery, A. Stolz, T. J. Mertzimekis, W. F. Rogers, A. D. Davies, S. N. Liddick, and B. E. Tomlin, Spin polarization of K37 produced in a Single-proton pickup reaction at intermediate energies, Phys. Rev. Lett.90(20), 202502 (2003)
https://doi.org/10.1103/PhysRevLett.90.202502
94 K. Asahi, M. Ishihara, T. Ichihara, M. Fukuda, T. Kubo, Y. Gono, A. C. Mueller, R. Anne, D. Bazin, D. Guillemaud-Mueller, R. Bimbot, W. D. Schmidt-Ott, and J. Kasagi, Observation of spin-aligned secondary fragment beams of B14, Phys. Rev. C 43(2), 456 (1991)
https://doi.org/10.1103/PhysRevC.43.456
95 D. Borremans, J. M. Daugas, S. Teughels, D. L. Balabanski, N. Coulier, F. de Oliveira Santos, G.Georgiev, M. Hass, G. Georgiev M. Lewitowicz, I. Matea, Y. E. Penionzhkevich, W.D. Schmidt-Ott, Y. E. Sobolev, M. Stanoiu, K. Vyvey, and G. Neyens, Spin polarization of 27Na and 31Al in intermediate energy projectile fragmentation of 36S, Phys. Rev. C 66(5), 054601 (2002)
https://doi.org/10.1103/PhysRevC.66.054601
96 K. Turzó, P. Himpe, D. L. Balabanski, G. Bélier, D. Borremans, J. M. Daugas, G. Georgiev, F. O. Santos, S. Mallion, I. Matea, G. Neyens, Y. E. Penionzhkevich, C. Stodel, N. Vermeulen, and D. Yordanov, Spin polarization of Al34 fragments produced by nucleon pickup at intermediate energies, Phys. Rev. C 73(4), 044313 (2006)
https://doi.org/10.1103/PhysRevC.73.044313
97 Y. Ichikawa, H. Ueno, Y. Ishii, T. Furukawa, A. Yoshimi, D. Kameda, H. Watanabe, N. Aoi, K. Asahi, D. L. Balabanski, R. Chevrier, J.M. Daugas, N. Fukuda, G. Georgiev, H. Hayashi, H. Iijima, N. Inabe, T. Inoue, M. Ishihara, T. Kubo, T. Nanao, T. Ohnishi, K. Suzuki, M. Tsuchiya, H. Takeda, and M. M. Rajabali, Production of spin-controlled rare isotope beams, Nat. Phys.8(12), 918 (2012)
https://doi.org/10.1038/nphys2457
98 N. H. Buttimore, E. Gotsman, and E. Leader, Spin-dependent phenomena induced by electromagnetic – hadronic interference at high energies, Phys. Rev. D 18(3), 694 (1978)
https://doi.org/10.1103/PhysRevD.18.694
99 A. Zelenski, G. Atoian, A. Bogdanov, D. Raparia, M. Runtso, and E. Stephenson, Precision, absolute proton polarization measurements at 200 MeV beam energy, J. Phys.: Conf. Ser.295, 012132 (2011)
https://doi.org/10.1088/1742-6596/295/1/012132
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed